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Objective. Findings from cross-sectional studies have revealed associations between DNA methylation and
systemic lupus erythematosus (SLE) outcomes. This study was undertaken to investigate the dynamics of DNA
methylation by examining participants from an SLE longitudinal cohort using samples collected at 2 time points.

Methods. A total of 101 participants from the California Lupus Epidemiology Study were included in our analysis.
DNA was extracted from blood samples collected at the time of enrolment in the cohort and samples collected after
2 years and was analyzed using Illumina EPIC BeadChip kit. Paired t-tests were used to identify genome-wide changes
which included 256 CpG sites previously found to be associated with SLE subtypes. Linear mixed models were devel-
oped to understand the relationship between DNA methylation and disease activity, medication use, and sample cell-
type proportions, adjusted for age, sex, and genetic principal components.

Results. The majority of CpGs that were previously determined to be associated with SLE subtypes remained sta-
ble over 2 years (185 CpGs [72.3%]; t-test false discovery rate >0.05). Compared to background genome-wide meth-
ylation, there was an enrichment of SLE subtype–associated CpGs that changed over time (27.7% versus 0.34%).
Changes in cell-type proportions were associated with changes at 67 CpGs (P < 2.70 × 10−5), and 15 CpGs had at
least 1 significant association with immunosuppressant use.

Conclusion. In this longitudinal SLE cohort, we identified a subset of SLE subtype–associated CpGs that remained
stable over time and may be useful as biomarkers of disease subtypes. Another subset of SLE subtype–associated
CpGs changed at a higher proportion compared to the genome-wide methylome. Additional studies are needed to
understand the etiology and impact of these changes on methylation of SLE-associated CpGs.

INTRODUCTION

Systemic lupus erythematosus (SLE) is a heterogeneous
autoimmune disease that affects 1 in 600 women in the US,
and it is among the leading causes of death in young women,
despite modern treatments (1,2). Prior studies suggest that epi-
genetics informs SLE disease heterogeneity and pathophysiol-
ogy. Epigenetics is the study of chromatin modifications,

including DNA methylation, that regulate gene expression and
cell differentiation (3). Changes in methylation of CpG sites within
interferon-responsive genes and regulatory regions of the
genome and in different immune cell types are associated with
SLE risk, disease activity, and specific organ manifestations
such as lupus nephritis (4–9). However, causality of these asso-
ciations cannot be determined given the cross-sectional nature
of previous studies. Furthermore, the stability of CpG
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methylation changes and the prognostic implications for long-
term outcomes remain unclear.

There are many challenges in treating SLE, and there is a lack
of available biomarkers that can be used to accurately predict
clinical outcomes and response to treatment. DNA methylation
in whole blood samples is an attractive biomarker, as samples
can be easily obtained and do not require the isolation of periph-
eral blood mononuclear cells (PBMCs) or cell sorting. Thus, whole
blood DNAmethylation has potential to be easily applied in clinical
practice as a tool for precision medicine. Therefore, understand-
ing the longitudinal stability and variability of the methylome in
SLE patients is fundamental to its utility as a biomarker.

In this study, we investigated the longitudinal trajectory of
DNA methylation in whole blood samples from a diverse multieth-
nic cohort of SLE patients followed up for over 2 years. We had
previously performed an epigenome-wide association study
(EWAS) of all participants from the California Lupus Epidemiology
Study (CLUES) at cohort enrolment (10). We identified 3 patient
subtypes at enrolment in the cohort according to American
College of Rheumatology (ACR) classification criteria and subcri-
teria (11,12). We classified the patients as mild (M), severe
1 (S1), and severe 2 (S2) according to autoantibody pattern and
internal organ involvement and identified 256 CpGs that were sig-
nificantly associated with these subtypes, many of which mapped
to the interferon pathway.

Here, we examined the dynamics of this previously
described DNAmethylation signature as well as the genome-wide
longitudinal trajectory of the methylome in participants from the
CLUES cohort (n = 101). We studied the impact of disease activ-
ity, medication use, cell-type proportions, genetic variation, and
self-reported ethnicity and race on changes in methylation at
CpG sites.

PATIENTS AND METHODS

Subjects. CLUES is a multiracial and multiethnic cohort of
individuals with physician-confirmed SLE. This study was
approved by the Institutional Review Board of the University of
California, San Francisco. Written informed consent was obtained
from all patients prior to participation in the study. Participants
were recruited from the California Lupus Surveillance Project, a
population-based cohort of individuals with SLE living in the
County of San Francisco from 2007 to 2009 (13). Additional par-
ticipants residing in the geographic region were recruited through
local academic and community rheumatology clinics and through
existing local research cohorts. This study included a subset of
101 CLUES participants from the following self-reported races
and ethnicities: White (n = 29), Black (n = 13), Asian (n = 34), His-
panic (n = 22), and other or unspecified (n = 3). Clinical and demo-
graphic characteristics are shown in Supplementary Table 1
(available on the Arthritis & Rheumatology website at http://
onlinelibrary.wiley.com/doi/10.1002/art.42237).

Study procedures involved an in-person research clinic visit
every 2 years including the collection and review of medical
records prior to each visit, a history of SLE and physical examina-
tion conducted by a physician specializing in lupus, collection of
biologic specimens including peripheral blood samples for clinical
and research purposes, and completion of a structured interview
administered by an experienced research assistant. For
the 101 participants, the mean ± SD time between visits was
2.3 ± 0.3 years. All SLE diagnoses were confirmed by study physi-
cians (CML, MD, and JY) according to 1 of the following definitions:
1) meeting ≥4 of 11 ACR revised criteria for the classification of SLE
as defined in 1982 (11) and updated in 1997 (12), 2) meeting 3 of
11 ACR criteria and having a documented rheumatologist’s diag-
nosis of SLE, or 3) a rheumatologist-confirmed diagnosis of lupus
nephritis, defined as having evidence of lupus nephritis on kidney
biopsy. Medication use at the time of blood collection was
recorded. For data analyses, we grouped immunosuppressive
medications into the following categories: biologic treatments (beli-
mumab, abatacept, rituximab), low-dose prednisone (<10 mg),
moderate or high-dose prednisone (>10 mg), antimalarials, calci-
neurin inhibitors, methotrexate and leflunomide, azathioprine,
mycophenolatemofetil, and cyclophosphamide. Self-reported race
and ethnicity data was collected from each study participant.

DNA methylation and quality control. Methylation of
genomic DNA from whole blood samples was profiled using an
Illumina Methylation EPIC BeadChip kit. This chip kit assesses
the methylation level of ~850,000 CpGs in enhancer regions,
gene bodies, promoters, and CpG islands. All subsequent pro-
cessing was conducted using the R minfi package. Signal intensi-
ties were background subtracted using the minfi noob function
and were then quantile normalized (14,15). We removed sites with
a poor detection rate (P > 0.05) in more than 5% of the samples
(1,746 CpG sites). We removed sites where probes were pre-
dicted to hybridize to multiple loci (44,097) and sites on non-
autosomal chromosomes (19,627 CpG sites). We also excluded
91,799 CpGs that have been shown to poorly perform due to
single-nucleotide polymorphisms (SNPs) near probes in diverse
populations (16). Additionally, we removed 3,413 CpGs where
the assay control sample had a variance >0.01 across the
9 plates. After implementing these quality control measures,
720,682 CpGs were included in the analysis.

DNA genotyping.Genotyping of genomic DNA from blood
samples was performed using Affymetrix Axiom Genome-Wide
LAT 1 Array. This genotyping array is composed of 817,810
SNP markers across the genome and was specifically designed
to provide maximal coverage of diverse racial and ethnic popula-
tions, including West Africans, Europeans, and American Indians
(17). Samples were retained with Dish QC ≥0.82. SNP genotypes
were first filtered for high-quality cluster differentiation and 95%
call rate within batches using SNPolisher. Additional quality
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control was performed using Plink. SNPs with an overall call
rate <95% or discordant calls in duplicate samples were
removed. Samples were excluded if there were unexpected dupli-
cates in identity by descent analysis or if the sex was mismatched
between genetic data and self report; 1 sample was retained for
first-degree relatives. All samples had at least 95% genotyping
and no evidence of excess heterozygosity (maximum <2.5*SD).
We tested for Hardy-Weinberg equilibrium and cross-batch associ-
ation for batch effects using a subset of subjects that were of
European ancestry and were negative for double-stranded DNA
(dsDNA) antibodies and renal disease to minimize genetic hetero-
geneity. SNPs were excluded if Hardy-Weinberg equilibrium
P < 1 × 10−5 or any cross-batch association P < 5 × 10−8. Genetic
principal components were calculated to account for population
structure using PCAmixdata R package.

Genetic ancestry. We performed ADMIXTURE (18) analy-
sis using genome-wide SNP data to estimate the percent contri-
bution of each ancestral population for each participant in the
study. We first combined our sample data with 1000 Genomes
genotype data and removed SNPs for linkage disequilibrium

according to software recommendations, excluding each SNP
with an R2 >0.1 in a 50-SNP sliding window advanced by 10
SNPs each time. After exclusion, 162,159 SNPs were used to
estimate global ancestry. We then ran ADMIXTURE unsupervised
assuming 5 subpopulations (European, African, East Asian,
South Asian, and American Indian). We then used labels from
1000 Genomes to determine the ancestry of the estimated pro-
portions of each of our subjects for downstream analysis.

Differential methylation analysis. Our analysis pipe-
line is shown in Figure 1. Samples from different time points were
quantile normalized together. Principal components analysis
plots between different time points, plates, and race and ethnic-
ities are shown (Supplementary Figures 1–3, http://onlinelibrary.
wiley.com/doi/10.1002/art.42237). Significance testing was per-
formed using M values, with effect sizes converted to beta values
for reporting. To adjust for differences between plates, we used
ComBat (19). We adjusted the beta values with residual values
for estimated cell-type proportions using the reference-based
Houseman algorithm to account for cell-type proportion hetero-
geneity (20,21). We initially performed a genome-wide paired

Figure 1. Analysis pipeline of our study of 101 participants from the CLUES study. SLE = systemic lupus erythematosus; FDR = false discovery rate;
PCs = principal components; SLEDAI = Systemic Lupus Erythematosus Disease Activity Index; dsDNA = double-stranded DNA; glm = generalized
linear model. Color figure can be viewed in the online issue, which is available at http://onlinelibrary.wiley.com/doi/10.1002/art.42237/abstract.
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t-test of the 2 time points and retained CpG sites that had a false
discovery rate (FDR) P < 0.05 and an absolute beta value differ-
ence of >0.03, as a threshold for an effect size to be biologically
meaningful (22).

We then took a closer look at the previously described SLE
subtype–associated CpGs within the genome-wide results. We
constructed linear mixed models to analyze repeated measure-
ments with DNA methylation as the outcome to investigate the
effect of disease activity, dsDNA titer at the time of blood was
drawn, lupus nephritis status, and medication use adjusted
for sex, age, and genetic principal components (principal com-
ponents 1–3). To examine the role of cell-type proportion het-
erogeneity, significant CpGs from the paired t-tests were
reanalyzed without adjusting for cell-type proportions.
Changes in DNA methylation was modeled with the change in
each cell-type proportion as a predictor, adjusting for sex,
age, and genetic principal components (principal components
1–3). All association analyses were performed using R version
3.6 and Stata 13.1. Pathway analysis was performed using
ToppFun (23).

SLE subtype–associated CpGs enrichment analysis.
Enrichment of SLE subtype–associated CpGs in CpGs with a
significant change over time was determined via the following
methods. Briefly, we determined the methylation variance of

the 256 CpGs that were associated with SLE subtypes at cohort
enrolment. Then, randomly selected 256 CpG sites with similar
methylation variance distribution compared to SLE subtype–
associated CpGs throughout the genome were tested to see
if there was any difference in methylation at the 2 time
points (paired t-test). We tested this for a total of 100 random
samples. Results were compared to CpGs associated with
SLE subtypes.

Statistical methylation quantitative trait loci (QTLs)
analysis. We previously reported methylation QTL analysis find-
ings on SLE subtype–associated CpGs at the time of enrolment
in the cohort (10). Briefly, this was performed by fitting a linear
model adjusted for sex, age, cell-type proportions, alcohol use,
smoking status, the top 3 genetic principal components, and the
top 3 medication principal components using the Matrix eQTL R
package (24). There are also larger established data sets of CpGs
in healthy individuals that provide evidence of genetic control (25).
Combining our own findings and available resources, we identi-
fied a total of 39,899 CpGs with evidence of methylation QTL
within the Illumina Methylation EPIC BeadChip kit that passed
our quality control. We used a 2-sample test to see if the propor-
tion of methylation QTLs in CpGs that had a significant change
over time was higher than the proportion of methylation QTLs in
stable CpGs.

Table 1. Selected candidate CpGs that were stable over time and had the greatest difference in methylation between SLE clinical subtypes at
the time of enrollment in the CLUES cohort*

CpG Gene CpG position

Mean methylation beta values at enrollment, by cluster

Variance‡

IFNα-
responsive

gene

IFNγ-
responsive

geneMild† Severe 1† Severe 2†

cg16987437 SP100 Body 0.623 0.536 0.481 0.0178 No No
cg15065340 TNK2 50-UTR 0.623 0.555 0.499 0.0152 No No
cg19188021 ODF3B 50-UTR 0.264 0.174 0.142 0.0142 No No
cg17114584 IRF7 Body 0.513 0.451 0.399 0.0137 Yes Yes
cg22012079 IFI44L 50-UTR 0.586 0.501 0.462 0.0126 Yes Yes
cg12461141 TRIM22 TSS1500 0.493 0.423 0.380 0.0115 No No
cg14333162 RSAD2 TSS1500 0.698 0.647 0.602 0.0092 Yes Yes
cg26531432 RABGAP1L 50-UTR 0.698 0.634 0.605 0.0087 No No
cg20343278 PTPRM Body 0.323 0.361 0.304 0.0087 No No
cg03540917 SPINK2 Body 0.599 0.627 0.669 0.0086 No No
cg15378061 NA NA 0.186 0.231 0.257 0.0084 No No
cg15331332 HLA-F Body 0.599 0.568 0.538 0.0081 No No
cg00272009 PARP14 TSS1500 0.631 0.581 0.552 0.0080 Yes Yes
cg25178683 LGALS3BP TSS1500 0.554 0.509 0.470 0.0077 Yes Yes
cg13045500 NA NA 0.659 0.604 0.569 0.0072 No No
cg06168856 OAS1 Body 0.630 0.598 0.575 0.0067 Yes No
cg05167074 SHKBP1 Body 0.555 0.511 0.489 0.0067 No No
cg06708931 NA NA 0.906 0.867 0.828 0.0064 No No
cg06650861 DDX60 50-UTR 0.868 0.830 0.792 0.0064 Yes Yes
cg06376949 IFIT5 TSS1500 0.255 0.210 0.177 0.0063 No No

* Mean methylation beta values at the time of enrollment were compared by paired t-test, with a false discovery rate of >0.05. Cohort partici-
pants were clustered according to American College of Rheumatology systemic lupus erythematosus (SLE) classification criteria and subcriteria
(11,12) using an unsupervised clustering approach (10). CLUES = California Lupus Epidemiology Study; IFN = interferon; UTR = untranslated
region; TSS = transcription start site; NA = not applicable.
† Patients were classified as mild, severe 1, and severe 2 according to autoantibody pattern and internal organ involvement.
‡ By analysis of variance F test.
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Figure 2. A, Systemic lupus erythematosus (SLE) subtype–associated CpGs with a significant change in methylation over the 2 time points. B,
Methylation levels of 2,423 CpGs across the genome that significantly changed over a period of 2 years (0.34% of the represented methylome).
Symbols represent individual samples. FDR = false discovery rate.

Figure 3. Heat map of CpG sites with a significant methylation change in a 2 year period. We observed 309 CpGs with a DNA methylation
difference (absolute beta value difference >0.03, false disovery rate <0.05) in a 2-year time period. Each row represents a CpG and each column
represents a participant with systemic lupus erythematosus (SLE).
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RESULTS

Stability of the majority of SLE subtype–associated
CpGs over time. In previous studies, CLUES cohort participants
were clustered into 3 subtypes according to ACR classification
criteria at the time of enrolment in the cohort. We identified
256 CpGs that were differentially methylated according to sub-
type (10).

In the current study, we observed the dynamics of DNA
methylation in our previous findings by comparing data collected
at 2 time points. Of the 256 CpGs that were associated with dis-
ease subtypes, 184 CpGs (71.9%) were stable between the
2 time points. Since we observed an enrichment of CpGs in inter-
feron (IFN)–responsive genes in 256 CpGs, we investigated
whether there was a difference in terms of dynamics between
CpGs in IFN-responsive genes compared to non–IFN-responsive
genes. We found that 53% of CpGs in IFN-responsive genes
were stable compared to 87% of CpGs in non–IFN-responsive
genes (P = 1.4 × 10−9 by chi-square test), indicating that CpGs
in IFN-responsive genes are more susceptible to change in meth-
ylation. Regarding CpG position relative to genes, 74 were in gene
bodies (40.2%), 50 were in transcription start sites (27.2%), and
30 were in untranslated regions (16.3%). Twenty CpGs with the

most variance across clinical clusters (10) that did not change
over time are shown in Table 1, and the full list of stable CpGs is
shown in Supplementary Table 2 (http://onlinelibrary.wiley.com/
doi/10.1002/art.42237).

These include CpGs in TNK2, RABGAP1L, IRF7, IFI44L,
TRIM22, and many IFN-responsive genes. DNA methylation
within/near these genes has been implicated in SLE in previous
studies; for example TNK2 has been implicated in renal disease
in CD4+ naive cells (4) and RABGAP1L has been implicated with
anti-dsDNA antibody production. Volcano plots of representative
stable CpGs are shown in Supplementary Figure 4 (http://
onlinelibrary.wiley.com/doi/10.1002/art.42237).

SLE subtype–associated CpGs compared to the
genome-wide methylome over time. Although the majority
of SLE subtype–associated CpGs were stable, 71 CpGs
(27.7%) had a significant change in methylation (>0.03) (FDR
P < 0.05) (Figure 2A). We also examined the dynamics of the
genome-wide methylome. Paired t-test analysis revealed that
the methylation level of 2,423 CpGs across the genome signifi-
cantly changed over a period of 2 years (FDR <0.05), which is
0.34% of the represented methylome (Figure 2B). We also

Table 2. Top 20 CpGs whose methylation significantly changed over a 2-year time period among SLE patients in
the CLUES cohort*

Mean methylation beta values,
time point 1 to time point 2 Paired t-test

CpG Gene Time point 1 Time point 2 Delta Fold change P FDR

cg13452062 IFI44L† 0.31 0.14 0.17 –1.17 8 × 10−25 5.97 × 10−19

cg07929412 LOC101927924 0.75 0.70 0.05 –0.08 9 × 10−22 3.33 × 10−16

cg23570810 IFITM1† 0.49 0.41 0.08 –0.20 2 × 10−21 4.32 × 10−16

cg05696877 IFI44L† 0.31 0.19 0.12 –0.60 5 × 10−21 8.45 × 10−16

cg21549285 MX1† 0.40 0.26 0.14 –0.52 7 × 10−19 7.94 × 10−14

cg14628347 ITGB2 0.63 0.67 0.03 0.05 1 × 10−18 1.33 × 10−13

cg25984164 RABGAP1L† 0.71 0.63 0.07 –0.11 4 × 10−18 3.29 × 10−13

cg10549986 RSAD2 0.15 0.10 0.05 –0.51 4 × 10−18 3.29 × 10−13

cg09948374 RABGAP1L† 0.60 0.55 0.05 –0.10 6 × 10−18 4.65 × 10−13

cg07815522 PARP9† 0.45 0.34 0.11 –0.31 1 × 10−17 6.88 × 10−13

cg05552874 IFIT1† 0.40 0.32 0.08 –0.25 2 × 10−17 1.14 × 10−12

cg22862003 MX1† 0.41 0.33 0.09 –0.27 1 × 10−16 5.06 × 10−12

cg18467790 RADIL 0.52 0.58 0.06 0.10 1 × 10−16 5.06 × 10−12

cg16526047 ISG15 0.49 0.46 0.03 –0.07 2 × 10−16 6.43 × 10−12

cg24678928 DDX60† 0.70 0.61 0.09 –0.15 2 × 10−16 6.43 × 10−12

cg20062691 ISG15† 0.66 0.62 0.05 –0.07 3 × 10−16 1.01 × 10−11

cg07469075 PAMR1 0.58 0.52 0.06 –0.11 7 × 10−16 2.44 × 10−11

cg11317199 TRIM14 0.59 0.63 0.04 0.06 2 × 10−15 5.99 × 10−11

cg08565796 HKR1 0.32 0.35 0.03 0.08 2 × 10−15 8.09 × 10−11

cg12439472 EPSTI1† 0.31 0.21 0.10 –0.48 3 × 10−15 8.94 × 10−11

cg05883128 DDX60† 0.33 0.27 0.06 –0.20 4 × 10−15 1.19 × 10−10

cg13100600 AGRN† 0.51 0.54 0.03 0.06 5 × 10−15 1.52 × 10−10

cg07839457 NLRC5† 0.24 0.17 0.07 –0.40 6 × 10−15 1.56 × 10−10

cg25267487 NA 0.67 0.71 0.03 0.05 7 × 10−15 1.86 × 10−10

cg13207212 APBB2 0.56 0.52 0.03 –0.06 1 × 10−14 2.81 × 10−10

* For the full list of 309 CpGs, see Supplementary Table 3, available on the Arthritis & Rheumatologywebsite at http://
onlinelibrary.wiley.com/doi/10.1002/art.42237. CLUES = California Lupus Epidemiology Study; FDR = false discov-
ery rate; NA = not applicable.
† CpGs were associated with systemic lupus erythematosus (SLE) subtypes at the time of enrollment in the cohort.
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filtered results using a minimum difference in DNA methylation
(absolute beta value difference >0.03) and observed that
309 CpG sites had the minimum difference and FDR (Figure 3
and Supplementary Table 3, http://onlinelibrary.wiley.com/doi/
10.1002/art.42237).

These CpGs were distributed across the genome with the
top results within or near IFI44L, IFIT1, LOC101927924, and
MX1. The top 25 results according to smallest P value are shown
in Table 2. Pathway analysis of the genes containing these
309 sites identified the human immune response to tuberculosis
and retinoic acid–inducible gene 1–like receptor pathways as the
most significant pathways; however, multiple immune pathways
were represented, including antigen processing, virus response,
type II IFN signaling, cytotoxic T lymphocyte–associated path-
ways, and taurine and hypotaurine metabolism (Table 3). Across
S1, M1, and M2 clinical subtypes, we found no significant differ-
ence in terms of the change in methylation within changing CpGs
was identified between the 3 subtypes (FDR >0.05 by analysis of
variance).

In comparison to the genome-wide results, there was strong
evidence of enrichment in SLE subtype–associated CpGs that
changed over time (27% versus 0.34%, P = 1.82 × 10−175).
These included CpGs in IFI44L, MX1, and PRABCAP1L. A total
of 68 of these 71 CpGs had a decrease in methylation and only
3 had an increase in methylation at the second time point. An
enrichment analysis was performed, with results supporting this
finding. In 63 of 100 times, no CpG showed a significant differ-
ence in methylation (paired t-test FDR >0.05; methylation beta
value difference < 0.03). In 2 samples, 3 CpGs had a significant
change (P < 7 × 10−8; methylation beta value difference >0.03),
5 samples had 5 significant CpGs, and 30 samples 1 significant
CpG. The distribution of CpGs with a significant change in the

enrichment analysis is shown (see Supplementary Figure 5,
http://onlinelibrary.wiley.com/doi/10.1002/art.42237).

Association of CpG sites with clinical outcomes.
Although the disease was stable or quiescent over time in most
study participants, a small percentage of participants had significant
changes in clinical manifestations, such as changing dsDNA titers
or development of lupus nephritis. In these cases, we evaluated
whether CpG sites that changed over time were associated with
Systemic Lupus Erythematosus Disease Activity Index (SLEDAI)
score (26), dsDNA antibody positivity, and/or lupus nephritis
(Supplementary Table 4, http://onlinelibrary.wiley.com/doi/10.1002/
art.42237). Overall, no CpGs met the threshold of significance
(P < 1.8 × 10−5) but, according to SLEDAI scores, some evidence
of an association was observed with cg09858955 in VRK2 (β coeffi-
cient –1.2, P = 0.001), cg09128104 in RARA (β coefficient 0.69,
P = 0.00036), and cg21524061 in TLR6 (β coefficient 0.45,
P = 0.0005). These genes are involved in granulopoiesis (RARA)
(27), apoptosis (VRK2) (28), and immune activation (TLR6) (29), all
of which are pathways relevant to lupus disease pathogenesis. The
top associations with regard to dsDNA positivity were cg01971407
in IFITM1 (β coefficient –0.30,P = 0.0003), cg05070493 in TRAF3
(β coefficient –0.06, P = 0.0003), and cg00959259 and
cg08122652 in PARP9 (β coefficient –0.029, P = 0.0003 and
β coefficient –0.11, P = 0.0004, respectively). Similarly, TNF
receptor–associated factor 3 is known to be a powerful nega-
tive regulator of B cell survival and activation (30), IFITM1 is
an IFN-responsive gene, and PARP9 is associated with mac-
rophage activation (31,32).

Effect of medications on DNA methylation. Since
medications such as prednisone and methotrexate can alter the

Table 3. Pathway analysis of 309 CpG sites that showed significant methylation changes (FDR <0.05) and an absolute methylation beta value
difference of >0.03 over 2 years in the CLUES cohort*

CpG site identifier Pathway name P FDR†
No. of genes
from input

No. of genes in
annotation

M39748 Human immune response to tuberculosis 2.82 × 10−8 1.70 × 10−5 6 23
M39583 Novel intracellular components of RLR pathway 1.20 × 10−5 3.60 × 10−3 6 61
M1462 CTL-mediated immune response against target cells 1.59 × 10−4 0.023 3 13
M39909 Host–pathogen interaction of human coronaviruses–IFN

induction
1.64 × 10−4 0.023 4 33

M22023 Antigen processing and presentation 2.01 × 10−4 0.023 3 14
M39363 Type II IFN signaling (IFNG) 2.58 × 10−4 0.023 4 37
M40067 SARS–CoV-2 innate immunity evasion and cell-specific

immune response
2.68 × 10−4 0.023 5 68

M15913 RLR signaling pathway 3.28 × 10−4 0.024 5 71
M39837 Cytosolic DNA-sensing pathway 3.98 × 10−4 0.025 5 74
MAP00430‡ MAP00430 taurine and hypotaurine metabolism 4.22 × 10−4 0.025 2 4
M19708 Type II diabetes mellitus 6.53 × 10−4 0.036 4 47
M39543 Structural pathway of IL-1 8.27 × 10−4 0.042 4 50

* Pathway analysis was performed using ToppFun (23). Unless otherwise indicated, the source of each CpG site wasMolecular Signatures Data-
base C2 BioCarta (version 7.3). CLUES = California Lupus Epidemiology Study; RLR = retinoic acid–inducible gene 1–like receptor; CTL = cytotoxic
T lymphocyte; IFN = interferon; IL-1 = interleukin-1.
† Benjamini and Hochberg false discovery rate (FDR).
‡ GenMAPP was the source of this CpG site.
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methylome in immune cells, we examined whether the changes in
methylation at CpG sites were associated with the use of particu-
lar medications in a repeated measures model, adjusting for age,
sex, and genetic principal components. A total of 15 of 309 CpGs
(4.9%) had at least 1 significant association with use of an immu-
nosuppressive medication (Supplementary Table 5, http://
onlinelibrary.wiley.com/doi/10.1002/art.42237). Nine CpGs cor-
related with prednisone, 5 CpGs correlated with mycophenolate
mofetil, and 2 CpGs correlated with azathioprine. There were no
significant associations with changes in biologic treatments,
inhibitors of purine and pyrimidine synthesis, calcineurin inhibitors,
or antimalarials.

Effect of cell-type proportions on DNA methylation.
One of the limitations of using whole blood DNAmethylation mea-
sures in population-based studies is that differences in methyla-
tion might be due to differences in cell-type proportions between
individuals at the time blood was drawn or changes taking place
in cell-type proportions between blood sample collections over
time. As expected, paired comparisons between the 6 estimated
cell types at the 2 time points revealed significant changes in
terms of the proportions of monocytes, granulocytes, and CD8+
cells (paired t-test P < 0.05). In studies of SLE, overadjustment
of cell-type proportion differences may lead to incorrect conclu-
sions, since changes in cell-type proportions may be relevant to
disease pathogenesis. To address these issues, we initially used
the adjusted matrix of cell-type proportions to determine if there
were any DNA methylation changes. Then, to examine the effects
of changes in cell-type proportions on the change in methylation
we used the unadjusted matrix and longitudinal models incorpo-
rating the difference in DNA methylation as the outcome and the
difference in each cell type as a predictor, adjusting for age, sex,
and genetic principal components. We observed that 67 CpGs
of the initial 309 (21.7%) that changed over time had a significant
correlation with changes in at least 1 cell type estimate
(P < 2.70 × 10−5).

Changes in DNA methylation correlated with changes in cell-
type proportions at 64 CpGs for granulocyte estimates, 39 CpGs
for CD4+ T cell estimates, 24 CpGs for CD8+ T cell estimates,
5 CpGs for monocyte estimates, 12 CpGs for B cell estimates,
and 6 CpGs for natural killer (NK) cell estimates. Supplementary
Figure 6 shows the effect sizes of changes in DNA methylation in
relation to changes in cell-type proportions (http://onlinelibrary.
wiley.com/doi/10.1002/art.42237). Although the largest number
of CpGs influenced by changes in cell-type proportions was in
granulocytes, the largest effect sizes were observed for the NK
cell estimates, for example, cg0571263 (β coefficient –20.25,
P = 5.9× 10−8), IFITM1 (cg09026253) (β coefficient –13.95,
P = 6.4× 10−7), and RAB6B (β coefficient 14.55, P = 1.6 × 10−5).
Studies have shown RAB6B expression in NK cells as well as in
mucosal-associated invariant T cells (33).

We found other interesting examples of correlations of
changes in DNA methylation with the change in cell-type propor-
tions in genes known to be enriched in a particular immune cell
type. For example, methylation at RPS6KB1 correlated with B cell
estimates (cg02095219) (β coefficient 10.01, P = 4.839× 10−7),
where RPS6KB1 expression is known to be enriched in
treatment-naive B cells and memory B cells (34). Other examples
include CD4+ T cell estimates with methylation in B2M

(cg03425812) (β coefficient –7.45; P = 2.489 × 10−8) and IFIT1M
(cg04582010) (β coefficient –6.40, P = 4.540 × 10−8), known to
be widely expressed in multiple CD4+ T cell subsets (33,35).
Methylation at B36NT3 (cg16744531) (β coefficient 5.50,
P = 0.00001) was associated with CD8+ T cell estimates demon-
strated to be expressed in CD8+ memory T cells. Methylation of
TNFSF10 (cg10213935) (β coefficient –6.633, P = 0.000012)
was associated with monocyte estimates, where tumor necrosis
factor superfamily member 10 expression is known to be
enriched in intermediate, classic, and nonclassic monocytes.
Finally, methylation at IFITM1 (cg05552874) (β coefficient –2.93,
P = 2.136× 10−6) and HDAC4 (cg27074582) (β coefficient –

1.52681, P = 1.794 × 10−9) was associated with granulocyte
estimates.

Effect of self-reported ethnicity or race, genetic
ancestry, and genetic variation onmethylation changes
over time. There is substantial evidence that DNA methylation
differs across ethnic groups. Some of these differences are due
to genetic variation and some are not explained by genetics alone
(36,37). To examine the effects of genetic ancestry as well as self-
reported ethnicity and race, we constructed models with the
methylation difference over time as the outcome and self-reported
ethnicity and race or genetic ancestry estimates as predictors,
adjusting for age and sex. Nine models were generated: 1 each
for the self-reported ethnicities or races Hispanic, Black, White,
or Asian and 1 each for the genetic ancestry estimates African,
East Asian, American Indian, South Asian, European. Results are
shown in Supplementary Table 6 (https://onlinelibrary.wiley.com/
doi/10.1002/art.42237). No model was significant upon multiple
hypothesis testing (P < 3.2 × 10−5); however, there are a few
associations that are worth mentioning. The top methylation
change association was at cg23876832 (no gene name is associ-
ated with this methylation site), with South Asian ancestry
(P = 3.75× 10−5). When looking at results with a nominal P value
(P < 0.05), we foundmethylation change associations in 30 CpGs
correlated with African ancestry, 5 CpGs correlated with
European ancestry, 12 CpGs correlated with American Indian
ancestry, 13 CpGs correlated with East Asian ancestry, and
12 correlated CpGs with South Asian ancestry. There were few
overlaps, with 8 CpGs associated with 2 ancestries. When exam-
ining self-reported ethnicity or race, the top methylation change
association was in cg00569896 (no gene name is associated with
this site), associated with Black race (P = 1.68 × 10−4). Results
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with a nominal P value (P < 0.05) indicated methylation change
associations in 23 CpGs were associated with Black race,
19 CpGs were associated with Asian race, 8 CpGs were associ-
ated with Hispanic ethnicity, and 2 CpGs were associated with
White race. Similarly, there were few overlaps, with 5 CpGs signif-
icantly associated with 2 ethnic or racial groups (P < 0.05). In
terms of the significant overlap of CpGs between ancestry and
self-reported ethnicity and race (P < 0.05), we found that 20CpGs
were associated with Black race and African ancestry, 2 CpGs
were associated with Asian race and East Asian ancestry, there
was no overlap between Asian race and South Asian ancestry,
2 CpGs were associated with Hispanic ethnicity and American
Indian race, and there was no overlap between European ances-
try and White race. These results suggest that both ancestry
and self-reported ethnicity or race may be influencing methylation
changes, primarily at different sites. The only exception was the
high concordance between CpGs associated with Black race
and African ancestry.

To test if genetic variation influenced methylation changes at
specific sites, we investigated CpGs known to be under genetic
control (methylation QTLs). Of the 309 CpGs that changed over
time, there were 75 CpG with evidence of methylation QTL
(24%). This is in comparison to 5.5% of methylation QTLs in sta-
ble CpGs genome wide (n = 39,824), suggesting an enrichment
of methylation QTLs in CpGs with a significant change in methyla-
tion over time (P = 4.8 × 10−47 by 2-sample test). Of the 72 SLE
subtype–associated CpGs that changed over time, 24 were
methylation QTLs (33%). This was slightly higher than the propor-
tion of methylation QTLs in SLEs subtype–associated CpGs that
did not change over time, but the difference was not statistically
significant (n = 46 of 184 [25%]) (P = 0.179 by 2-sample test).

DISCUSSION

In this study, we examined the dynamics of DNA methylation
in CpGs previously associated with SLE subtypes in a longitudinal
cohort of SLE patients. Overall, we observed that a large propor-
tion of SLE subtype–associated CpGs did not show significant
change over 2 years. However, a much higher proportion of SLE
subtype–associated CpGs changed over time compared to the
genome-wide methylome. Some of the methylation changes
observed over 2 years in SLE subtype–associated CpGs were
associated with changes in cell-type proportions (26%) and med-
ication use (4.5%).

Since the epigenome is not static, an important question
related to EWAS is if associations may change over time. These
results are encouraging, providing evidence that, overall, the
methylation status of the majority of CpGs that were previously
found to be associated with specific SLE subtypes remained
unchanged over a 2-year period. Therefore, the blood methylome
has potential as a biomarker for disease subtypes. This is further
supported by findings from a recent longitudinal study examining

DNA methylation in circulating granulocytes from SLE patients,
where significant stability of the methylome was observed over a
period of 4 years (38). With this in mind, we also refined our previ-
ous EWAS findings at the time of enrolment in the cohort by
selecting CpGs that had the most robust difference in methylation
between SLE subtypes and did not change over time. These can-
didate CpGs could be further prospectively studied at disease
onset to determine their prognostic role in predicting SLE sub-
types as well as their role as potential biomarkers for treatment
response.

We observed a very small number of CpGs in which DNA
methylation significantly changed over time. Interestingly, path-
way analysis showed that most of these CpGs were involved in
immune-related pathways such as intracellular viral sensing path-
ways, antigen processing, and IFN response as well as metabolic
pathways (taurine metabolism, type II diabetes) (Table 3). We
attempted to identify the underlying factors driving changes in
DNAmethylation. Overall, these changes were not correlated with
disease activity, anti-dsDNA antibody titer, or lupus nephritis,
although most individuals in our cohort had quiescent disease.
Although most of the SLE subtype–associated CpGs were stable,
there was a striking distinction between the increased proportion
of SLE-associated CpGs that changed over time compared to
genome-wide CpGs. One potential explanation for the progressive
hypomethylation observed at SLE subtype–associated CpGs is
that PBMCs in SLE patients have persistent exposure to cytokine
milieu inherent in SLE, making immune-related CpGs in circulating
PBMCs more susceptible to change. This is consistent with most
EWAS that demonstrate hypomethylation of immune-related genes
in SLE patients compared to healthy individuals, as well as severe
SLE phenotypes compared to milder disease (5,8–10).

These findings have been attributed to defects in the
enzymes responsible for the maintenance of DNA methylation
(DNA methyltransferases) due to oxidative stress (39). Another
potential hypothesis is that passive demethylation, the progres-
sive loss of methylation over time, may be accelerated in SLE.
The premise that passive demethylation can occur at different
rates in individuals is the basis of epigenetic clocks or biomarkers
of aging. These can drastically differ from chronological age (40).
Whether accelerated passive demethylation, or epigenetic aging,
occurs in SLE-relevant genes and pathways is unknown but
should be examined in future longitudinal studies with longer
periods of observation.

In studies with large sample sizes (>1,000), it is estimated
that at least 10% and up to 45% of the methylome is influenced
by nearby methylation QTLs (41). We investigated if genetic varia-
tion influenced methylation changes and found that a higher pro-
portion of CpGs that changed over time were associated with
methylation QTLs compared to stable CpGs. The leading hypoth-
esis to explain cis-methylation QTL effects is that SNPs in protein
binding sites alter or disrupt the activity of sequence-specific
binding proteins such as transcription factors of methyl-binding
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proteins which could lead to changes in methylation patterns of
nearby CpGs (42–44). Since transcription factor binding is
dynamic, one could hypothesize that this effect may influence
the variability of methylation in addition to methylation itself. Other
longitudinal methylation studies are needed to corroborate this
observation.

As expected, when we examined our initial results in the
unadjusted matrix for cell-type proportions, we found that a sub-
stantial proportion of changing CpGs (26%) were associated with
at least 1 cell estimate. This is an important consideration for stud-
ies that use whole blood DNA methylation to study the epigenetic
landscape in SLE. As cell-type proportions in peripheral blood
samples are of biologic relevance to disease pathogenesis, we
are faced with a conundrum: how to deal with a potential con-
founder that could itself be a disease outcome. In the current
study, we addressed this by initially adjusting for cell-type propor-
tions and then reexamining findings in an unadjusted matrix to
assess the effects of cell-type proportions. Future studies of ana-
lytic approaches to whole blood DNA methylation data will be
important given the low cost and feasibility of working with whole
blood in comparison to sorted or single cells, particularly
population-based studies that seek to provide a useful genomic
clinical tool for precision medicine.

Limitations of this study include a relatively small sample size,
which may have limited our ability to detect a larger number of
CpG sites that varied over time or fully assess the association
between self-reported ethnicity or race and genetic ancestry. In
addition, the detection of methylation fluctuations associated with
disease activity was not possible due to the fact that most partic-
ipants had clinically inactive disease. Our study was underpow-
ered to identify additional CpG sites associated with medication
use. Finally, an extended interval of >2 years may have yielded dif-
ferent findings. However, there have been few studies that have
reexamined cross-sectional DNA methylation associations in a
longitudinal cohort. Our rigorous analysis pipeline addressed the
potential limitations of studying whole blood DNA methylation in
longitudinal studies, including effects of changes in cell-type
proportions.

In summary, we characterized the DNA methylation dynam-
ics of CpGs that were previously shown to be associated with
SLE in this well-characterized CLUES longitudinal cohort. Among
these SLE subtype–associated CpGs, we identified CpGs that
remained stable over time. Given their association with SLE
subtypes, these CpGs should be further evaluated to determine
their potential role as biomarkers of disease outcomes. Additional
longitudinal studies may also reveal whether SLE- and immune-
related CpGs have accelerated passive demethylation in
comparison to the genome-wide methylome. Future studies
of methylome dynamics in SLE at the time of disease flare
and remission may provide additional insight into epigenetic pro-
grams that may guide the development of precision medicine
approaches for SLE.
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