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Abstract Eusociality is a distinct form of biological organization. A key characteristic of

advanced eusociality is the presence of non-reproductive workers. Why evolution should produce

organisms that sacrifice their own reproductive potential in order to aid others is an important

question in evolutionary biology. Here, we provide a detailed analysis of the selective forces that

determine the emergence and stability of non-reproductive workers. We study the effects, in

situations where the queen of the colony has mated once or several times, of recessive and

dominant sterility alleles acting in her offspring. Contrary to widespread belief based on heuristic

arguments of genetic relatedness, non-reproductive workers can easily evolve in polyandrous

species. The crucial quantity is the functional relationship between a colony’s reproductive rate and

the fraction of non-reproductive workers present in that colony. We derive precise conditions for

natural selection to favor the evolution of non-reproductive workers.

DOI: 10.7554/eLife.08918.001

Introduction
Eusociality is a form of social organization where some individuals reduce their own lifetime repro-

ductive potential to raise the offspring of others (Wilson, 1971; Crespi and Yanega, 1995; Gadag-

kar, 2001; Hunt, 2007; Nowak et al., 2010). Primary examples are ants, bees, social wasps,

termites, and naked mole rats. There have been ~10–20 origins of eusociality, about half of them in

haplodiploid species and the other half in diploid ones (Andersson, 1984). A crucial step in the ori-

gin of eusociality is cancellation of dispersal behavior (Abouheif and Wray, 2002; Nowak et al.,

2010, 2011; Hunt, 2012; Tarnita et al., 2013). Individuals who stay at the nest begin to work at

tasks such as care of the young, defense of the nest, and foraging behavior. Eusociality can evolve if

the strong reproductive advantages of the queen, including reduced mortality and increased rate of

oviposition, arise already for small colony sizes (Nowak et al., 2010).

Haplodiploidy is the sex-determination system of ants, bees, and wasps. With haplodiploidy,

females arise from fertilized eggs and are diploid. They have two homologous sets of chromosomes,

one padumnal (paternally inherited) and one madumnal (maternally inherited). Males arise from

unfertilized eggs and are haploid. They have one set of chromosomes, which is madumnal. With hap-

lodiploid genetics, mated females can become queens and lay female and male eggs. In many cases,

unmated females become workers, which can lay male eggs but not female eggs. Therefore, in a

haplodiploid colony, male eggs could come from the queen or from the workers. This creates intra-

colony competition between the fertilized queen and the unfertilized workers over the production of

Olejarz et al. eLife 2015;4:e08918. DOI: 10.7554/eLife.08918 1 of 40

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7554/eLife.08918.001
http://dx.doi.org/10.7554/eLife.08918
https://creativecommons.org/
https://creativecommons.org/
http://elife.elifesciences.org/
http://elife.elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


males. In this paper, we investigate genetic mutations that affect the phenotype of the workers and

make them non-reproductive (or sterile). We calculate conditions both for the evolutionary invasion

and evolutionary stability of such mutations.

The typical theoretical approach for investigating the evolution of non-reproductive workers

makes use of coefficients of relatedness. Relatedness of one individual to another is the probability

that a random allele in the former is also in the latter due to recent common ancestry. In particular,

there are three coefficients of relatedness that are of primary interest (Hamilton, 1964; Trivers and

Hare, 1976). First, consider the relatedness of a female to one of her sons, Rson. In parthenogeneti-

cally producing a son, a diploid female transmits a haploid genome to him. Under Mendelian segre-

gation, each allele in her genome has probability 1/2 of inclusion in this transmitted haploid

complement, and so Rson = 1/2. Next, consider the relatedness of a female to one of her brothers,

Rbrother. The female and her brother share a mother, and so the probability that an allele inherited

maternally by the female is the same allele as inherited maternally by her brother is 1/2. On the

other hand, the male has no father, and so there is no chance that an allele in the female is equiva-

lent to one in her brother through paternal inheritance. A random allele in the diploid female has

equal chance of being padumnal or madumnal, and so Rbrother = (1/2)(0) + (1/2)(1/2) = 1/4. Finally,

consider the relatedness of a female to one of her sisters, Rsister. This coefficient of relatedness

depends on the number, n, of different males that the queen mates with before laying eggs. For a

padumnal allele in a female to be identical, by paternal descent, to that in a sister requires them

only to share the same father (probability 1/n), since that father is haploid and therefore always

transmits the same allele. Sisters share a mother, and so the probability that an allele inherited

maternally by one female is the same allele as inherited maternally by her sister is 1/2. Therefore,

Rsister = (1/2)(1/n) + (1/2)(1/2) = (2 + n)/(4n).

The traditional investigation of evolution of non-reproductive workers uses the following related-

ness-based heuristic. The relatedness of a female to her male offspring is Rson = 1/2. If the queen

mates with only a single male (n = 1), then the relatedness of a female worker to one of her random

sisters is Rsister = 3/4 > Rson. The naive conclusion is that worker altruism should readily evolve,

eLife digest Certain wasps, bees and ants live in highly organized social groups in which one

member of a colony (the queen) produces all or almost all of the offspring. This form of social

organization – called eusociality – raises an important question for evolutionary biology: why do

individuals that forego the chance to reproduce and instead raise the offspring of others evolve?

One factor linked to the evolution of eusociality in insects is a system that determines the gender

of offspring known as haplodiploidy. In this system, female offspring develop from fertilized eggs,

while male offspring develop from unfertilized eggs. The queen mates with male insects and so she

can produce both male and female offspring. On the other hand, the workers – which are also

female – do not mate and therefore can only produce male offspring.

So, should these workers produce their own male eggs, or should all male offspring come from

the queen? The answer to this question could depend on whether the queen has mated with a

single male (monandry) or with multiple males (polyandry) because this affects how closely related

the other insects in the colony are to each other. It is a widespread belief that monandry is

important for the evolution of non-reproductive workers.

Here, Olejarz et al. develop a mathematical model that explores the conditions under which

natural selection favors the evolution of non-reproductive workers. Contrary to the widespread

belief, it turns out that non-reproductive workers can easily evolve in polyandrous species. The

crucial quantity is the relationship between the overall reproductive rate of the colony and the

fraction of non-reproductive workers present in that colony.

Olejarz et al. challenge the view that single mating is crucial for the evolution of non-reproductive

workers. The study demonstrates the need for precise mathematical models of population dynamics

and natural selection instead of informal arguments that are only based on considerations of genetic

relatedness.

DOI: 10.7554/eLife.08918.002
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because a worker can more efficiently spread her genes by raising her sisters. This conjecture is

known as the ‘haplodiploidy hypothesis’ (Hamilton, 1964, 1972). If the queen mates with more than

two males (n>2), then Rsister < Rson. Now the preference of an unfertilized worker is reversed,

because she has a higher relatedness to her own male offspring than to one of her random sisters.

These old arguments suggest that queen monogamy and haplodiploid genetics synergistically act as

a driving force for the evolution of worker altruism (Hamilton, 1964, 1972).

But worker-laid eggs do not compete only with queen-laid female eggs. The high relatedness of a

female to her sisters in Hymenopteran colonies is cancelled by the low relatedness of the same female

to her brothers (Trivers and Hare, 1976). In a colony with a singly mated queen, the relatedness of a

worker to a sister is Rsister = 3/4. But the relatedness of a worker to a brother is only Rbrother = 1/4,

regardless of the number of times the queen mates. So, when a worker female helps her queen repro-

duce, she aids in the production both of sisters (to whom she is highly related) and brothers (to whom

she is not). In the relatedness-based argument, these effects exactly cancel each other out, and so the

unusually high relatedness of sisters in eusocial colonies cannot be the simple solution to the puzzle of

worker altruism that it was once thought to be (Trivers and Hare, 1976). This is true even when the

population sex ratio is female-biased, because when more reproductive females are produced than

males, the average reproductive success of a female is lower than that of the average male exactly in

proportion to their relative abundances (Craig, 1979).

More recently, it was proposed that each eusocial lineage must have passed through a ‘monogamy

window’—a period of evolutionary history in which queens were singly mated (Boomsma, 2009). This

argument assumes that worker-laid eggs compete equally with queen-laid female and male eggs. If

the queen is singly mated (n = 1), and if the colony’s sex ratio is 1/2, then a worker has an average

relatedness to siblings (sisters and brothers) of (Rsister + Rbrother)/2 = ((3/4) + (1/4))/2 = 1/2. Related-

ness of a worker to her son is also Rson = 1/2. In this case, assuming that worker-laid eggs substitute

equally for queen-laid female and male eggs, the argument suggests that any infinitesimal benefit of

non-reproductive workers to colony productivity should lead to evolution of worker altruism. If queens

mate more than once (n�2), then the average relatedness of a worker to a random sibling falls below

1/2, and evolution of worker altruism is supposed to be strongly disfavored (Boomsma, 2009).

There also exist hypothetical scenarios in which the relatedness values of a female to a random

sister and a random brother would not cancel (Trivers and Hare, 1976): for example, the sex ratio

could vary from colony to colony, while the average sex ratio in the population remains at 1/2. Evolu-

tion of helping might then be expected in the female-biased colonies (Trivers and Hare, 1976).

Some recent papers (Gardner et al., 2012; Alpedrinha et al., 2013) examine this case of split sex

ratios and also question the importance of haplodiploidy for the evolution of helping. Based on their

analysis, the authors conclude that haplodiploidy can have either a positive or negative influence on

the evolution of helping depending on colony variables, and they determine the effect of haplodi-

ploidy on the evolution of helping to generally be small. But they claim, in agreement with

Boomsma (2009), that monandry is a key requirement for the evolution of a worker caste. They

argue that, in the case of lifetime monogamy, “any small efficiency benefit from rearing siblings (b/

c > 1) would lead to helping being favored by natural selection.” (Gardner et al., 2012)

In this paper, we investigate the situation where worker-laid male eggs compete directly with

queen-laid male eggs. In other words, there are two types of reproduction events to consider: A

worker can lay a male egg, or, instead, the queen can lay a male egg while the worker helps to raise

the queen’s male egg. In either case, a male is produced. Thus, the sex ratio of the colony is unaf-

fected by which of these two strategies is realized. The reproductive competition between the

queen and the workers is only over the male offspring. (We do not assume that the sex ratio is equal

to 1/2; we only assume that it is independent of the fraction of worker-produced males.) This possi-

bility represents the simplest scenario for studying the evolution of non-reproductive workers and is

biologically plausible (Winston, 1987; Sundstrom, 1994; Sundstrom et al., 1996; Queller and

Strassmann, 1998; Hammond et al., 2002). Once this case is understood, subsequent analysis can

consider the situation where both the fraction of worker-produced male offspring and the colony’s

sex ratio vary at the same time.

The relatedness of a worker to her male offspring, Rson = 1/2, is always larger than the related-

ness of a worker to a brother, Rbrother = 1/4. Thus, if worker-laid male eggs compete primarily with

queen-laid male eggs, then relatedness-based arguments might predict that worker altruism should
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not evolve with any number of matings of the queen unless non-reproductive workers provide some

benefit to the colony.

We study a model of competition between worker-laid and queen-laid male eggs that incorpo-

rates both haplodiploid genetics and a variable number of matings of the queen. Specifically, we

analyze the selection pressure acting on the emergence and stability of non-reproductive workers in

situations where the queen has mated once or several times. Our model assumes that the evolution

of sterile workers has a negligible effect on the sex ratio of a population, which allows us to isolate

and identify the specific selective forces. We derive exact conditions for the invasion and stability of

non-reproductive workers.

Model
We study the evolution of a non-reproductive worker caste in the context of haplodiploid genetics,

where females are diploid and males are haploid. Virgin queens can mate with one or several males.

The parameter n denotes the number of matings of the queen. Unfertilized workers help raise the

offspring of the queen, but they can also lay male eggs.

We analyze the conditions under which a wild-type allele, A, can be invaded by a mutant allele, a,

which causes workers to be non-reproductive. Since we consider a loss of function event (the loss of

the tendency to produce eggs), it is more likely that the mutation is recessive rather than dominant.

Therefore in the main text we present the conditions for a recessive mutant allele. In the Methods,

we give derivations and results for both recessive and dominant alleles.

If the mutant allele is recessive, then aa workers are sterile, while AA and Aa workers still lay male

eggs. For n matings, there are 3(n + 1) types of mated queens (Figure 1A). We use the notation

AAm, Aam, and aam to denote the genotype of the queen and the number, m, of her matings that

were with mutant males, a. The parameter m can assume values 0, 1, ..., n. For example, for triple

mating (n = 3), an AA2 queen has mated with one A male and two a males.

The genotype of the colony is determined by the genotype of the queen and the sperm she has

stored. There are 3(n + 1) types of colonies that need to be considered to formulate the full dynam-

ics. The different colony types, and corresponding offspring with a recessive sterility allele, a, are

shown in Figure 1B.

For each colony, there are three types of offspring: queen-laid females, queen-laid males, and

worker-laid males. Figure 1B can be understood by considering how the queen and the workers

produce their offspring.

Consider the offspring of type AAm colonies. The queen makes a female by randomly selecting

one of the two alleles from her own genotype and pairing it with an allele selected randomly from

the sperm of one of her mates. In type AAm colonies, the type AA queen mates with (n � m) type A

males and m type a males. From her own genotype, the queen always selects an A allele. From her

mates’ sperm, the queen selects an A allele with probability (n � m)/n or an a allele with probability

m/n. Notice that in Figure 1B,C, for simplicity of presentation, we omit the overall normalization of

each entry. So, for example, for type AAm colonies, we simply write that the queen produces n � m

type AA females for every m type Aa females (first row, second column of Figure 1B). The correct

normalizations are included in the calculations of the Materials and methods section.

The queen makes a male by randomly selecting one of the two alleles from her own genotype.

Because the queen in a type AAm colony only carries the A allele, she can only produce type A

drones (first row, third column of Figure 1B).

For a type AAm colony, in the ’Workers’ Sons’ column, we must consider the rates of production

of type AA and type Aa females by the queen, and we must consider the offspring of the type AA

and type Aa females that the queen produces. The fraction of queen-produced females of type AA

is, as described above, (n � m)/n, and each type AA female produces only type A males. The fraction

of queen-produced females of type Aa is, as described above, m/n, and each type Aa female produ-

ces type A and type a males with equal probability. The total fraction of worker-laid males that are

of type A is (n � m)/n + (1/2)(m/n) = (2n � m)/2n. The total fraction of worker-laid males that are of

type a is (1/2)(m/n) = m/2n. Therefore, the workers of type AAm colonies produce 2n � m type A

males for every m type a males (first row, fourth column of Figure 1B).

The logic behind the offspring of type Aam and type aam colonies is the same. The only other

point is that type aa workers are non-reproductive. To see how worker sterility enters into
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Figure 1B, consider the worker-produced males of type aam colonies. The queen of type aam colo-

nies produces n � m type Aa females for every m type aa females (third row, second column of

Figure 1B). Type Aa workers produce equal numbers of type A and type a males. Type aa workers

are non-reproductive; they do not contribute to the colony’s production of worker-produced males.

So, in type aam colonies, all worker-produced males come from type Aa workers, and type A and

type a males are therefore produced by workers in equal amounts (third row, fourth column of

Figure 1B).

The entries in Figure 1C originate from the same reasoning. The only difference is that, if the ste-

rility allele, a, is dominant, then type Aa and type aa workers do not contribute to a colony’s produc-

tion of worker-produced males. The entries in Figure 1C are described in detail in the

Materials and methods.

In our analysis, we neglect stochastic effects. This is reasonable if we assume that the number of

individuals produced by a colony is very large. In this case, the fractions of colony offspring of differ-

ent genotypes in a generation do not differ significantly from the entries in Figure 1B,C.

Figure 1. Haplodiploid genetics and multiple matings. The wild-type allele is A. The mutant allele inducing worker

sterility is a. (A) There are three types of virgin queens: AA , Aa, and aa. Each queen mates n times. Of those

matings, n � m are with wild-type males (type A) and m are with mutant males (type a). Hence, there are 3(n + 1)

types of fertilized queens (colonies). (B) Relative proportions of offspring for each colony type if the mutant allele,

a, for worker sterility is recessive. For example, if the queen’s genotype is Aa, then half of her sons are A and the

other half are a. We denote this by A + a. If the queen’s genotype is aa and she has mated with both types of

males, 0< m < n, then she has both Aa and aa workers (in proportion n � m and m, respectively); her Aa workers

produce male eggs, which have an equal proportion of A and a genotypes. (C) Relative proportions of offspring

for each colony type if the mutant allele, a, for worker sterility is dominant.

DOI: 10.7554/eLife.08918.003
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A crucial quantity is the functional relationship between the fraction of males produced by the

queen, p, and the fraction of non-reproductive workers, z, that are present in a colony. The parame-

ter z can vary between 0 and 1. If z = 0, then there are no non-reproductive workers in the colony. If

z = 1, then all workers in the colony are non-reproductive. We denote by pz the fraction of males

that come from the queen if the fraction of non-reproductive workers is z. The quantity p0 denotes

the fraction of males that come from the queen if there are no non-reproductive workers in the col-

ony. We expect p0 to be less than 1. The quantity p1 denotes the fraction of males that come from

the queen if all workers are non-reproductive. Clearly, p1 = 1.

It is natural to assume that pz is an increasing function of z, but various functional forms are possi-

ble. Perhaps the simplest possibility is that pz is a linearly increasing function of z. Intuitively, this

means that the fraction, 1 � pz, of male eggs that originate from workers is simply proportional to

the fraction, 1 � z, of workers that are reproducing. But there are nonlinear intracolony effects that

modulate worker production of male eggs. For example, the queen might efficiently suppress

worker reproduction via aggression or removal of worker-laid eggs (Free and Butler, 1959; Mich-

ener, 1974; Oster and Wilson, 1978; Fletcher and Ross, 1985), if only a small number of workers

attempt to reproduce. If too many workers reproduce, then the queen could be overwhelmed, and

her effect on removing worker-laid eggs is diminished. In this equally plausible scenario, the fraction,

pz, of male eggs that originate from the queen would be expected to increase sublinearly with the

fraction, z, of workers that are sterile. Several sample forms of the function pz are shown in

Figure 2A.

The mutant allele can be favored by natural selection if non-reproductive workers provide a bene-

fit to the colony, which is of course a natural assumption for the evolution of worker altruism. Divi-

sion of labor has the potential to improve efficiency (Cole, 1986; Naeger et al., 2013). Another key

component in our analysis is the functional relationship between the rate, r, at which the colony pro-

duces reproductive units (virgin queens and males) and the fraction of sterile workers, z. We use the

notation rz to describe the reproductive rate of a colony where a fraction, z, of workers are non-

reproductive. The quantity r0 denotes the reproductive rate of the colony if none of the workers are

non-reproductive. Non-reproductive workers have a chance to be favored by natural selection if

Figure 2. For understanding the evolution of non-reproductive workers, the following two functions are crucial. (A)

The function pz denotes the fraction of male offspring that come from the queen if a fraction, z, of the workers are

non-reproductive. Therefore, 1 � pz is the fraction of male offspring that come from the workers. Clearly, pz should

be an increasing function. More workers that are sterile means a larger fraction of males that come from the

queen. If all workers are non-reproductive, then all males come from the queen, p1 = 1. (B) The function rz denotes

the reproductive rate (or efficiency) of the colony if a fraction, z, of the workers are non-reproductive. Without loss

of generality, we normalize such that r0 = 1. If worker sterility has an advantage, then it should increase colony

efficiency for some values of z, but the function rz need not be monotonically increasing. It is possible that

maximum colony efficiency is obtained for an intermediate value of z. Several possibilities for the colony efficiency

function, rz, are shown.

DOI: 10.7554/eLife.08918.004
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rz > r0 for some z. But the function rz need not be monotonically increasing. It is possible that there

is an optimum fraction of non-reproductive workers, which maximizes the overall reproductive rate

of the colony. We will study various functional forms of rz. Several sample forms of the function rz are

shown in Figure 2B.

Results
If the mutant allele is recessive, then AA and Aa workers lay male eggs, while aa workers are non-

reproductive. For single mating, n = 1, we find that the a allele can invade an all-A resident popula-

tion provided

r1=2
r0

>
6þ 2p0
5þ 3p0

(1)

What is the intuition behind this condition? There are five colony types, AA0, AA1, Aa0, Aa1, and

aa0, which are relevant for determining if the mutant allele can invade. Four of those colony types

do not produce sterile workers (z = 0), so the parameters p0 and r0 enter into Equation 1. In colonies

of type Aa1, half of the workers are sterile (z = 1/2); thus the parameter r1/2 enters into Equation 1.

Moreover, both the queen and the workers in Aa1 colonies each produce 50% type A males and

50% type a males; therefore the parameter p1/2 is irrelevant for the invasion and absent from

Equation 1.

If all males are initially produced by the workers (p0 = 0), then the ratio of the efficiency of type

Aa1 colonies to type AA0 colonies, r1/2/r0, must be greater than 6/5 for non-reproductive workers to

appear. Notice that the critical value of r1/2/r0 is a decreasing function of p0. Intuitively, this means

that if worker sterility has a smaller phenotypic effect on a colony (such that p0 is closer to p1 = 1),

then the efficiency gain from sterile workers does not need to be as high to facilitate the invasion of

sterility. If p0 is small, then we get efficiency thresholds for r1/2/r0 of ~1.1-1.2. If p0 is large, then we

get efficiency thresholds that are close to 1. As long as p0 is not infinitesimally close to 1, the ratio

r1/2/r0 must always be greater than 1 by a finite amount. Sterility cannot invade if sterile workers do

not appreciably improve colony efficiency.

We note that other studies report the evolution of a worker caste with infinitesimal efficiency ben-

efits in singly mated colonies (Boomsma, 2007, 2009; Gardner et al., 2012). But these papers con-

sider competition between worker offspring and queen-laid female eggs, which induces sex-ratio

effects that complicate the analysis.

Another recent study argues that eusociality can evolve even if sterile workers are relatively ineffi-

cient at raising siblings (Avila and Fromhage, 2015). But this work focuses centrally on the evolution

of nest formation, where nest-site limitation and dispersal mortality impose ecological constraints on

independent breeding. In our study, we analyze the scenario where nests have already formed, and

non-reproductive workers emerge as a subsequent step in the path to advanced eusociality.

For double mating, n = 2, we find that the a allele can invade an all-A resident population

provided

r1=4
r0

>
6þ 3p0

5þ 3p0þ p1=4
(2)

Now there are six colony types, AA0, AA1, AA2, Aa0, Aa1, and aa0, which are relevant for deter-

mining if the mutant allele can invade. Colony types AA0, AA1, AA2, Aa0, and aa0 do not produce

sterile workers (z = 0), so the parameters p0 and r0 appear in Equation 2. Colonies of type Aa1 pro-

duce a fraction 1/4 of sterile workers (z = 1/4). The Aa1 queen uses the sperm from the type A male

that she has mated with to produce AA and Aa workers in equal proportion. Or the Aa1 queen uses

the sperm from the type a male to produce Aa and aa workers with equal proportion. Thus, 1/4 of

the workers are of type aa and are non-reproductive. Correspondingly, the parameters p1/4 and r1/4
appear in Equation 2.

The maximum critical value of r1/4/r0 for evolution of non-reproductive workers is 6/5, and the

minimum critical value is 1. The threshold of r1/4/r0 is large (~1.1-1.2) if p0 is small. The threshold of

r1/4/r0 is close to 1 if p0 is large. Provided that p0 is not infinitesimally close to 1, the ratio r1/4/r0
must always be greater than 1 by a finite amount for sterile workers to be able to invade.
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It is not clear, a priori, that Equation 2 would be easier or harder to satisfy than Equation 1.

Empirical knowledge of the parameters p0, p1/4, r0, r1/4, and r1/2 is needed to determine whether ste-

rility invades more easily for single mating than for double mating.

An illustration of the parameter space and whether single or double mating is more conducive to

development of sterility is shown in Figure 3A. It is clear from Equation 1 that, holding all other

parameters constant, an increase in r1/2 favors the invasion of the sterility allele for n = 1. This is easy

to see in Figure 3A: The upper panels (higher r1/2) involve invasion of the sterility allele for n = 1,

while the lower panels do not. Similarly, from Equation 2, it is clear that, holding all other parame-

ters constant, an increase in r1/4 favors the invasion of the sterility allele for n = 2. Again, this is illus-

trated in Figure 3A: the right panels (higher r1/4) are associated with invasion of the sterility allele

for n = 2, while the left panels are not.

The region of parameter space for which sterility invades for double mating but not for single

mating is arbitrarily large. The region of parameter space for which sterility invades both for double

mating and for single mating is also arbitrarily large. These features apply generally for different val-

ues of p0 and p1/4.

For many possible combinations of those parameters, worker sterility invades for double mating

but not for single mating. For example, if p0 = 0.8 and p1/4 = 0.9, then for single mating the invasion

condition is r1/2 > 1.027 while for double mating the invasion condition is r1/4 > 1.012. (Here, without

loss of generality, we set r0 = 1.) The latter condition could be easier to satisfy—even if rz increases

linearly with z.

We note that colony reproductive efficiency, rz, would not necessarily be expected to increase

monotonically with the fraction of sterile workers, z. The law of diminishing returns may apply to the

addition of non-reproductive workers to a colony. Non-reproductive workers contribute positively to

the colony’s total reproductive output by performing colony maintenance and helping to raise other

individuals’ offspring. But by not laying any eggs, non-reproductive workers are also negatively

affecting the colony’s total reproductive output. Consequently, colony reproductive efficiency may

be maximized if some workers reproduce while other workers focus their efforts on colony mainte-

nance. In our model, this would correspond to rz reaching a maximum for some 0 < z < 1.

Assuming that p0 and p1/4 are small, we find that a fairly substantial benefit to colony reproduc-

tive rate (around 10% to 20%) must be provided by a non-reproductive worker caste. The large

thresholds predicted by our model might help to explain the rarity of the evolution of non-reproduc-

tive worker castes in social insects. Additional work is needed to connect the parameters of our

Figure 3. Regions of the parameter space for the evolution of non-reproductive workers for single and for double

mating. (A) For single mating, n = 1, the invasion of a recessive worker sterility allele depends on the parameters

p0 and r1/2; for double mating, n = 2, it depends on the parameters p0, p1/4, and r1/4. (B) The evolutionary stability

of a recessive worker sterility allele depends on the parameters p0, r1/2, and r1 for single mating, and on the

parameters p1/2, r1/2, and r1 for double mating. We set r0 = 1 as baseline.

DOI: 10.7554/eLife.08918.005
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model with biological measurements of colony dynamics. Numerical simulations of the evolutionary

dynamics for different parameter values are shown in Figure 4.

We have also calculated the condition for the evolutionary stability of non-reproductive workers.

For single mating, n = 1, we find that the a allele is stable against invasion of A in an all-a resident

population provided

r1
r0

�
1� p0
2

� �

2
r1
r1=2

� �

� 1

� �

> 1 (3)

Three colony types, aa1, aa0, and Aa1, are relevant for determining if the a allele for sterility is

evolutionarily stable to invasion by the A allele. Type aa1 colonies produce only sterile workers

(z = 1), hence the appearance of r1 in Equation 3. Type aa0 colonies produce no sterile workers

(z = 0), hence the appearance of p0 and r0 in Equation 3. Type Aa1 colonies produce 50% sterile

workers (z = 1/2), hence the appearance of r1/2 in Equation 3. The parameter p1/2 is irrelevant

because the queen and the reproductive workers in type Aa1 colonies each produce 50% type A

males and 50% type a males.

For double mating, n = 2, we find that the a allele is evolutionarily stable provided

r1
r1=2

�ð1� p1=2Þ

� �

2
r1
r1=2

� �

� 1

� �

> 1 (4)

Three colony types, aa2, aa1, and Aa2, are relevant for determining if the a allele for sterility is

evolutionarily stable. Type aa2 colonies produce only sterile workers (z = 1), hence the appearance

of r1 in Equation 4. Type aa1 and type Aa2 colonies each produce 50% sterile workers (z = 1/2),

hence the appearance of p1/2 and r1/2 in Equation 4. The conditions for invasion and stability with

more than two matings are given in the Materials and methods.

Empirical knowledge of the parameters p0, p1/2, r0, r1/2, and r1 is needed to determine if worker

sterility is more stable for single mating than for double mating. For many possible combinations of

those parameters, worker sterility is evolutionarily stable for double mating but not for single mat-

ing. For example, if p0 = 0.6, p1/2 = 0.9, r0 = 1, and r1/2 = 1.05, then for single mating the stability

condition is r1 > 1.105 while for double mating the stability condition is only r1 > 1.087. The latter

condition is less stringent. The parameter space for evolutionary stability for specific values of pz is

shown in Figure 3B.

Equations 1–4 tell us how non-reproductive workers evolve in a population of otherwise repro-

ductive workers. The simplest case of singly mated queens already shows rich behavior. In

Figure 5A, the four possibilities are shown: Sterility may not invade and be unstable (lower left),

Figure 4. Numerical simulations of the evolutionary dynamics nicely illustrate the conditions specified by

Equations 1 and 2. The sterility allele is recessive. For numerically probing invasion, we use the initial condition

XAA;0 ¼ 1� 10�2 and XAA;1 ¼ 10�2. We set r0 = 1. A: Single mating, n = 1. Parameters p0 = 0.1 and r1 = 1.29. B:

Double mating, n = 2. Parameters p0 = 0.2, p1/4 = 0.4, p1/2 = 0.6, r1/2 = 1.24 and r1 = 1.6.

DOI: 10.7554/eLife.08918.006
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invade but be unstable (lower right), not invade but be stable (upper left), or invade and be stable

(upper right). For example, notice that if r1/2 = 0.6 and r1 = 0.9, then worker sterility does not invade

but is evolutionarily stable, even though both efficiency parameters are less than 1. As another

example, notice that as long as r1/2 exceeds about 1.077, the quantity r1 can be arbitrarily small and

worker sterility will still invade. It is also interesting that, for a fixed value of r1, increasing the value

of r1/2 does not necessarily promote the stability of worker sterility, and doing so can actually render

non-reproductive workers evolutionarily unstable. Complexities such as these are not readily

accounted for by heuristic relatedness-based arguments. If the value of p0 is very close to 1, then

arbitrarily small changes in colony efficiency can positively or negatively influence the evolutionary

invasion or stability of worker sterility (Figure 5B). Numerical simulations of the evolutionary dynam-

ics demonstrating the four possible behaviors are shown in Figure 6.

Figure 7 shows some examples. In Figure 7A, worker sterility invades for double mating but not

for single mating. Here, rz increases sublinearly in z. In Figure 7B, the value of p1/4 is only slightly

increased compared with its value in Figure 7A. In Figure 7B, the efficiency function, rz, is linearly

increasing, and worker sterility invades for double mating but not for single mating. For the parame-

ter values in Figure 7C, worker sterility is stable for double mating but not for single mating. Here,

rz increases somewhat faster than linearly in z. In Figure 7D, the value of p1/2 is only slightly

increased compared with its value in Figure 7C. In Figure 7D, the efficiency function, rz, is linearly

increasing, and worker sterility is stable for double mating but not for single mating.

For a dominant sterility allele, there is typically a large region of parameter space for which steril-

ity evolves for double mating but not for single mating. There is also an arbitrarily large region of

parameter space for which sterility evolves for double mating and for single mating. For a recessive

allele, it is possible that more than two matings are necessary for the emergence of worker sterility.

These additional examples are presented in the Materials and methods.

Discussion
Single mating of queens has often been claimed to be a key factor in the evolution of eusociality.

This paradigm derives from heuristic relatedness-based arguments. For example, Boomsma’s

‘monogamy window hypothesis’ (Boomsma, 2007, 2009) holds that persistent monandry is crucial

Figure 5. Evolution of non-reproductive workers for single mating (n = 1). We consider a recessive sterility allele,

a. There are four possible scenarios: The mutant allele cannot invade but is evolutionarily stable (bistability); the

mutant allele can invade and is evolutionarily stable; the mutant allele can invade but is unstable (coexistence); the

mutant allele cannot invade and is unstable. Only three parameters matter: p0, r1/2, and r1; p0 denotes the fraction

of male offspring that come from the queen if there are no sterile workers in the colony (z = 0); r1/2 and r1 denote

respectively the reproductive rate (efficiency) of the colony if z = 1/2 and z = 1 of all workers are sterile. The

baseline value is r0 = 1. (A) Phase diagram for p0 = 0.5. (B) Phase diagram for p0 = 0.9. As p0 gets closer to 1, the

intersection of the critical curves approaches the point (r1/2,r1) = (1,1).

DOI: 10.7554/eLife.08918.007
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in the evolution of a worker caste. His argument is that, under monandry, because a worker is

equally related to her own offspring as to her mother’s offspring (1/2), her reduced reproduction will

be selected for if it increases production of the latter more than it decreases production of the for-

mer. By this argument, under monandry but not multiple mating, very small colony-level efficiency

gains from workers should lead to their evolution.

On the empirical side, Hughes et al. (2008) study a phylogeny of the Hymenoptera, and, employ-

ing an ancestral state reconstruction analysis, infer that each of the eight independent transitions to

eusociality in the Hymenoptera occurred in a monandrous ancestral species. They take this correla-

tion to be evidence for the causal claim that monandry is key to the evolution of eusociality. But, if

most ancestral species in the clade were monandrous [as appears to be the case: Hughes et al.

(2008), Fig S1; Nonacs (2011)], then the fact that the ancestors of eusocial species in the clade

were monandrous would not be surprising (Nonacs, 2011). As an extreme example, if Hughes et al.

were to repeat their study for the trait of haplodiploidy, they would also find that each of the eight

independent transitions to eusociality occurred in a haplodiploid ancestral species (since all

Figure 6. Numerical simulations of the evolutionary dynamics that show the four behaviors in Figure 5A. The sterility allele is recessive, and we

consider single mating (n = 1). For each of the four panels, we use the initial conditions: A: XAA;0 ¼ 1� 10�3 and XAA;1 ¼ 10�3; B: Xaa;1 ¼ 1� 10�3 and

Xaa;0 ¼ 10�3; C: XAA;0 ¼ 0:27 and Xaa;0 ¼ 0:73 (lower curve), and XAA;0 ¼ 0:26 and Xaa;0 ¼ 0:74 (upper curve); D: XAA;0 ¼ 1� 10�2 and XAA;1 ¼ 10�2

(lower curve), and Xaa;1 ¼ 1� 10�2 and Xaa;0 ¼ 10�2 (upper curve). We set r0 = 1. A: Parameters p0 = 0.5, r1/2 = 1.0869, and r1 = 1.1521. B: Parameters

p0 = 0.5, r1/2 = 1.0669, and r1 = 1.1321. C: Parameters p0 = 0.5, r1/2 = 1.0669, and r1 = 1.1521. D: Parameters p0 = 0.5, r1/2 = 1.0869, and r1 = 1.1321.

DOI: 10.7554/eLife.08918.008
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Hymenoptera are haplodiploid). It would be absurd to consider this to be evidence for the theoreti-

cal claim that haplodiploidy is key to the evolution of eusociality.

An important aspect of the evolution of advanced eusociality is the cancellation of all worker

reproduction—in particular, the production of males. Here, we have performed a rigorous mathe-

matical analysis of the conditions under which worker non-reproduction evolves. Our analysis has

revealed that monandry does not play a crucial role in the evolution of non-reproductive worker

castes. Indeed, in some cases, non-reproduction evolves when queens are multiply mated, but not

when they are singly mated. Our results therefore show that the dominant paradigm, that monandry

is crucial for the evolution of eusociality because it maximizes relatedness among siblings, needs to

be revised. It may still turn out that monandry is important in the evolution of non-reproductive

castes, but this would have to be for other reasons (Nowak et al., 2010; Nonacs, 2011; Hunt, 2012;

Wilson and Nowak, 2014).

These insights have been achieved because of a more general treatment of the colony-level

effects of non-reproductive workers than is allowed for by simple relatedness-based arguments. In

Figure 7. Comparing the effect of single mating (n = 1) and double mating (n = 2) on the evolution of worker sterility. Whether or not single or double

mating favors the evolution of worker sterility depends on the functions pz and rz. The function pz specifies the fraction of male offspring that come

from the queen if a fraction, z, of all workers in the colony is non-reproductive. The function rz specifies the reproductive rate (or efficiency) of the

colony if a fraction, z, of all workers in the colony is non-reproductive. We consider a recessive mutant allele, a, for worker sterility. (A, B) For these

parameter choices, the mutant allele causing worker sterility can invade for double mating but not for single mating. (C, D) For these parameter

choices, the mutant allele causing worker sterility is evolutionarily stable for double mating but not for single mating.

DOI: 10.7554/eLife.08918.009
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our model, we have explicitly accounted for two key parameters that are often neglected in other

studies: rz, the reproductive rate of the colony, and pz, the proportion of male offspring that come

from the queen, if a fraction z of the colony’s workers are non-reproductive. The conditions under

which selection favors non-reproductive workers have been shown to depend crucially, and in inter-

esting ways, on these two parameters. Empirical measurement of these parameters is therefore

required to understand the selective forces underlying the evolution of non-reproductive castes in

social insects. This suggests a line of future research.

It is important to distinguish between worker non-reproduction (workers produce no offspring,

but may still retain the ability to do so), and the more specific phenomenon of worker sterility (work-

ers do not have the ability to reproduce). An embedded distinction is that, in very many eusocial

insect species, worker females have lost the ability to lay fertilized (female) eggs—e.g., through loss

or degradation of the spermatheca—but retain the ability to lay unfertilized (male) eggs—i.e., they

have functional ovaries (Bourke, 1988; Hölldobler and Wilson, 1990). In comparison, complete ste-

rility (sexual and asexual) is rare in the eusocial insects; for example, only 9 of the roughly 300 genera

of ants are known to have evolved complete worker sterility (Bourke, 1995).

In our model, we have assumed that workers can lay only unfertilized male eggs. Our model

therefore best applies to those transitions from species whose workers lay only male eggs to species

where the workers are non-reproductive. This is probably the most common and important route to

a non-reproductive worker caste in the social insects (Bourke, 1988).

It is important to realize that our model applies significantly more generally than to just the (com-

paratively few) transitions to complete worker sterility. We have focused here on the case where a

single (recessive or dominant) allele turns off worker production of males. However, mathematically,

this assumption can easily be relaxed by supposing that the allele in question merely alters the fre-

quency of worker male production by some amount. Thus, our approach is flexible enough to handle

a variety of molecular mechanisms for worker reproductive restraint, which are still being elucidated

for particular species (Abouheif and Wray, 2002; Dearden, 2006; Khila and Abouheif, 2008;

Moczek et al., 2011; Cameron et al., 2013; Sadd et al., 2015; Kapheim et al., 2015).

One potentially important factor in the evolution of worker non-reproduction is worker policing.

Here, if a worker lays a (male) egg, there is some chance that another worker will destroy the egg.

This reduces the incentive for workers to lay male eggs in the first place, therefore selecting for

decreased worker reproduction (Bourke, 1999; Wenseleers et al., 2004; Ratnieks et al., 2006). A

slightly modified version of our model can cover the case of worker policing (with appropriate inter-

pretations of the parameters rz and pz). A detailed investigation of this situation is desirable, and is

in progress. Moreover, our analysis demonstrates that worker policing, though perhaps conducive to

the evolution of worker non-reproduction, is not necessary for it.

Our analysis makes no use of inclusive fitness theory, which is an unnecessary construct

(Nowak et al., 2010; Allen et al., 2013). Indeed, our analysis shows that the evolution of non-repro-

ductive workers depends on precise functional relationships between worker reproduction, queen

reproduction, and colony efficiency, which inclusive fitness heuristics cannot account for. We note

that inclusive fitness theory, which has dominated this area for decades, has not produced a mathe-

matical analysis of even the most basic factors leading to the evolution of non-reproductive

workers. A clear understanding of how natural selection acts on the evolution of any social behavior

is possible once the field has recognized the limitations of inclusive fitness and has moved beyond

them.

Materials and methods
In this Materials and methods section, we present a mathematical model for the population dynam-

ics of Hymenopteran colonies, and we calculate exact conditions that must be satisfied for non-

reproductive workers to evolve. Our model uses haplodiploid genetics. Each female carries homolo-

gous pairs of maternal and paternal chromosomes, while each male possesses a single set of chro-

mosomes. We assume that a specific mutation (allele) leads to non-reproductive workers. The A

allele represents normal behavior, while the mutant a allele leads to unmated females (workers)

abstaining from laying their own male eggs. If the a allele is dominant, then workers that possess at

least one a allele are sterile. If the a allele is recessive, then workers that are homozygous for a are

sterile. Under what conditions does the a allele for non-reproductive workers invade a population?
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Under what conditions is the a allele evolutionarily stable against invasion by A? A mathematical

analysis of this problem lends insight into the selective forces that act on the evolution of worker ste-

rility. While a loss of function mutation is probably recessive, it is instructive to consider both the

dominant and recessive cases in detail.

Description of the model
Consider a large population of insects. There are many colonies in the population, and each colony

produces many offspring over its lifetime. The particular species under investigation has a haplodi-

ploid genetic system. Females carry homologous pairs of maternal and paternal chromosomes, while

males carry a single set of chromosomes. Queens can produce diploid female workers and gynes

(future queens) from her own genotype combined with the genotype of each of the male drones

that she has mated with. Queens can also produce drones using her own genotype. Female workers

can produce drones as well. Thus there can be competition over whether the queen or the workers

produce most of the males in a colony.

To investigate the selective forces behind non-reproductive workers—i.e., workers that do not

parthenogenetically produce haploid drones—we propose two alleles, A and a. The phenotype cor-

responding to the A allele is such that workers produce drones. The phenotype corresponding to

the a allele is such that workers do not produce drones.

An important parameter is the number, n, of males with which the colony’s queen has mated. A

schematic of the mating events is shown in Figure 1A. There are several possibilities: A type AA

gyne mates with n � m type A males and m type a males. A type Aa gyne mates with n � m type A

males and m type a males. A type aa gyne mates with n � m type A males and m type a males.

The mating events are random. A virgin queen mates with n randomly chosen males in the popu-

lation. Notice that, for mating, the gynes and drones are considered well-mixed: A gyne from one

colony can mate with n drones, each chosen randomly from among the colonies in the population.

For n = 1, we obtain single mating (monandry). For n = 2, we obtain double mating.

The following system of ordinary differential equations describes the selection dynamics in contin-

uous time:

_XAA;m ¼
dXAA;m

dt
¼

n

m

� �

xAAy
n�m
A yma �fXAA;m

_XAa;m ¼
dXAa;m

dt
¼

n

m

� �

xAay
n�m
A yma �fXAa;m

_Xaa;m ¼
dXaa;m

dt
¼

n

m

� �

xaay
n�m
A yma �fXaa;m

(5)

The overdot denotes the time derivative, d/dt. We use the overdot notation for any time

derivative.

We understand Equation 5 as follows. We represent the genotype of a colony by the genotype

of its queen and the sperm she has stored from her matings. Each queen carries homologous pairs

of maternal and paternal chromosomes, so each queen has one of three possible combinations of

the A and a alleles in her own genotype: AA, Aa, or aa. A particular queen has mated with n � m

type A males and m type a males. The number of colonies that are headed by type AA queens who

have mated with n � m type A males and m type a males is denoted by XAA,m. The number of colo-

nies that are headed by type Aa queens who have mated with n � m type A males and m type a

males is denoted by XAa,m. The number of colonies that are headed by type aa queens who have

mated with n � m type A males and m type a males is denoted by Xaa,m. The variables xAA, xAa, and

xaa denote the numbers of gynes of the three possible genotypes in the population. The variables yA
and ya denote the numbers of drones of the two possible genotypes in the population. A gyne ran-

domly mates with n drones to become a queen. The binomial coefficient accounts for all possible

sequences in which a female can mate with m males carrying an a allele out of n total matings.

We require that the total number of colonies sums to a constant value, c, at all times:
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X

n

m¼0

ðXAA;mþXAa;m þXaa;mÞ ¼ c (6)

Colonies compete for resources which are limited. Notice that f in Equation 5 represents a den-

sity-dependent death rate. We use f to model the effect of environmental constraints in limiting the

total number of colonies. To enforce the density constraint, Equation 6, on the colony variables, we

set

f¼ c�1ðxAA þxAaþxaaÞðyAþ yaÞ
n (7)

Our choice to analyze the evolutionary dynamics of sterile workers in continuous time is a matter

of preference. Working in continuous time usually simplifies the analysis. For example, when we

derive conditions for the invasion of a recessive allele or the stability of a dominant allele, the pertur-

bative expansion of the colony variables must be performed to second order, and the calculations

become quite messy.

There are a couple of key biological parameters in our model. The emergence of sterile workers

can affect the fraction of male eggs in a colony that originate from the queen. If a fraction z of work-

ers in a colony are non-reproductive, then the fraction of male offspring that originate from the

queen is denoted by pz. The queen and the unfertilized females may compete for production of

male eggs. The function pz for 0 � z < 1 likely varies for different species. It is reasonable to expect

that pz is an increasing function of z; an increase in the proportion of workers that are non-reproduc-

tive results in a larger proportion of queen-produced males. If all workers are non-reproductive, then

z = 1 and p1 = 1.

The other key function in our model is the efficiency, rz, of a colony in which a fraction z of work-

ers are non-reproductive. An appropriate biological intuition is that the parameter rz is the total

number of offspring produced by a colony when a fraction, z, of workers in the colony are non-repro-

ductive. As we shall see, the ratios of colony efficiency values, rz, for colonies with different geno-

types—i.e., the relative reproductive efficiencies of colonies with different genotypes—are important

quantities for understanding the evolutionary dynamics of a mutation that causes workers to be non-

reproductive. As baseline, we set r0 = 1.

Non-reproductive workers forego their own reproductive potential in order to help raise their

nestmates’ offspring. If this division of labor has some advantage for the colony, then we expect

rz > 1 for some values of z. It is not necessary, however, that rz is a monotonically increasing

function.

Since we are focused on the evolutionary dynamics of the colony variables, XAA,m, XAa,m, and Xaa,m

for 0�m� n, we rewrite the first term on the right-hand side of Equation 5 in terms of the colony vari-

ables. We express each of the gyne and drone numbers, xAA, xAa, xaa, yA, and ya, as a linear combina-

tion of the colony variables, XAA,m, XAa,m, and Xaa,m. The coefficients in these linear relationships

depend on whether the allele, a, that acts in a worker to induce that worker’s sterility is dominant or

recessive.

Reproductives with a dominant sterility allele
For a dominant allele, a, causing worker sterility, we have the reproduction events shown in

Figure 1C. These can be understood as follows.

Consider the offspring of type AA,m colonies. The queen produces n � m type AA females for

every m type Aa females. Because the queen only carries the A allele, she can only produce type A

drones. Only workers that carry two copies of the A allele are capable of making drones, and they

can therefore only pass on copies of the A allele, so workers are also only capable of making type A

drones.

Consider the offspring of type Aa,m colonies. The queen produces n � m type AA females, n

type Aa females, and m type aa females out of every 2n females that she produces. Because the

queen carries the A and a alleles, she produces type A and type a drones in equal proportion. Only

workers that carry two copies of the A allele are capable of making drones, and they therefore only

pass on copies of the A allele, so workers are only capable of making type A drones.

Consider the offspring of type aa,m colonies. The queen produces n � m type Aa females for

every m type aa females. Because the queen only carries the a allele, she can only produce type a
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drones. Only workers that carry two copies of the A allele are capable of making drones, but type

AA workers are not produced by the queen, so workers do not produce males.

For studying the invasion of the mutant allele, only a subset of those colony types are relevant.

Also, for simplicity, we neglect stochastic effects. The number of individuals produced by a colony is

assumed to be very large, so that the fractions of colony offspring of the various possible genotypes

are always exactly the same for that type of colony.

Our attention is on the evolution of the 3(n + 1) colony variables. Therefore, it is helpful to write

all quantities in terms of the colony variables. We can write each type of reproductive of a colony

(xAA, xAa, xaa, yA, and ya) as a simple weighted sum of colony variables. Using Figure 1C, the num-

bers of unfertilized females (xAA, xAa, and xaa) and males (yA and ya) in the population which are

capable of mating can be written as:
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(8)

Here, 0 < g � 1 is the fraction of all females produced by a colony that are gynes. Moreover, 0 <

k � 1 is the fraction of all males produced by a colony that are able to mate. For example, if only a

small percentage of female and male offspring of a colony eventually disperse and mate, then we

have g � 1 and k � 1. The parameters g and k are written explicitly here for conceptual clarity. As

we shall see, they turn out to be irrelevant in the conditions for invasion and stability of non-repro-

ductive workers.

Reproductives with a recessive sterility allele
For a recessive allele, a, causing worker sterility, we have the reproduction events shown in

Figure 1B. These can be understood as follows.

Consider the offspring of type AA,m colonies. The queen produces n � m type AA females for

every m type Aa females. Because the queen only carries the A allele, she can only produce type A

drones. A fraction (n � m)/n of all workers produce only type A males, and a fraction m/n of all work-

ers produce type A and type a males in equal proportion. Altogether, workers produce a fraction

(2n � m)/(2n) type A males and a fraction m/(2n) type a males.

Consider the offspring of type Aa,m colonies. The queen produces n � m type AA females, n

type Aa females, and m type aa females out of every 2n females that she produces. Because the

queen carries the A and a alleles, she produces type A and type a drones in equal proportion. A

fraction (n � m)/(2n) of all workers produce only type A males, and a fraction 1/2 of all workers pro-

duce type A and type a males in equal proportion. Workers that carry two copies of the a allele are
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non-reproductive. Altogether, workers produce a fraction (3n � 2m)/(4n � 2m) type A males and a

fraction n/(4n � 2m) type a males.

Consider the offspring of type aa,m colonies. The queen produces n � m type Aa females for

every m type aa females. Because the queen only carries the a allele, she can only produce type a

drones. A fraction (n � m)/n of all workers produce type A and type a males in equal proportion.

Workers that carry two copies of the a allele are non-reproductive. Altogether, workers produce

type A and type a males in equal proportion.

For studying the invasion of the mutant allele, only a subset of those colony types are relevant.

Also, for simplicity, we neglect stochastic effects. The number of individuals produced by a colony is

assumed to be very large, so that the fractions of colony offspring of the various possible genotypes

are always exactly the same for that type of colony.

Our attention is on the evolution of the 3(n + 1) colony variables. Therefore, it is helpful to write

all quantities in terms of the colony variables. We can write each type of reproductive of a colony

(xAA, xAa, xaa, yA, and ya) as a simple weighted sum of colony variables. Using Figure 1B, the num-

bers of unfertilized females (xAA, xAa, and xaa) and males (yA and ya) in the population which are

capable of mating can be written as:
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(9)

Here, 0 < g � 1 is the fraction of all females produced by a colony that are gynes. Moreover, 0 <

k � 1 is the fraction of all males produced by a colony that are able to mate. For example, if only a

small percentage of female and male offspring of a colony eventually disperse and mate, then we

have g � 1 and k � 1. The parameters g and k are written explicitly here for conceptual clarity. As

we shall see, they turn out to be irrelevant in the conditions for invasion and stability of non-repro-

ductive workers.
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Rescaling of the model variables
We have described the biological intuition for our model of population genetics. To calculate condi-

tions for understanding the evolutionary dynamics of a mutation that effects worker sterility, it is

mathematically convenient to make the following substitutions:

XAA;m�!cXAA;m

XAa;m�!cXAa;m

Xaa;m�!cXaa;m

xAA�!gcxAA

xAa�!gcxAa

xaa�!gcxaa

yA�!kcyA

ya�!kcya

f�!gkncnf

t�!g�1k�nc�nt

(10)

Let’s see what happens when we rescale the model variables and parameters according to Equa-

tion 10. We substitute Equation 10 into Equation 5 to obtain

_XAA;m ¼
dXAA;m

dt
¼

n
m

� �

xAAy
n�m
A yma �fXAA;m

_XAa;m ¼
dXAa;m

dt
¼

n
m

� �

xAay
n�m
A yma �fXAa;m

_Xaa;m ¼
dXaa;m

dt
¼

n
m

� �

xaay
n�m
A yma �fXaa;m

(11)

We substitute Equation 10 into Equation 6 to obtain

X

n

m¼0

ðXAA;m þXAa;m þXaa;mÞ ¼ 1 (12)

We substitute Equation 10 into Equation 7 to obtain

f¼ ðxAAþxAaþxaaÞðyAþ yaÞ
n (13)

Reproductives (rescaled) with a dominant sterility allele
We substitute Equation 10 into Equation 8 to obtain
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xAA ¼
X

n

m¼0

n�m

n
rm

n

XAA;mþ
n�m

2n
rmþn

2n

XAa;m

2

6

6

6

4

3

7

7

7

5

xAa ¼
X

n

m¼0

m

n
rm

n

XAA;m þ
1

2
rmþn

2n

XAa;m þ
n�m

n
r1Xaa;m

2

6

6

6

4

3

7

7

7

5

xaa ¼
X

n

m¼0

m

2n
rmþn

2n

XAa;mþ
m

n
r1Xaa;m

2

6

6

6

4

3

7

7

7

5

yA ¼
X

n

m¼0

rm

n

XAA;m þ

2� pmþn

2n

2
rmþn

2n

XAa;m

2

6

6

6

6

4

3

7

7

7

7

5

ya ¼
X

n

m¼0

1

2
pmþn

2n

rmþn

2n

XAa;m þ r1Xaa;m

2

6

6

6

4

3

7

7

7

5

(14)

Reproductives (rescaled) with a recessive sterility allele
We substitute Equation 10 into Equation 9 to obtain
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(15)
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Conditions for evolutionary invasion and evolutionary stability of worker
sterility: perturbative analysis
Notice that when we rescale the model variables and parameters according to Equation 10, the

evolutionary dynamics are mathematically unchanged: Equation 5 has the same form as Equa-

tion 11, Equation 6 has the same form as Equation 12, Equation 7 has the same form as Equa-

tion 13, Equation 8 has the same form as Equation 14, and Equation 9 has the same form as

Equation 15. But it is apparent why the rescalings (Equation 10) are helpful in doing calculations:

When the right-hand side of (Equation 11) is written out in terms of the colony frequency variables

XAA,m, XAa,m, and Xaa,m, the parameters g, k, and c, which are not essential for understanding the

evolutionary invasion or evolutionary stability of non-reproductive workers, no longer appear in the

calculations. This simplifies writing and improves clarity in the calculations that follow.

To begin, note that only two pure equilibria are possible:

. XAA,0 = 1 with all other X’s equal to zero. In this case, the a allele does not exist in any individ-
ual in the population.

. Xaa,n = 1 with all other X’s equal to zero. In this case, the A allele does not exist in any individ-
ual in the population.

From Equation 11, if any mixed equilibria exist, then they will feature 3(n + 1) nonzero

frequencies.

Invasion of a dominant worker sterility allele
What happens if we start with an infinitesimal quantity of the mutant allele, a, by perturbing the

XAA,0 = 1 pure equilibrium: XAA;0�!1� �d
ð1Þ
AA;0, with � � 1? Does a dominant worker sterility allele

spread in the population, or is it eliminated?

Although the state space is (3n + 2)-dimensional (3n + 3 types of colonies subject to the density

constraint), the analysis simplifies. Provided that the perturbation is small (i.e. that � � 1), only three

colony types, AA,0, AA,1, and Aa,0, determine whether or not the dominant worker sterility allele

invades. Any other colony type is headed by a queen that possesses at least two mutant a alleles

(from her own genotype combined with the sperm she has collected), but such queens are so rare as

to be negligible. The relevant equations among (Equation 11) for studying invasion of a dominant

sterility allele are

_XAA;0 ¼ xAAy
n
A�fXAA;0

_XAA;1 ¼ nxAAy
n�1
A ya�fXAA;1

_XAa;0 ¼ xAay
n
A �fXAa;0

(16)

Formally keeping track of powers of �, and disregarding higher-order terms, we have:

XAA;0 ¼ 1� �d
ð1Þ
AA;0�Oð�2Þ

XAA;1 ¼þ�d
ð1Þ
AA;1 þOð�2Þ

XAa;0 ¼þ�d
ð1Þ
Aa;0þOð�2Þ

(17)

To simplify the density constraint (Equation 12) for our calculation, we substitute (Equation 17)

into (Equation 12) and collect powers of �. We get

d
ð1Þ
AA;0 ¼ d

ð1Þ
AA;1 þ d

ð1Þ
Aa;0 (18)

Next, we substitute (Equation 17) into (Equation 14), using the density constraint (Equation 18)

and keeping terms only up to order �:
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(19)

By plugging (Equation 19) and (Equation 17) into (Equation 16), using the density constraint

(Equation 18), and collecting powers of �, we find
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The equations for _d
ð1Þ

AA;1 and
_d
ð1Þ

Aa;0 can be written in matrix form as
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Setting the dominant eigenvalue to be greater than zero and simplifying, we find that the domi-

nant allele for worker sterility increases in frequency if

r1
2

r0
1þ p1

2

r1
n

r0

� �� �

> 2 (20)

Depending on the values of the parameters p1/2, r0, r1/2, and r1/n, non-reproductive workers may

or may not evolve with any number of matings, n, of the queen. In Figure 8, we show the regions of

parameter space for which non-reproductive workers can or cannot evolve for a dominant sterility

allele. Holding all other parameters constant, an increase in r1 favors the invasion of the dominant

sterility allele for n = 1. This is easy to see in Figure 8: the upper panels (higher r1) correspond to

invasion of the dominant sterility allele for n = 1, while the lower panels do not. Holding all other
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parameters constant, an increase in r1/2 favors the invasion of the dominant sterility allele for n = 2.

Again, this is seen in Figure 8: the right panels (higher r1/2) represent invasion of the dominant steril-

ity allele for n = 2, while the left panels do not. Additionally, holding all other parameters constant,

an increase in r1/2 facilitates the invasion of the dominant sterility allele for n = 1. This can also be

seen in Figure 8: the boundary separating the upper panels from the lower panels decreases as r1/2
increases. If r1/2 > r1, then it is possible that a dominant sterility allele invades for double mating but

not for single mating.

Invasion of a recessive worker sterility allele
What happens if we start with an infinitesimal quantity of the mutant allele, a, by perturbing the

XAA,0 = 1 pure equilibrium: XAA;0�!1� �d
ð1Þ
AA;0, with � � 1? Does a recessive worker sterility allele

spread in the population, or is it eliminated?

Although the state space is (3n + 2)-dimensional (3n + 3 types of colonies subject to the density

constraint), the analysis again simplifies. Provided that the perturbation is small (i.e. that � � 1), only

six colony types, AA,0, AA,1, Aa,0, AA,2, Aa,1, and aa,0, determine whether or not the recessive

worker sterility allele invades. Any other colony type is headed by a queen that possesses at least

three mutant a alleles (from her own genotype combined with the sperm she has collected), but

such queens are so rare as to be negligible. The relevant equations among (Equation 11) for study-

ing invasion of a recessive sterility allele are

_XAA;0 ¼ xAAy
n
A�fXAA;0

_XAA;1 ¼ nxAAy
n�1
A ya�fXAA;1

_XAa;0 ¼ xAay
n
A �fXAa;0

_XAA;2 ¼
nðn� 1Þ

2
xAAy

n�2
A y2a�fXAA;2

_XAa;1 ¼ nxAay
n�1
A ya�fXAa;1

_Xaa;0 ¼ xaay
n
A �fXaa;0

(21)

Recall that for analysis of the dominant allele, we only needed to consider terms of order � to derive

conditions for invasion of the allele. For analysis of the recessive allele, terms of order � do not provide

Figure 8. Regions of the parameter space and evolution of worker sterility for a dominant sterility allele. The

evolutionary invasion of a dominant worker sterility allele depends on values of the parameters p1/2, r1/2, and r1 for

single mating, n = 1, and on values of the parameters p1/2 and r1/2 for double mating, n = 2. The figure shows four

parameter regions indicating whether or not worker sterility can evolve for single or double

mating. We set r0 = 1 as baseline.

DOI: 10.7554/eLife.08918.010
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sufficient information for determining if the allele invades, which adds a level of tedium to the calculation.

Formally keeping track of powers of � and �2, and disregarding higher-order terms, we have:

XAA;0 ¼ 1� �d
ð1Þ
AA;0 � �2d

ð2Þ
AA;0 �Oð�3Þ

XAA;1 ¼þ�d
ð1Þ
AA;1 þ �2d

ð2Þ
AA;1 þOð�3Þ

XAa;0 ¼þ�d
ð1Þ
Aa;0 þ �2d

ð2Þ
Aa;0þOð�3Þ

XAA;2 ¼þ�2d
ð2Þ
AA;2 þOð�3Þ

XAa;1 ¼þ�2d
ð2Þ
Aa;1 þOð�3Þ

Xaa;0 ¼þ�2d
ð2Þ
aa;0 þOð�3Þ

(22)

The simplified density constraint, Equation 18, holds regardless of whether the sterility allele

under consideration is dominant or recessive. To further simplify the density constraint (Equation 12)

for the case of a recessive sterility allele, we substitute (Equation 22) into (Equation 12) and collect

powers of �2. We get

d
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AA;0 ¼ d
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AA;1 þ d

ð2Þ
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AA;2þ d

ð2Þ
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ð2Þ
aa;0 (23)

Next, we substitute (Equation 22) into (Equation 15), using the density constraints (Equation 18)

and (Equation 23) and keeping terms up to order �2:
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2

n
d
ð2Þ
AA;2 þ

r 1

2n

r�1
0

2
d
ð2Þ
Aa;1 þ d

ð2Þ
aa;0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

þO �3ð Þ

xaar
�1
0 ¼ �2

r 1

2n

r�1
0

2n
d
ð2Þ
Aa;1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

þO �3ð Þ

yAr
�1
0 ¼ 1þ � �

1� p0
2n

d
ð1Þ
AA;1 �

1þ p0
4

d
ð1Þ
Aa;0

2

4

3

5þ �2½�
1� p0
2n

d
ð2Þ
AA;1 �

1þ p0
4

d
ð2Þ
Aa;0 �

1� p0
n

d
ð2Þ
AA;2

þ

2� 4n� 2�n 3� p 1

2n

0

B

B

B

@

1

C

C

C

A

� p 1

2n

2

6

6

6

4

3

7

7

7

5

r 1

2n

r�1
0

2ð2n� 1Þ
d
ð2Þ
Aa;1�

1þ p0
2

d
ð2Þ
aa;0�þO �3

� �

yar
�1
0 ¼ �

1� p0
2n

d
ð1Þ
AA;1 þ

1þ p0
4

d
ð1Þ
Aa;0

2

4

3

5þ �2½
1� p0
2n

d
ð2Þ
AA;1 þ

1þ p0
4

d
ð2Þ
Aa;0 þ

1� p0
n

d
ð2Þ
AA;2

þ

nþ n � 1ð Þp 1

2n

2

6

6

6

4

3

7

7

7

5

r 1

2n

r�1
0

2ð2n� 1Þ
d
ð2Þ
Aa;1 þ

1þ p0
2

d
ð2Þ
aa;0�þO �3

� �

(24)
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By plugging (Equation 24) and (Equation 22) into (Equation 21), using the density constraint

(Equation 18), and collecting powers of �, we find

_d
ð1Þ

AA;1 ¼
� 1þ p0ð Þ

2
rnþ1
0 d

ð1Þ
AA;1 þ

n 1þ p0ð Þ

4
rnþ1
0 d

ð1Þ
Aa;0

_d
ð1Þ

Aa;0 ¼
1

n
rnþ1
0 d

ð1Þ
AA;1�

1

2
rnþ1
0 d

ð1Þ
Aa;0

The equations for _d
ð1Þ

AA;1 and
_d
ð1Þ

Aa;0 can be written in matrix form as

_d
ð1Þ

AA;1

_d
ð1Þ

Aa;0

0

@

1

A¼ rnþ1
0

�ð1þ p0Þ

2

nð1þ p0Þ

4

1

n

�1

2

0

B

B

B

B

@

1

C

C

C

C

A

d
ð1Þ
AA;1

d
ð1Þ
Aa;0

 !

The two eigenvectors (v0 and v�) and their corresponding eigenvalues (l0 and l�) are

v0 ¼
n
2

� �

l0 ¼ 0

v� ¼
nð1þ p0Þ

�2

� �

l� ¼
�ð2þ p0Þ

2
rnþ1
0

Notice that the dominant eigenvalue is equal to zero, so a computation to leading order in � can-

not provide information on the invasion of the recessive sterility allele.

We can also see this more formally. An arbitrary initial perturbation to a resident A population

can be written as a linear superposition of the eigenvectors v0 and v�:

d
ð1Þ
AA;1

d
ð1Þ
Aa;0

 !

¼C0
n
2

� �

þC�
nð1þ p0Þ

�2

� �

exp
�ð2þ p0Þ

2
rnþ1
0 t

� �

(25)

Here C0 and C� are constants. We can substitute (Equation 24) and (Equation 22) into (Equa-

tion 21), using the density constraints (Equation 18) and (Equation 23), keeping terms of order �

and �2, and dividing each term by one factor of �. We obtain

� _d
ð1Þ

AA;0 � � _d
ð2Þ

AA;0

h i

r
�ðnþ1Þ
0 ¼

2�n�np0
4n

�2d
ð1Þ
AA;1 þnd

ð1Þ
Aa;0

� �

þ�½
2�n�np0

4n
�2d

ð2Þ
AA;1 þnd

ð2Þ
Aa;0

� �

þ
�2þnp0

n
d
ð2Þ
AA;2

þ

r 1

2n

r�1
0 �n 2þ r 1

2n

r�1
0 �n 4� 2þnþðn� 1Þp 1

2n

0

B

B

B

@

1

C

C

C

A

r 1

2n

r�1
0

0

B

B

B

@

1

C

C

C

A

2

6

6

6

4

3

7

7

7

5

2nð2n� 1Þ
d
ð2Þ
Aa;1

�
nð1þ p0Þ

2
d
ð2Þ
aa;0

þ
ð1� p0Þ½3þnð1� p0Þþ p0�

8n
½d

ð1Þ
AA;1�

2

þ
nð1þ p0Þ½3þnþðn� 1Þp0�

32
½d

ð1Þ
Aa;0�

2

þ
3þn�ðn� 1Þp20

8
d
ð1Þ
AA;1d

ð1Þ
Aa;0�

(26)
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We can again use the density constraints (Equation 18) and (Equation 23) to rewrite the left-

hand side of (Equation 26). We can also substitute the general solution for the quantities d
ð1Þ
AA;1 and

d
ð1Þ
Aa;0, Equation 25, into the right-hand side of (Equation 26):

� _d
ð1Þ

AA;1 �
_d
ð1Þ

Aa;0

h i

r
�ðnþ1Þ
0

þ�½� _d
ð2Þ

AA;1 �
_d
ð2Þ

Aa;0

� _d
ð2Þ

AA;2�
_d
ð2Þ

Aa;1

� _d
ð2Þ

aa;0�r
�ðnþ1Þ
0 ¼

2�n�npo
4n

½�2 nC0 þn 1þ poð ÞC�exp
�ð2þ p0Þ

2
rnþ1
0 t

0

@

1

A

0

@

1

A

þn 2C0 � 2C�exp
�ð2þ p0Þ

2
rnþ1
0 t

0

@

1

A

0

@

1

A�

þ�½
2�n�np0

4n
�2d

ð2Þ
AA;1þnd

ð2Þ
Aa;0

� �

þ
�2þnp0

n
d
ð2Þ
AA;2

þ

r 1

2n

r�1
0 �n½2þ r 1

2n

r�1
0 �n 4� 2þnþðn� 1Þp 1

2n

0

B

B

B

@

1

C

C

C

A

r 1

2n

r�1
0

0

B

B

B

@

1

C

C

C

A

�

2nð2n� 1Þ
d
ð2Þ
Aa;1

�
nð1þ p0Þ

2
d
ð2Þ
aa;0

þ
ð1� p0Þ½3þnð1� p0Þþ p0�

8n
½d

ð1Þ
AA;1�

2

þ
nð1þ p0Þ½3þnþðn� 1Þp0�

32
½d

ð1Þ
Aa;0�

2

þ
3þn�ðn� 1Þp20

8
d
ð1Þ
AA;1d

ð1Þ
Aa;0�

(27)

Note that each term in (Equation 27) involving the quantities d
ð2Þ
AA;1, d

ð2Þ
Aa;0, d

ð2Þ
AA;2, d

ð2Þ
Aa;1, and d

ð2Þ
aa;0 is

multiplied by �. In the limit ��!0, the quantities d
ð2Þ
AA;1, d

ð2Þ
Aa;0, d

ð2Þ
AA;2, d

ð2Þ
Aa;1, and d

ð2Þ
aa;0 do not affect the

dynamics of the quantities d
ð1Þ
AA;1 and d

ð1Þ
Aa;0. However, the quantities d

ð1Þ
AA;1 and d

ð1Þ
Aa;0 alone tell us noth-

ing about whether or not the recessive sterility allele invades a resident A population. Therefore, we

must consider the terms of order �2 in our dynamical equations (Equation 21) to determine if a rare

a allele can invade a resident A population. In our calculations that follow, we use the eigenvector v0
corresponding to the zero eigenvalue, i.e.

d
ð1Þ
AA;1

d
ð1Þ
Aa;0

 !

¼
d
ð1Þ
AA;0

nþ 2

n
2

� �

(28)

Substituting (Equation 24), (Equation 22), and (Equation 28) into (Equation 21), using the den-

sity constraints (Equation 18) and (Equation 23), and keeping terms of order �2, we have
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� _d
ð2Þ

AA;0r
�ðnþ1Þ
0 ¼

2�n�np0
4n

�2d
ð2Þ
AA;1�nd

ð2Þ
Aa;0

� �

þ
�2þnp0

n
d
ð2Þ
AA;2

þ

r 1

2n

r�1
0 �n½2þ r 1

2n

r�1
0 �n 4� 2þnþðn� 1Þp 1

2n

0

B

B

B

@

1

C

C

C

A

r 1

2n

r�1
0

0

B

B

B

@

1

C

C

C

A

�

2nð2n� 1Þ
d
ð2Þ
Aa;1

�
nð1þ p0Þ

2
d
ð2Þ
aa;0

þ
nðnþ 3Þ

2ðnþ 2Þ2
½d

ð1Þ
AA;0�

2

(29)

We also have

_d
ð2Þ

AA;1r
�ðnþ1Þ
0 ¼

1þ p0
4

�2d
ð2Þ
AA;1 þnd

ð2Þ
Aa;0

� �

þð1� p0Þd
ð2Þ
AA;2

þ

n½nþðn� 1Þp 1

2n

�

2ð2n� 1Þ
r 1

2n

r�1
0 d
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Aa;1

þ
nð1þ p0Þ

2
d
ð2Þ
aa;0

�
nðnþ 1Þ

ðnþ 2Þ2
½d

ð1Þ
AA;0�

2

_d
ð2Þ

Aa;0r
�ðnþ1Þ
0 ¼

�1

2n
�2d

ð2Þ
AA;1 þnd

ð2Þ
Aa;0

� �

þ
2

n
d
ð2Þ
AA;2

þ
1

2
r 1

2n

r�1
0 d

ð2Þ
Aa;1

þd
ð2Þ
aa;0

�
2n

ðnþ 2Þ2
½d

ð1Þ
AA;0�

2

_d
ð2Þ

AA;2r
�ðnþ1Þ
0 ¼ �d

ð2Þ
AA;2 þ

nðn� 1Þ

2ðnþ 2Þ2
½d

ð1Þ
AA;0�

2

_d
ð2Þ

Aa;1r
�ðnþ1Þ
0 ¼ �d

ð2Þ
Aa;1 þ

2n

ðnþ 2Þ2
½d

ð1Þ
AA;0�

2

_d
ð2Þ

aa;0r
�ðnþ1Þ
0 ¼ �d

ð2Þ
aa;0þ

1

2n
r 1

2n

r�1
0 d

ð2Þ
Aa;1

We can directly integrate the equation for _d
ð2Þ

AA;2. We get
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d
ð2Þ
AA;2 ¼

nðn� 1Þ

2ðnþ 2Þ2
½d

ð1Þ
AA;0�

2½1� exp �rnþ1
0 t

� �

� (30)

We can also directly integrate the equation for _d
ð2Þ

Aa;1. We get

d
ð2Þ
Aa;1 ¼

2n

ðnþ 2Þ2
½d

ð1Þ
AA;0�

2½1� exp �rnþ1
0 t

� �

� (31)

We can use the solution for d
ð2Þ
Aa;1 to solve for d

ð2Þ
aa;0. We get

d
ð2Þ
aa;0 ¼

r 1
2n

r0ðnþ 2Þ2
½d

ð1Þ
AA;0�

2½1�ð1þ rnþ1
0 tÞ exp ð�rnþ1

0 tÞ� (32)

Manipulating the equations for _d
ð2Þ

AA;1 and
_d
ð2Þ

Aa;0, we find that

r
�ðnþ1Þ
0

d

dt
ð�2d

ð2Þ
AA;1 þnd

ð2Þ
Aa;0Þ ¼

�ð2þ p0Þ

2
�2d

ð2Þ
AA;1þnd

ð2Þ
Aa;0

� �

þ 2p0d
ð2Þ
AA;2

�

n½1þ 2ðn� 1Þp 1

2n

�

2ð2n� 1Þ
r 1

2n

r�1
0 d

ð2Þ
Aa;1

�np0d
ð2Þ
aa;0

þ
2n

ðnþ 2Þ2
½d

ð1Þ
AA;0�

2

We can integrate this equation to solve for the quantity �2d
ð2Þ
AA;1 þ nd

ð2Þ
Aa;0. We obtain

�2d
ð2Þ
AA;1 þnd

ð2Þ
Aa;0 ¼ ½

2n½p0 �n 1þ 2p0 þ 2ðn� 1Þp 1
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B

@

1

C

C

C
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�r 1

2n

r�1
0

ðnþ 2Þ2ð2þ p0Þð2n� 1Þ

þ
2n½2þðn� 1Þp0�

ðnþ 2Þ2ð2þ p0Þ
�½d

ð1Þ
AA;0�

2

þ½

2n½2� 3nþ 2ðn� 1Þnp 1

2n

�r 1

2n

r�1
0

ðnþ 2Þ2p0ð2n� 1Þ

�

2n½n� 1� r 1

2n

r�1
0 ð1þ rnþ1

0 tÞ�

ðnþ 2Þ2
�½d

ð1Þ
AA;0�

2exp �rnþ1
0 t

� �

þ½

4n½n 3� 2ðn� 1Þp 1

2n

0

B

B

B

@

1

C

C

C

A

� 2�r 1

2n

r�1
0

ðnþ 2Þ2p0ð2þ p0Þð2n� 1Þ

þ
4nðn� 2Þ

ðnþ 2Þ2ð2þ p0Þ
�½d
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2
exp

�ð2þ p0Þ

2
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0 t

0

@

1

A

(33)

To determine if the resident A population is unstable to invasion by the a allele, we must consider

the regime 1 � t � ��1. Notice that on a short time scale, each of the time-dependent terms in

Equations 30–33 will approach zero. We must consider the sign of _d
ð2Þ

AA;0 in the limit of large times
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t � 1 but before the terms in (Equation 22) become comparable in magnitude. Our condition for

invasion of the sterility allele is therefore

lim
�t�!0

t�!¥

_d
ð2Þ

AA;0 > 0 (34)

Substituting (Equations 29–33) into (Equation 34), we find that the recessive allele for worker

sterility increases in frequency if

r 1
2n

r0
>

2ð2n� 1Þð2þnþnp0Þ

2n2 2þ p0 þ p 1
2n

� �

þn 3þ 3p0� 2p 1
2n

� �

� 2ð1þ p0Þ

In the Results, we focused on single and double mating. Figure 3A shows that fairly large effi-

ciency increases from non-reproductive workers (around 10–20%) are needed for sterility to invade.

Figure 3A also shows how the number of matings affects the invasion of non-reproductive work-

ers for different values of the parameters r1/4 and r1/2. Sample forms of the functions pz and rz are

shown in Figure 7A,B. For Figure 7A, we have p0 = 0.8, p1/4 = 0.85, r0 = 1, r1/4 = 1.02, and r1/

2 = 1.026; i.e., pz increases linearly in z, while rz increases sublinearly in z. For these values of pz and

rz, sterility invades for double mating (n = 2) but not for single mating (n = 1). For Figure 7B, we

have p0 = 0.8, p1/4 = 0.9, r0 = 1, r1/4 = 1.013, and r1/2 = 1.026; i.e., pz increases sublinearly in z, while

rz increases linearly in z. For these values of pz and rz, sterility invades for double mating (n = 2) but

not for single mating (n = 1).

In Figure 9, we show the values of the parameters r1/6 and r1/4 for which non-reproductive work-

ers can invade for double and triple mating. There are many possibilities. For example, it is possible

that worker sterility evolves for triple mating but not for double or single mating. Sample forms of

the functions pz and rz are shown in Figure 10A,B. For Figure 10A, we have p0 = 0.1, p1/6 = 0.25,

p1/4 = 0.325, r0 = 1, r1/6 = 1.095, r1/4 = 1.117, and r1/2 = 1.16; i.e., pz increases linearly in z, while rz
increases sublinearly in z. For these values of pz and rz, sterility invades for triple mating (n = 3) but

not for double mating (n = 2) or single mating (n = 1). For Figure 10B, we have p0 = 0.2, p1/6 = 0.5,

p1/4 = 0.6, r0 = 1, r1/6 = 1.04, r1/4 = 1.06, and r1/2 = 1.12; i.e., pz increases sublinearly in z, while rz
increases linearly in z. For these values of pz and rz, sterility invades for triple mating (n = 3) but not

for double mating (n = 2) or single mating (n = 1).

Stability of a dominant worker sterility allele
We assume that a dominant worker sterility allele has spread to fixation. We consider the evolution-

ary stability of a population consisting entirely of sterile workers to invasion by reproductive workers.

What happens if we start with an infinitesimal quantity of the mutant allele, A, by perturbing the Xaa,

n = 1 pure equilibrium: Xaa;n�!1� �dð1Þaa;n, with � � 1? Does the dominant worker sterility allele return

to fixation, or is it invaded by the worker reproduction allele?

Although the state space is (3n + 2)-dimensional (3n + 3 types of colonies subject to the density

constraint), the analysis simplifies. Provided that the perturbation is small (i.e. that � � 1), only six

colony types, aa,n, aa,n � 1, Aa,n, aa,n � 2, Aa,n � 1, and AA,n, determine whether or not the dom-

inant worker sterility allele is stable. Any other colony type is headed by a queen that possesses at

least three mutant A alleles (from her own genotype combined with the sperm she has collected),

but such queens are so rare as to be negligible. The relevant equations among (Equation 11) for

studying stability of a dominant sterility allele are

_Xaa;n ¼ xaay
n
a �fXaa;n

_Xaa;n�1 ¼ nxaay
n�1
a yA �fXaa;n�1

_XAa;n ¼ xAay
n
a �fXAa;n

_Xaa;n�2 ¼
nðn� 1Þ

2
xaay

n�2
a y2A�fXaa;n�2

_XAa;n�1 ¼ nxAay
n�1
a yA�fXAa;n�1

_XAA;n ¼ xAAy
n
a �fXAA;n

(35)
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For analysis of the dominant sterility allele, terms of order � do not provide sufficient information

for determining whether the allele is stable, which adds a level of tedium to the calculation. Formally

keeping track of powers of � and �2, and disregarding higher-order terms, we have:

Xaa;n ¼ 1� �dð1Þaa;n � �2dð2Þaa;n�Oð�3Þ

Xaa;n�1 ¼ þ�d
ð1Þ
aa;n�1þ �2d

ð2Þ
aa;n�1 þOð�3Þ

XAa;n ¼ þ�d
ð1Þ
Aa;nþ �2d

ð2Þ
Aa;nþOð�3Þ

Xaa;n�2 ¼ þ�2d
ð2Þ
aa;n�2 þOð�3Þ

XAa;n�1 ¼ þ�2d
ð2Þ
Aa;n�1

þOð�3Þ

XAA;n ¼ þ�2d
ð2Þ
AA;nþOð�3Þ

(36)

To determine the density constraints, we substitute (Equation 36) into (Equation 12) and collect

powers of � and �2. At order �, we get

dð1Þaa;n ¼ d
ð1Þ
aa;n�1þ d

ð1Þ
Aa;n (37)

At order �2, we get

dð2Þaa;n ¼ d
ð2Þ
aa;n�1 þ d

ð2Þ
Aa;n þ d

ð2Þ
aa;n�2 þ d

ð2Þ
Aa;n�1

þ d
ð2Þ
AA;n (38)

Next, we substitute (Equation 36) into (Equation 14), using the density constraints (Equation 37)

and (Equation 38) and keeping terms up to order �2:

xaar
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n
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Aa;n�þ �2½

�1

n
d
ð2Þ
aa;n�1 �

1

2
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�
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n
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� d
ð2Þ
AA;n�þO �3

� �
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1

n
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1
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d
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(39)

By plugging (Equation 39) and (Equation 36) into (Equation 35), using the density constraint

(Equation 37), and collecting powers of �, we find
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_d
ð1Þ

aa;n�1 ¼�rnþ1
1 d

ð1Þ
aa;n�1þ

n

2
rnþ1
1 d

ð1Þ
Aa;n

_d
ð1Þ

Aa;n ¼
1

n
rnþ1
1 d

ð1Þ
aa;n�1�

1

2
rnþ1
1 d

ð1Þ
Aa;n

The equations for _d
ð1Þ

aa;n�1 and
_d
ð1Þ

Aa;n can be written in matrix form as
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The two eigenvectors (v0 and v�) and their corresponding eigenvalues (l0 and l�) are

v0 ¼
n
2

� �

l0 ¼ 0

v� ¼
n
�1

� �

l� ¼
�3

2
rnþ1
1

Notice that the dominant eigenvalue is equal to zero, so a computation to leading order in � can-

not provide information on the stability of the dominant sterility allele.

We can also see this more formally. An arbitrary initial perturbation to a resident A population

can be written as a linear superposition of the eigenvectors v0 and v�:

d
ð1Þ
aa;n�1

d
ð1Þ
Aa;n

 !

¼C0
n
2

� �

þC�
n
�1

� �

exp
�3

2
rnþ1
1 t

� �

(40)

Here C0 and C� are constants. We can substitute (Equation 39) and (Equation 36) into (Equa-

tion 35), using the density constraints (Equation 37) and (Equation 38), keeping terms of order �

and �2, and dividing each term by one factor of �. We obtain

Figure 9. Regions of the parameter space and evolution of worker sterility for double and for triple mating. For

double mating, n = 2, the invasion of a recessive worker sterility allele depends on the parameters p0, p1/4, and r1/

4; for triple mating, n = 3, it depends on the parameters p0, p1/6, and r1/6. We set r0 = 1 as baseline.

DOI: 10.7554/eLife.08918.011
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(41)

We can again use the density constraints (Equation 37) and (Equation 38) to rewrite the left-

hand side of (Equation 41). We can also substitute the general solution for the quantities d
ð1Þ
aa;n�1 and

d
ð1Þ
Aa;n, Equation 40, into the right-hand side of (Equation 41):

Figure 10. Comparing the effects of single mating (n = 1), double mating (n = 2), and triple mating (n = 3) on the evolution of worker sterility. Whether

or not triple mating favors the evolution of worker sterility depends on the functions pz and rz. We consider a recessive mutant allele, a, for worker

sterility. (A, B) For these parameter choices, the mutant allele causing worker sterility can invade for triple mating but not for double or single mating.

DOI: 10.7554/eLife.08918.012
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(42)

Note that each term in (Equation 42) involving the quantities d
ð2Þ
aa;n�1, d

ð2Þ
Aa;n, d

ð2Þ
aa;n�2, d

ð2Þ
Aa;n�1

, and

d
ð2Þ
AA;n is multiplied by �. In the limit ��!0, the quantities d

ð2Þ
aa;n�1, d

ð2Þ
Aa;n, d

ð2Þ
aa;n�2, d

ð2Þ
Aa;n�1

, and d
ð2Þ
AA;n do

not affect the dynamics of the quantities d
ð1Þ
aa;n�1 and d

ð1Þ
Aa;n. However, the quantities d

ð1Þ
aa;n�1 and d

ð1Þ
Aa;n

alone tell us nothing about whether or not the dominant sterility allele is stable against invasion by

the mutant A allele. Therefore, we must consider the terms of order �2 in our dynamical equations

(Equation 35) to determine if the a allele is stable against invasion by the mutant A allele. In our cal-

culations that follow, we use the eigenvector v0 corresponding to the zero eigenvalue, i.e.

d
ð1Þ
aa;n�1

d
ð1Þ
Aa;n

 !

¼
dð1Þaa;n

nþ 2

n
2

� �

(43)

Substituting (Equation 39), (Equation 36), and (Equation 43) into (Equation 35), using the den-

sity constraints (Equation 37) and (Equation 38), and keeping terms of order �2, we have
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We also have
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We can directly integrate the equation for _d
ð2Þ

aa;n�2. We get

d
ð2Þ
aa;n�2 ¼

nðn� 1Þ

2ðnþ 2Þ2
½dð1Þaa;n�

2½1� exp ð�rnþ1
1 tÞ� (45)

We can also directly integrate the equation for _d
ð2Þ

Aa;n�1. We get
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We can use the solution for d
ð2Þ
Aa;n�1

to solve for d
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AA;n. We get
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Manipulating the equations for _d
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Aa;n, we find that
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We can integrate this equation to solve for the quantity �2d
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(48)

To determine if the resident a population is unstable to invasion by the A allele, we must consider

the regime 1 � t � ��1. Notice that on a short time scale, each of the time-dependent terms in

Equations 45–48 will approach zero. We must consider the sign of _d
ð2Þ

aa;n in the limit of large times

t � 1 but before the terms in (Equation 36) become comparable in magnitude. Our condition for

stability of the sterility allele is therefore
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Substituting (Equations 44–48) into (Equation 49), we find that the dominant allele for worker

sterility is evolutionarily stable if

r1
r2n�1
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>
2þ 3n�np2n�1

2n

2ðnþ 1Þ

Stability of a recessive worker sterility allele
We assume that a recessive worker sterility allele has spread to fixation. We consider the evolution-

ary stability of a population consisting entirely of sterile workers to invasion by reproductive workers.

What happens if we start with an infinitesimal quantity of the mutant allele, A, by perturbing the Xaa,

n = 1 pure equilibrium: Xaa;n�!1� �dð1Þaa;n, with � � 1? Does the recessive worker sterility allele return

to fixation, or is it invaded by the worker reproduction allele?

Although the state space is (3n + 2)-dimensional (3n + 3 types of colonies subject to the density

constraint), the analysis again simplifies. Provided that the perturbation is small (i.e. that � � 1), only

three colony types, aa,n, aa,n�1, and Aa,n, determine whether or not the recessive worker sterility

allele is evolutionarily stable. Any other colony type is headed by a queen that possesses at least

two mutant A alleles (from her own genotype combined with the sperm she has collected), but such

queens are so rare as to be negligible. The relevant equations among (Equation 11) for studying sta-

bility of a recessive sterility allele are

_Xaa;n ¼ xaay
n
a �fXaa;n

_Xaa;n�1 ¼ nxaay
n�1
a yA �fXaa;n�1

_XAa;n ¼ xAay
n
a �fXAa;n

(50)

Formally keeping track of powers of �, and disregarding higher-order terms, we have:

Xaa;n ¼ 1� �dð1Þaa;n�Oð�2Þ

Xaa;n�1 ¼ þ�d
ð1Þ
aa;n�1þOð�2Þ

XAa;n ¼ þ�d
ð1Þ
Aa;n þOð�2Þ

(51)

Next, we substitute (Equation 51) into (Equation 15), using the density constraint (Equation 37)

and keeping terms only up to order �:
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By plugging (Equation 52) and (Equation 51) into (Equation 50), using the density constraint

(Equation 37), and collecting powers of �, we find
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The equations for _d
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Aa;n can be written in matrix form as
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Setting the dominant eigenvalue to be greater than zero and simplifying, we find that the reces-

sive allele for worker sterility is evolutionarily stable if
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Figure 3B shows how the number of matings affects the evolutionary stability of non-reproduc-

tive workers for different values of the parameters r1/2 and r1. Sample forms of the functions pz and

rz are shown in Figure 7C,D. For Figure 7C, we have p0 = 0.8, p1/2 = 0.92, r0 = 1, r1/2 = 1.016, and

r1 = 1.045; i.e., pz increases sublinearly in z, while rz increases superlinearly in z. For these values of

pz and rz, sterility is stable for double mating (n = 2) but not for single mating (n = 1). For

Figure 7D, we have p0 = 0.8, p1/2 = 0.94, r0 = 1, r1/2 = 1.0225, and r1 = 1.045; i.e., pz increases subli-

nearly in z, while rz increases linearly in z. For these values of pz and rz, sterility is stable for double

mating (n = 2) but not for single mating (n = 1).

Numerical experiments
For additional insight, we perform random sampling of the parameter space to obtain some intuition

whether evolution of non-reproductive workers is more or less likely for single or double mating. We

will also evaluate the likelihood of selection favoring invasion or evolutionary stability of alleles

(mutations) that induce non-reproductive workers. Thus, we do random sampling of the parameter

regions shown in Figures 3A, 5A, and 8. In each case, the outcome depends on two efficiency val-

ues, which we call rz1 and rz2 with z1 < z2. For Figure 3A, those values are r1/4 and r1/2. For

Figure 5A and for Figure 8, those values are r1/2 and r1.

The outcome of this numerical experiment depends on how we choose to randomize the colony

efficiency values, rz1 and rz2. There are many ways to do this. Here, we consider two possibilities:

Table 1. Numerical experiments. We randomly select the two relevant colony efficiency values from a

bivariate normal distribution. For Procedure 1, the two efficiency values are uncorrelated. For

Procedure 2, they are correlated (with correlation 0.8). The results of the numerical experiment for

Figures 3A and 8 are shown. For Figure 3A, which describes a recessive allele inducing non-

reproductive workers, we randomly generate values for r1/4 and r1/2. For Figure 8, which describes a

dominant allele inducing non-reproductive workers, we randomly generate values for r1/2 and r1. The

table shows the likelihood of the four possible outcomes: non-reproductive workers (i) do not invade,

(ii) invade for single mating but not for double mating, (iii) invade for double mating but not for

single mating, and (iv) invade for both single and double mating. For this particular randomization

experiment, double mating is more favorable than single mating for the invasion of non-reproductive

workers. All p values are exactly as in the corresponding Figures.

Does not Invades for n = 1 Invades for n = 2 Invades for both

invade but not n = 2 but not n = 1 n = 1 and n = 2

Figure 3A, Proc. 1, recessive 0.7769 0.0644 0.1465 0.0122

Figure 3A, Proc. 2, recessive 0.8237 0.0177 0.0997 0.0589

Figure 8, Proc. 1, dominant 0.7944 0.0129 0.0830 0.1097

Figure 8, Proc. 2, dominant 0.7927 0.0146 0.0260 0.1667

DOI: 10.7554/eLife.08918.013

Table 2. Numerical experiments. With the equivalent Procedures, we explore the likelihood of the

four scenarios regarding invasion and/or stability for single mating. Results of the numerical

experiment for Figure 5A, describing a recessive allele, are shown. We randomly generate values for

r1/2 and r1. The value p0 = 0.5 is exactly as in Figure 5A.

Does not invade Does not invade Invades Invades

and is unstable but is stable but is unstable and is stable

Figure 5A, Proc. 1, recessive 0.3484 0.3014 0.3007 0.0495

Figure 5A, Proc. 2, recessive 0.5295 0.1203 0.2379 0.1123

DOI: 10.7554/eLife.08918.014
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. Procedure 1: We choose rz1 and rz2 from a bivariate normal distribution:

P ðrz1; rz2Þ ¼
1

2ps2
exp

�½ðrz1 ��Þ2 þðrz2��Þ2�

2s2

 !

There is no correlation between rz1 and rz2. The average is � = 1. We choose s = 0.1 for

Figure 3A. We choose s = 0.2 for Figures 5A and 8.

. Procedure 2: We choose rz1 and rz2 from a bivariate normal distribution:

P ðrz1; rz2Þ ¼
1

2ps2
ffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p exp

�½ðrz1 ��Þ2 þðrz2 ��Þ2 � 2�ðrz1��Þðrz2 ��Þ�

2s2ð1� �2Þ

 !

We set � = 0.8. Now, there is positive correlation between rz1 and rz2. We choose m and s as for

Procedure 1.

Table 1 shows the outcome of this numerical experiment for the parameter values used in Fig-

ures 3A and 8. Table 2 shows the outcome of this numerical experiment for the parameter values

used in Figure 5A. For example, consider the first row of Table 1. We set p0 = 0.2 and p1/4 = 0.4

with a recessive sterility allele, as this corresponds with Figure 3A. Procedure 1 is used for selecting

values of r1/4 and r1/2. For a randomly chosen pair of efficiency values r1/4 and r1/2, the probabilities

that the sterility allele does not invade, invades only for n = 1, invades only for n = 2, and invades for

n = 1 and n = 2 are 0.7769, 0.0644, 0.1465, and 0.0122, respectively. For the second row of Table 1,

Procedure 2 is used for selecting values of r1/4 and r1/2. For a randomly chosen pair of efficiency val-

ues r1/4 and r1/2, the probabilities that the sterility allele does not invade, invades only for n = 1,

invades only for n = 2, and invades for n = 1 and n = 2 are 0.8237, 0.0177, 0.0997, and 0.0589,

respectively. The third and fourth rows of Table 1 and the rows of Table 2 are understood in the

same way.

For both Procedures, we find that the invasion of non-reproductive workers is more likely favored

for double mating, n = 2, than for single mating, n = 1.
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