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Abstract: Lichens are a symbiotic association between a fungus and a green alga or a cyanobacterium,
or both. They can grow in practically any terrestrial environment and play crucial roles in ecosystems,
such as assisting in soil formation and degrading soil organic matter. In their thalli, they can host
a wide diversity of non-photoautotrophic microorganisms, including bacteria, which play important
functions and are considered key components of the lichens. In this work, using the BioLog® EcoPlate
system, we studied the consumption kinetics of different carbon-sources by microbial communities
associated with the thallus and the substrate of Peltigera lichens growing in a Chilean temperate
rain forest dominated by Nothofagus pumilio. Based on the similarity of the consumption of 31
carbon-sources, three groups were formed. Among them, one group clustered the microbial metabolic
profiles of almost all the substrates from one of the sampling sites, which exhibited the highest levels
of consumption of the carbon-sources, and another group gathered the microbial metabolic profiles
from the lichen thalli with the most abundant mycobiont haplotypes. These results suggest that
the lichen thallus has a higher impact on the metabolism of its microbiome than on the microbial
community of its substrate, with the latter being more diverse in terms of the metabolized sources
and whose activity level is probably related to the availability of soil nutrients. However, although
significant differences were detected in the microbial consumption of several carbon-sources when
comparing the lichen thallus and the underlying substrate, D-mannitol, L-asparagine, and L-serine
were intensively metabolized by both communities, suggesting that they share some microbial groups.
Likewise, some communities showed high consumption of 2-hydroxybenzoic acid, D-galacturonic
acid, and itaconic acid; these could serve as suitable sources of microorganisms as bioresources of
novel bioactive compounds with biotechnological applications.

Keywords: BioLog® EcoPlate; community level physiological profiles; lichen microbiota; lichen
substrate; Nothofagus forest

1. Introduction

Lichens have been classically defined as mutualistic symbiotic associations where a fungus
(mycobiont) provides a suitable habitat for an extracellular photobiont, either a green alga (chlorobiont)
or a cyanobacterium (cyanobiont), or both. The photobiont fixes carbon through photosynthesis
and, in the case of a cyanobacterium, also contributes to the fixation of nitrogen [1]. Approximately
one-fifth of all known fungi have been described as obligate lichen-forming species [2], reflecting the
evolutionary success of this symbiotic association. Lichens exist as discrete thalli characterized by
a poikilohydric lifestyle, allowing them to grow in virtually any terrestrial environment, from the
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tropics to polar regions, covering up to 8% of the total land surface [1,3,4], with a few also occurring
in freshwater or even submerged in marine environments [5,6]. Lichens play important roles in soil
formation through weathering of rocks, leaching of minerals, stabilization of substrate particles formed
by erosion, and helping to retain soil water [7]. In addition, they participate in the retention and
distribution of nutrients (e.g., carbon, nitrogen) and trace elements [8,9].

One of the best-studied lichen genera is Peltigera. Lichens from this genus have been the
subject of many recent studies in aspects such as biogeography [10], ecology [11–13], and specificity
of symbionts [14,15], among others. Most Peltigera species are bipartite symbioses between the
lichen-forming fungus and a cyanobacterium that belongs to the genus Nostoc; however, a few species
are tripartite symbioses involving a green alga of the genus Coccomyxa as the main photobiont and
Nostoc as the secondary photobiont growing in cephalodia [16,17]. These lichens commonly occur
in humid, mainly shaded habitats, growing on soil, on peat, or among mosses [16,18]. Although
these foliose lichens are readily recognized in the field through the identification of distinctive
morphological characteristics, the genus is a taxonomically complex group and many challenges remain
at the species level [10,17,19,20]. Currently, eight monophyletic sections within the genus Peltigera
are recognized: Chloropeltigera, Hydrothyriae, Horizontales, Peltidea, Peltigera, Phlebia, Polydactylon,
and Retifoveatae [17]. Recently, comprehensive phylogenetic revisions of sections Polydactylon [14],
Peltigera and Retifoveatae [10] have been performed using sequence data from hundreds of specimens
around the world. These analyses considerably increased the number of known species in these
three groups, with most newly-delimited species restricted to a single biogeographical region and
a few species with a near-cosmopolitan distribution. In Chile, only bipartite Peltigera cyanolichens
of sections Horizontales, Peltigera, and Polydactylon have been reported, based on morphological
characterizations [21,22] and phylogenetic analyses [10,14,23,24].

Lichens present a variety of growth forms, with external and internal surfaces where secondary
metabolites are released, thus providing a great diversity of micro-niches for other eukaryotic and
prokaryotic microorganisms, such as fungi and non-photoautotrophic bacteria [25–27]. Bacterial
communities colonize lichens in a biofilm-like manner and are host specific, suggesting that
lichen-associated bacteria are an integral component of lichen thalli. In fact, it has been suggested
that the classical view of a dual symbiosis should alter, and thus consider the lichen symbiosis as
multispecies interactions [25,28]. Metagenomic and proteomic studies have been used to propose the
possible functions of the lichen microbiome; these include resistance against pathogens, stimulation
of growth, degradation of older parts of the lichen thalli, and acquisition of nutrients (e.g., nitrogen,
phosphorus, sulfur, and metals), among others [29–32].

One approach to characterize the metabolic activity of lichen-associated bacteria is to analyze
the pattern of carbon-source utilization using the BIOLOG EcoPlate™ system. In this system, direct
inoculation of community samples into wells with a variety of known carbon compounds allows
the measurement of potential community carbon-source utilization, since the metabolism of the
carbon-source is coupled to the capture of electrons by colorless tetrazolium salts, forming reduced
purple formazans which can be readily monitored [33]. New technologies for the analysis of the
genetic diversity of microbial communities are constantly emerging; however, metabolic profiles are
extensively used to assess the impact of biotic or abiotic factors on the functional diversity of microbial
communities [34,35], since differences in genetic diversity are not necessarily reflected in changes in
metabolic profiles [36,37] probably because only a few taxa are essential for ecosystem functioning,
many are functionally redundant and most organisms are metabolically inactive [38].

Several factors have been identified as descriptors of the lichen bacterial microbiome structure,
including both intrinsic and extrinsic factors [28,39–41]. In a previous study, we discovered that
the metabolic structure of the bacterial microbiota in Peltigera thallus was influenced by mycobiont
identity and by the production of phenoloxidase activity, while the metabolic structure of the bacterial
microbiota present in the substrates where lichens grow was shaped by cyanobiont identity and the
sampling site [42]. Here, we hypothesize that the lichen influences the carbon-source consumption
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pattern of the community associated with its thallus, but has less impact on the microbial community of
its underlying substrate. For this, we analyzed the pattern of consumption of different carbon-sources
as a measure of metabolic activity of microbial communities associated with both thallus and substrate
of Peltigera lichens, in order to identify the mainly used carbon-sources which contribute to define the
metabolic ability of each community and the differences between them.

2. Results and Discussion

Previously, 50 lichen samples from two forested sites in the Coyhaique National Reserve in
southern Chile, were identified by phylogenetically related sequences of cyanobacterial small sub-unit
(SSU) rDNA and fungal large sub-unit (LSU) rDNA with sequences previously reported for Nostoc
and Peltigera. This way, we defined five cyanobiont (C01, C03, C10, C12, and C14) and six mycobiont
(M1, M2, M4, M5, M6, and M8) haplotypes [42]. In our previous phylogenetic analysis [24], most of
our mycobionts formed defined and well-supported monophyletic groups with some of the Peltigera
species downloaded from the database: M1 was closely-related to P. ponojensis, M2 to P. extenuata, M4
to P. rufescens, and M6 to P. frigida. However, some of our sequences were closely related to more than
one species, forming defined and well-supported monophyletic lineages. Thus, we used the name of
the most emblematic species in the group to name the lineage: M5 was part of the P. canina lineage,
and M8 of the P. hymenina lineage. According to updated analyses of the species of these lineages, M5
and M8 most-likely correspond to P. ‘fuscopraetextata’ and P. truculenta, respectively [10,14].

Of these, three mycobiont (M5, M6, and M8) and one cyanobiont (C01) haplotypes were present
in both sites. Regarding the symbiotic combinations (i.e., the analysis of which mycobiont is associated
with which cyanobiont), four pairs were collected from site S1 (M5C01, M5C14, M6C01, and M8C10)
and seven pairs were obtained from site S2 (M1C03, M2C03, M4C03, M5C01, M5C03, M6C01,
and M8C12) (Figure 1). Two of them (M5C01 and M6C01) were the most abundant ones in both
sites (21 and 18 out of 50, respectively). P. ‘fuscopraetextata’ (related to M5), a species informally
introduced by Miadlikowska et al. [20] and further supported by other studies [10,43], has been
reported in Canada, USA, Argentina, and Chile [10]. On the other hand, P. frigida (related to M6) is
restricted to southern Chile and Argentina [10,21,22,24]. Therefore, it is expected that both species
are highly abundant in the extreme south of South America (Holantarctic Kingdom according to
Martínez et al. [21] or Neantarctic Region according to Magain et al. [10]).

Although our study is confined to a particular geographic area, it is possible to observe
some specificity patterns in the mycobiont–cyanobiont associations. In general, mycobionts are
more specialized than cyanobionts, whereas cyanobionts associate frequently with several Peltigera
species [10,12,14,15]. This is the case of C03, which is associated with four mycobionts in a reduced
area, although the abundance of its pairs is low, so probably the sampled forest is not the
optimum environment for this cyanobacterium. Conversely, those lichens paired to the successful
cyanobiont C01, such as M5 (most probably P. ‘fuscopraetextata’) and M6 (P. frigida), were the most
abundant. P. ‘fuscopraetextata’ has asexual propagules (phyllidia) allowing the vertical transmission
of the photobiont and thus high levels of specificity, which is in accordance with the results of
Magain et al. [10]. In addition, these authors reported that P. frigida showed intermediate levels of
specialization; although we found that this mycobiont just paired with the cyanobiont C01, when we
extend the analysis to other sites, we actually observe that its specificity is not as high (e.g., in the
Magallanes region, this mycobiont is paired with cyanobionts C02 and C14 [24]). On the other hand, M8
(most probably P. truculenta), from the Polydactylon section, was associated with specific cyanobionts
(C10 and C12, plus C11 if the broader sampling sites in Zúñiga et al. [24] are considered), which were
not paired with any other mycobiont [24]. This was also observed across the class Lecanoromycetes,
where specific monophyletic groups of lichens are specialized on specific groups of photobionts [44,45].
More specifically, Peltigera species from section Polydactylon also have a high specialization [12,15]
at narrow phylogenetic or geographic scales. Nevertheless, it has been shown previously [14] that
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most South American Peltigera species from this section are more generalists than other species, which
would be advantageous for colonizing new geographical areas or habitats.Molecules 2018, 23, x FOR PEER REVIEW  4 of 19 
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Figure 1. Circos graphic representations of symbiotic combinations of mycobiont (M) and cyanobiont
(C) haplotypes in Site 1 (A) and Site 2 (B). The width of the ribbons represents the relative abundance
of the symbiotic combinations that are connected. For reference, C14 and C12 have an abundance of
one in Site 1 and Site 2, respectively.

To carry out the metabolic profiling, composite samples from the lichen thallus and the associated
substrate were prepared, grouping them by site (S1 and S2), mycobiont type (M), and cyanobiont type
(C). This arrangement produced 11 samples from lichen thalli and 11 samples from the underlying
substrates [42]. The kinetics of the consumption of carbon-sources of all samples were adjusted to the
modified Gompertz equation, determining that at 48 h all the communities were in the exponential
phase of color development (Appendix A). Thus, the communities analyzed in this study grow faster
than those evaluated in other studies, where the exponential phase was reached only at 72 h [34,46].
This difference should not be due to the temperature of the test since these were similar to those found
in natural conditions (28 ◦C and 25 ◦C). Therefore, it is likely that this difference in the growth rate is
due to natural differences at the sampling sites, since it has been shown that environmental conditions
can shape the metabolic structures of lichen bacterial microbiomes and bacterial communities of
soils [34,40,46,47].

Subsequently, the consumption data of the 31 carbon-sources in EcoPlatesTM by the lichen and
substrate microbiotas registered during the exponential phase (48–72 h) were used to carry out
a clustering analysis to group bacterial communities with similar carbon-source utilization patterns
(Figure 2). The results revealed that the communities were distributed in three groups (Groups 1–3).

Group 1 includes the microbial metabolic profiles of almost all the substrates from site S2 (except
S2M8C12-S, which was clustered in Group 3). The consumption of carbon-sources indicates that
significantly higher metabolic activity was detected in the substrate microbiotas, which utilized
mainly the following sources: D-mannitol and N-acetyl-D-glucosamine (carbohydrates); D-galactonic
acid γ-lactone, D-galacturonic acid, and itaconic acid (carboxylic acids); L-arginine, L-asparagine,
and L-serine (amino acids); and phenylethylamine.

Group 2 gathered the microbial metabolic profiles associated with the lichen thallus with
mycobiont haplotypes M5 and M6, the most abundant ones in both sites. The patterns grouped
in this cluster were characterized by a generally lower consumption of some carbon-sources when
compared to those from the substrates clustered in Group 1, but they used mainly D-mannitol and the
amino acids L-asparagine and L-serine at a similar level.
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Group 3 was the most heterogeneous one and included the metabolic profiles of five
microbial communities obtained from lichen thalli (S2M4C03-L, S2M1C03-L, S1M8C10-L, S2M2C03-L,
and S2M8C12-L) and five obtained from the substrates (S1M8C10-S, S1M5C01-S, S1M6C01-S,
S2M8C12-S, and S1M5C14-S). This group exhibited the lowest levels of carbon-source consumption.

Molecules 2018, 23, x FOR PEER REVIEW  5 of 19 

 

 
Figure 2. Ward’s clustering based on the metabolic profiles of the lichen and substrate microbiotas. 
Normalized carbon consumption data at the exponential phase and Euclidean distance were used. 
Consumption data by each sample is shown with a circle plot for each carbon-source, and the 
diameter of the circle is proportional to the magnitude of consumption. The nomenclature for each 
composite sample indicates the site (S1 or S2), then the mycobiont (M1, M2, M4, M5, M6, or M8), then 
the cyanobiont (C01, C03, C10, C12, or C14) and whether it comes from lichen thallus (-L) or from the 
substrate (-S). Substrate samples names are emphasized in bold. M5C01 samples are indicated with 
triangles and M6C01 with stars. Filled triangles and stars indicate M5C01 and M6C01 samples from 
Site 1, whilst empty triangles and stars indicate M5C01 and M6C01 samples from Site 2. 

The carbon-source consumption pattern by the lichen substrate microbial communities from site 
S2 (Group 1) appears more functionally diverse and metabolically active compared to that of the 
community of the lichen thalli and substrates from site S1. This is in accordance with the features of 
site S2, which is closer than site S1 to wetlands, meaning that the communities obtained from 
substrates of site S2 were presumably exposed to higher levels of organic matter [42,48]. 

On the other hand, two of the lichen samples whose mycobiont haplotypes are present in both 
sites (M5 and M6) grouped in the same cluster (Group 2), which suggests that of the mycobiont and 
the site, the former has the greater influence on the microbial community of the thallus. Although 
soil factors certainly affect soil microbial communities [49], these factors could become less important 
in the case of soils influenced by lichens [50]. However, lichen samples with the mycobiont haplotype 
M8 (also present in both sites) did not group within this cluster, but clustered together with their 
substrates in Group 3. This mycobiont haplotype is the only one belonging to the section Polydactylon, 
whilst the other five are part of the section Peltigera [24]. Therefore, this metabolic differentiation 
could be a result of the distinct phylogenetic histories of each mycobiont section [17]. However, this 
metabolic differentiation could also be a consequence of the incidence of cyanobiont haplotypes C10 
and C12, which show phylogenetic specificity with the mycobiont haplotype M8 [11]. The influence 
of photobionts on bacterial communities closely related to lichen thalli has been suggested before, as 

Figure 2. Ward’s clustering based on the metabolic profiles of the lichen and substrate microbiotas.
Normalized carbon consumption data at the exponential phase and Euclidean distance were used.
Consumption data by each sample is shown with a circle plot for each carbon-source, and the diameter
of the circle is proportional to the magnitude of consumption. The nomenclature for each composite
sample indicates the site (S1 or S2), then the mycobiont (M1, M2, M4, M5, M6, or M8), then the
cyanobiont (C01, C03, C10, C12, or C14) and whether it comes from lichen thallus (-L) or from the
substrate (-S). Substrate samples names are emphasized in bold. M5C01 samples are indicated with
triangles and M6C01 with stars. Filled triangles and stars indicate M5C01 and M6C01 samples from
Site 1, whilst empty triangles and stars indicate M5C01 and M6C01 samples from Site 2.

The carbon-source consumption pattern by the lichen substrate microbial communities from
site S2 (Group 1) appears more functionally diverse and metabolically active compared to that of the
community of the lichen thalli and substrates from site S1. This is in accordance with the features of site
S2, which is closer than site S1 to wetlands, meaning that the communities obtained from substrates of
site S2 were presumably exposed to higher levels of organic matter [42,48].

On the other hand, two of the lichen samples whose mycobiont haplotypes are present in both
sites (M5 and M6) grouped in the same cluster (Group 2), which suggests that of the mycobiont and
the site, the former has the greater influence on the microbial community of the thallus. Although soil
factors certainly affect soil microbial communities [49], these factors could become less important in
the case of soils influenced by lichens [50]. However, lichen samples with the mycobiont haplotype
M8 (also present in both sites) did not group within this cluster, but clustered together with their
substrates in Group 3. This mycobiont haplotype is the only one belonging to the section Polydactylon,
whilst the other five are part of the section Peltigera [24]. Therefore, this metabolic differentiation
could be a result of the distinct phylogenetic histories of each mycobiont section [17]. However, this
metabolic differentiation could also be a consequence of the incidence of cyanobiont haplotypes C10
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and C12, which show phylogenetic specificity with the mycobiont haplotype M8 [11]. The influence of
photobionts on bacterial communities closely related to lichen thalli has been suggested before, as the
photosynthetic and nitrogen-fixing capabilities of the photobionts could influence the availability of
soil nutrients [40,42,50].

The carbon-sources that were intensively metabolized by both types of communities (i.e., from
lichens and substrates) were D-mannitol, L-asparagine, and L-serine. Mannitol is the most abundant
polyol in nature; it is produced by bacteria, yeasts, fungi, algae, lichens, and many plants, and is used
as a carbon and energy source [51]. In addition, this carbohydrate is the most widely distributed polyol
in fungi, being found in spores, fruiting bodies, and mycelia [52], which suggests that it could be very
abundant in the soil of temperate rainy forests and therefore an important carbon-source for microbial
communities from lichens and substrates. On the other hand, cyanobacteria and certain species of
bacteria associated with lichens are able to liberate free amino acids [53]. Amino acids would become
easily available to microbial communities during their growth and thus it is expected that a high
utilization rate of amino acids is observed in these communities. Furthermore, considering that the
metabolic abilities of microbial communities likely reflect the abundance and bioavailability of carbon
compounds in the soil organic matter [54,55], the high use of amino acids suggests that they constitute
an important energy source for soil microbial communities. Serine and asparagine are among the most
abundant amino acids in the soil (5% of the total free amino acid content) [56]. On degradation to
pyruvate and oxaloacetate, respectively, they become central in bacterial primary metabolism, and it is
thus consistent that these carbon-sources were the most-consumed by both microbiotas.

Among the least consumed carbon-sources were 2-hydroxybenzoic acid, L-phenylalanine,
and α-cyclodextrin. Aromatic compounds are stable in soils and are harder to degrade than many
other organic compounds, since microorganisms require elaborate degradation strategies to overcome
the high chemical stability of the aromatic ring [57]. However, it is interesting to highlight the high
consumption of 2-hydroxybenzoic acid shown by the sample S2M5C03-S, since this acid is introduced
into the environment because it is widely used as an intermediate in pharmaceuticals [58,59]. Since this
aromatic organic compound is very toxic, further studies of its biodegradation by the soil microbial
community underlying that lichen are needed to search for bacteria with potential applications in the
bioremediation of environments contaminated with this pollutant.

On the other hand, some nutrients were more extensively utilized by the communities from the
substrates than from the lichens, among them N-acetylglucosamine, D-galacturonic acid, itaconic acid,
and phenylethylamine. These preferences of the communities of these Group 1 substrates could mean
that these nutrients are available in the studied forest soils, in such a way that these microbial guilds
have been enriched. N-acetylglucosamine is a building block of the bacterial peptidoglycan cell wall
and is a monomeric unit in many naturally occurring polymers, such as chitin in the cell walls of
many fungi and the exoskeleton or cuticle of arthropods; it is thus very abundant in most ecosystems.
In addition, it plays an important role in supplying carbon and energy to bacteria by entering the
glycolytic pathway after it is converted into fructose-6-phosphate [60,61]. D-galacturonic acid is one of
the major polysaccharide constituents of plant cell walls, so it represents an important carbon-source
for microorganisms living on decaying plant material, as found in the soil of temperate rain forests of
southern Chile. In bacteria, this carboxylic acid is degraded in a five step pathway resulting in the
formation of pyruvate and glyceraldehyde-3-phosphate [62]. Itaconic acid, an unsaturated dicarboxylic
acid, and some alkylated derivatives are synthesized by some fungi and secreted in significant amounts
to the environment [63]. Once secreted, this nutrient becomes available as a carbon and energy
source by substrate-associated microbial communities. Finally, phenylethylamine is a microbial
decarboxylation product of phenylalanine and can be found in fungi, bacteria [64], and many algae [65].
The physiological role of amine synthesis seems to be related to defence mechanisms used by bacteria
to withstand acidic environments [66].

Two of the four abovementioned metabolites from Group 1 warrant particular attention, since
it would be important to isolate microorganisms capable of metabolizing them in future work. First,
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we highlight D-galacturonic acid since it is the most abundant component of pectin, an abundant
polysaccharide in plant cell walls. Pectin-rich residues, which are side products in sugar beet
processing and in fruit juice production, are currently mainly used as animal feed, and it would be
desirable to find new ways to convert this raw material into products of higher value [62]. Successful
attempts have been described to ferment pectin-rich biomass to ethanol using genetically modified
bacteria [67,68]. Therefore, exploring the microbial communities of specific lichen substrates could
help find microorganisms that participate in such fermentations. Second, we draw attention to itaconic
acid because it is of growing interest for the chemical industry as a renewable organic acid with
potential to replace crude oil-based products (e.g., acrylic acid) [69]. While the anabolic pathway of
this carboxylic acid is well understood, the catabolic pathway requires further research in order to
engineer a production host with a disabled degradation pathway and thus increase its biodegradation
potential [69].

Subsequently, we analysed samples M5C01 and M6C01 in more detail, since they were the most
abundant symbiotic combinations at the two study sites, representing 95% and 68% of the samples
collected in sites S1 and S2, respectively. Figure 3 shows the carbon-source consumption patterns of
the microbial communities associated with M5C01 in site S1 (Figure 3A) and in site S2 (Figure 3B),
which represent 43% and 44% of the samples collected at these sites, respectively. On the other hand,
Figure 4 shows the carbon-source consumption patterns of the microbial communities associated with
M6C01 in site S1 (Figure 4A) and in site S2 (Figure 4B), which represent 52% and 24% of the samples
collected at these sites, respectively.
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Figure 4. Metabolic profiles of M6C01. Consumption of the 31 carbon-sources by the lichen (-L) and
substrate (-S) microbiotas associated with the symbiotic pair composed of the mycobiont haplotype M6
and the cyanobiont C01 haplotype from both sampling sites: S1 (A) and S2 (B).

The consumption profiles show that both substrate communities exhibited higher activity at site
S2 (Figures 3B and 4B) compared with those at site S1 (Figures 3A and 4A), which is consistent with the
results previously reported by Leiva et al. [42], and suggests that edaphic factors have an effect on the
level of metabolic activity of the soil microbial communities. On the other hand, when the microbial
communities associated with the lichens are compared, the profiles are very similar depending on the
mycobiont haplotype present in the thalli (M5, Figure 3; and M6, Figure 4) but independent of the
site where the lichens grow. These results provide additional evidence that the lichen influences the
metabolic pattern of the microbial community associated with its thallus, but has less impact on the
microbial community of the underlying substrate.

Finally, when we statistically compared the consumption of each carbon-source by the microbiotas
of these two lichen pairs (M5C01 and M6C01), we verified that 12 out of the 31 carbon-sources
were consumed equally (D-Cellobiose, i-erythritol, D-mannitol, γ-hydroxybutyric acid, α-ketobutyric
acid, D-malic acid, 2-hydroxybenzoic acid, L-phenylalanine, L-serine, L-threonine, Tween 80,
and α-cyclodextrin) (Table 1). Few studies distinguish microbial communities associated with the
thallus versus those associated with the substrates where lichens grow [41,42,70], but they all agree
that bacteria associated with the lichen thalli could be recruited, at least in part, from the substrates
where lichens grow.
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Table 1. Statistical comparison of carbon consumption by lichen (-L) and substrate (-S) microbiotas of M5C01 and M6C01 from both sampling sites (S1 and S2).
Average absorbance and standard deviation are shown. In rows, the same capital letter indicates no significant difference according to Games–Howell post hoc test
(p < 0.05).

S1M5C01-L S1M5C01-S S1M6C01-L S1M6C01-S S2M5C01-L S2M5C01-S S2M6C01-L S2M6C01-S

Carbohydrates
D-Cellobiose 0.28 (0.43) A 0.00 (0.00) A 0.07 (0.08) A 0.02 (0.05) A 0.02 (0.04) A 0.24 (0.18) A 0.11 (0.09) A 0.10 (0.11) A
α-D-lactose 0.02 (0.06) A 0.00 (0.00) A 0.00 (0.00) A 0.00 (0.00) A 0.00 (0.00) A 1.40 (0.65) B 0.00 (0.00) A 0.06 (0.09) A

β-methyl-D-glucoside 0.00 (0.00) A 0.53 (0.87) AB 0.00 (0.00) A 0.00 (0.00) A 0.00 (0.00) A 1.54 (0.22) B 0.08 (0.09) A 1.07 (0.61) AB
D-xylose 0.08 (0.09) AB 0.45 (0.79) AB 0.17 (0.09) AB 0.00 (0.00) A 0.49 (0.35) AB 1.52 (0.49) C 0.35 (0.23) AB 0.87 (0.41) BC

i-erythritol 0.02 (0.05) A 0.12 (0.19) A 0.02 (0.06) A 0.05 (0.07) A 0.47 (0.43) A 0.18 (0.22) A 0.08 (0.06) A 0.58 (0.36) A
D-mannitol 1.62 (0.41) A 1.00 (0.73) A 1.63 (0.62) A 0.77 (0.75) A 1.52 (0.53) A 1.80 (0.22) A 1.03 (0.73) A 2.00 (0.00) A

N-acetyl-D-glucosamine 0.60 (0.40) AB 0.09 (0.21) A 0.53 (0.11) AB 0.30 (0.16) AB 0.78 (0.42) AB 1.96 (0.06) C 0.38 (0.11) AB 1.30 (0.61) BC

Carboxylic acids
D-glucosaminic acid 0.71 (0.53) AB 0.21 (0.39) A 0.46 (0.45) AB 0.84 (0.72) AB 1.38 (0.49) B 0.99 (0.35) AB 0.72 (0.53) AB 1.17 (0.47) BC

D-galactonic acid γ-lactone 0.88 (0.04) B 0.73 (0.55) AB 0.63 (0.37) AB 0.12 (0.17) A 1.06 (0.20) BC 1.10 (0.23) BC 0.59 (0.24) AB 1.53 (0.28) C
D-galacturonic acid 1.80 (0.05) C 0.49 (0.52) A 0.61 (0.46) A 0.63 (0.79) AB 1.46 (0.59) AB 1.35 (0.14) AB 1.54 (0.51) AB 1.60 (0.09) B

γ-hydroxybutyric acid 0.00 (0.00) A 0.12 (0.18) A 0.04 (0.07) A 0.06 (0.09) A 0.12 (0.10) A 0.10 (0.12) A 0.04 (0.07) A 0.07 (0.07) A
Itaconic acid 0.00 (0.00) A 0.10 (0.18) A 0.10 (0.24) A 0.32 (0.35) A 1.05 (0.57) AB 1.43 (0.43) B 0.23 (0.44) A 1.59 (0.36) B

α-ketobutyric acid 0.00 (0.00) A 0.00 (0.00) A 0.05 (0.13) A 0.00 (0.00) A 0.00 (0.00) A 0.00 (0.00) A 0.00 (0.00) A 0.00 (0.00) A
D-malic acid 0.00 (0.00) A 0.03 (0.08) A 0.11 (0.09) A 0.00 (0.00) A 0.21 (0.23) A 0.43 (0.43) A 0.06 (0.10) A 0.39 (0.21) A

Phosphorylated chemicals
Glucose-1-phosphate 0.05 (0.08) A 0.00 (0.00) A 0.03 (0.07) A 0.00 (0.00) A 0.20 (0.12) AB 0.81 (0.18) C 0.10 (0.11) AB 0.34 (0.17) B

D.L-α-glycerol phosphate 0.37 (0.06) AB 0.15 (0.20) A 0.24 (0.06) AB 0.15 (0.14) A 0.41 (0.08) B 0.41 (0.15) B 0.29 (0.12) AB 0.30 (0.05) AB

Aromatic compounds
2-hydroxybenzoic acid 0.00 (0.00) A 0.00 (0.00) A 0.00 (0.00) A 0.00 (0.00) A 0.00 (0.00) A 0.00 (0.00) A 0.00 (0.00) A 0.00 (0.00) A
4-hydroxybenzoic acid 0.86 (0.77) BC 0.00 (0.00) A 0.54 (0.60) AB 0.00 (0.00) A 0.00 (0.00) A 1.43 (0.31) C 0.38 (0.42) AB 1.12 (0.39) BC

Esters

Pyruvic acid methyl ester 0.79 (0.07) AB 0.62 (0.61) AB 0.47 (0.20) A 0.40 (0.47) A 0.94 (0.37) BC 1.04 (0.20) BC 0.49 (0.32) AB 1.35 (0.21) C

Amino acids
L-arginine 0.82 (0.38) B 0.38 (0.48) AB 1.03 (0.79) B 0.09 (0.17) A 1.34 (0.73) B 1.16 (0.57) B 0.49 (0.38) AB 1.44 (0.62) B

L-asparagine 1.74 (0.29) B 1.03 (0.81) AB 1.40 (0.63) AB 0.51 (0.73) A 1.39 (0.68) AB 2.00 (0.00) B 1.29 (0.63) AB 1.94 (0.07) B
L-phenylalanine 0.16 (0.09) A 0.03 (0.06) A 0.07 (0.08) A 0.00 (0.00) A 0.17 (0.16) A 0.15 (0.13) A 0.11 (0.09) A 0.10 (0.08) A

L-serine 1.61 (0.13) A 1.36 (0.63) A 1.98 (0.04) A 0.95 (0.90) A 1.53 (0.47) A 1.61 (0.27) A 1.42 (0.58) A 2.00 (0.00) A
L-threonine 0.22 (0.07) A 0.11 (0.13) A 0.02 (0.04) A 0.03 (0.08) A 0.32 (0.26) A 0.16 (0.14) A 0.11 (0.14) A 0.12 (0.09) A

Glycyl-L-Glutamic acid 0.27 (0.08) A 0.22 (0.36) A 0.67 (0.27) AB 0.24 (0.41) A 0.88 (0.47) B 0.26 (0.22) A 0.25 (0.16) A 0.45 (0.16) AB

Amines
Phenylethylamine 0.00 (0.00) A 0.00 (0.00) A 0.00 (0.00) A 0.00 (0.00) A 0.65 (0.23) B 1.58 (0.27) C 0.00 (0.00) A 1.79 (0.26) C

Putrescine 0.70 (0.24) A 0.19 (0.30) A 1.01 (0.22) B 0.38 (0.47) A 0.53 (0.46) A 0.54 (0.39) A 0.73 (0.40) AB 1.30 (0.09) B

Polymers
Tween 40 1.14 (0.45) B 1.01 (0.48) B 0.96 (0.63) B 0.35 (0.38) A 0.94 (0.42) B 1.48 (0.16) B 0.58 (0.32) A 1.17 (0.22) B
Tween 80 1.00 (0.35) A 0.59 (0.62) A 1.14 (0.62) A 0.39 (0.43) A 0.88 (0.31) A 0.72 (0.22) A 0.88 (0.52) A 1.08 (0.33) A

α-cyclodextrin 0.02 (0.04) A 0.00 (0.00) A 0.06 (0.07) A 0.02 (0.05) A 0.04 (0.10) A 0.18 (0.20) A 0.05 (0.08) A 0.02 (0.04) A
Glycogen 0.06 (0.09) A 0.41 (0.43) AB 0.12 (0.07) A 0.04 (0.06) A 0.05 (0.13) A 0.84 (0.23) B 0.12 (0.10) A 1.00 (0.36) B
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In conclusion, the lichen thallus provides an adequate microhabitat that selects certain bacterial
lineages [26], probably through the production of metabolites [42,71,72] which could select specific
lineages in order to carry out defined functions as part of a multispecies symbiosis [25]. Several
studies have characterized the biologically active metabolites produced by lichens (e.g., antibiotic,
antiviral, anti-inflammatory, analgesic, cytotoxic, etc.) [71,73–76]; however, fewer studies isolated
microorganisms associated with lichens as bioresources of novel bioactive compounds with
biotechnological applications [77–81]. Here we propose that metabolic profiling could be used
as a preliminary approach to select suitable samples to isolate microorganisms with specific
metabolic features.

3. Materials and Methods

3.1. Study Sites and Sampling

Fifty Peltigera-thallus fragments (approximately 15 cm2 each) and their associated substrate
(i.e., soil) (approximately 15 cm3 each) were collected from two plots 300 m away from each other (sites
S1 and S2; approx. 2 Ha each) in a fragmented second-growth forest of Nothofagus pumilio [48] in the
Coyhaique National Reserve (Aysén Region, Chile; 45◦31′42.96′ ′ S, 72◦1′51.95′ ′ W). These two sites are
close to pine tree plantations, but site S2 is closer than site S1 to open spaces (i.e., rocky hillsides and
a mallín, a kind of wetland) [42]. All samples were collected at least 1 m from the next closest thallus in
order to minimize resampling of the same genetic individual. The samples were placed in paper bags
and transported in cooled containers. In the laboratory, the lichen samples were stored in paper bags
at room temperature, while the substrate samples (removed with a sterile brush and spatula) were
sieved and stored in plastic tubes at 4 ◦C.

Lichen samples included in this study were previously identified by Zúñiga et al. [24].
The mycobiont and cyanobiont haplotypes were defined by analyzing the fungal LSU rDNA and
cyanobacterial SSU rDNA regions, amplified with primers LIC24R and LR7 [17], and PCR1 and
PCR18 [82], respectively. Phylogenetic analyses were performed with two sets of sequences; one set
consisted of one representative of each mycobiont haplotype and 67 Peltigera sequences downloaded
from GenBank, and the other set of sequences consisted of one representative of each cyanobacterial
haplotype and 49 Nostoc sequences downloaded from GenBank. In addition, updated blast search
analyses were performed in order to define the identity of mycobionts related to more than one
reference species. Composite samples from both the lichen thallus and the associated substrate were
prepared grouping the same mass of thallus or substrate of individual samples according to site (S1 and
S2), mycobiont type (M) and cyanobiont type (C). Thus, the nomenclature for each composite sample
indicates the site (S1 or S2), then the mycobiont (M1, M2, M4, M5, M6, or M8), then the cyanobiont
(C01, C03, C10, C12, or C14) and whether it comes from the lichen thallus (-L) or from the substrate
(-S).

3.2. Carbon-Source Utilization Pattern

The carbon-source utilization patterns of the microbial communities associated with lichen thalli
and substrates were determined using EcoPlates (BioLog®, Hayward, CA, USA), containing 31 different
carbon-sources (including 7 carbohydrates, 7 carboxylic acids, 2 phosphorylated chemicals, 2 aromatic
compounds, 1 ester, 6 amino acids, 2 amines, and 4 polymers) plus one blank control, in triplicate.

Microbial suspensions were obtained from 100 mg of thalli per composite sample, which were
homogenized in 15 mL of PBS (137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, 2 mM KH2PO4) and
shaken overnight at 150 rpm and 25 ◦C. In the same way, microbial suspensions were obtained from 2 g
of substrates (i.e., soil) per composite sample, which were shaken at 150 rpm and 25 ◦C for 1 h in 20 mL
of PBS. The plates were inoculated with 100 µL of the previously filtered microbial suspensions from
thalli or substrates, and subsequently incubated at 25 ◦C for 1 week in a humid chamber. Carbon-source
utilization was monitored every 24 h for 7 days at 590 nm in an Epoch microplate reader (Biotek,
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Winooski, VT, USA). Precision and uncertainty of the measurements of absorbance were calculated
using a randomly chosen sample from each of both batches of samples (i.e., thalli and substrates) at
each timepoint. Reproducibility (precision) of the analytical method was determined by estimating
the relative standard deviation (RSD) of triplicate readings using the formula RSD = (s/x) ∗ 100,
where s is the standard deviation of the data set, and x is the average of the data set. In addition,
the experimental uncertainty was estimated using the confidence interval (CI; 95% level of confidence)
of triplicate readings using the formula CI = x ±

(
ts/√n

)
, where x is the average of the data set, t

is the Student’s t for the desired level of confidence, s is the standard deviation of the data set, and n is
the number of measurements (Table A1).

Data were processed by subtracting the absorbance value at time zero, to minimize the interference
of the sample colour [83], and the absorbance value from the control (water). In the data analysis,
absorbance values of 0.1 or higher were considered positive and absorbance values higher than 2 were
normalized to 2, according to the detection limit of the reader. To determine the incubation time at
which all the communities were in the exponential phase of each curve and when the maximum
absorbance was reached, data were adjusted using the modified Gompertz equation [84] using
OriginPro software v8.07 (OriginLab Corporation, Northampton, MA, USA) (Figure A1). For the
following analyses, the average of the data recorded at 48 h and 72 h for each carbon-source was used,
since both plate reading times correspond to the exponential phase of the carbon-consumption kinetics.

3.3. Data Analyses

Circos plots representing the symbiotic combinations of mycobiont and cyanobiont haplotypes
were obtained in Circos Table Viewer v0.63-9 [85].

Kinetic parameters (λ, µm, and A) obtained from the modified Gompertz fitting were compared
between each lichen and the corresponding substrate with one-way ANOVA comparisons with SPSS
Statistics v17.0 (SPSS Inc, Chicago, IL, USA) since data showed a normal distribution according to the
Jarque–Bera test and homoscedasticity of variances according to the Levene´s test.

Clustering of average carbon consumption data was performed in Past software v3.20 (University
of Oslo, Oslo, Norway) [86], under Ward’s method with Euclidean distance. The resultant tree was
exported, formatted in newick format and then imported in the iTOL v4.2.3 platform [87], where
consumption data was added as a shape plot formatted dataset.

Since the data have a normal distribution according to the Jarque–Bera test (except those of
α-D-Lactose consumption that had to be transformed by cubic root to have a normal distribution)
but the assumption of homoscedasticity of variances was not fulfilled according to the Levene’s
test, Welch’s t-test and Games–Howell post hoc test were used to evaluate the differences in the
consumption of each carbon-source between the M5C01 and M6C01 samples, considering both lichen
and substrate samples, using SPSS Statistics v17.0 (SPSS Inc, Chicago, IL, USA).
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Appendix

Table A1. Experimental uncertainty and precision of the measurements of absorbance used for
analyzing the carbon-source utilization patterns of the microbial communities associated with lichen
thalli and substrates. Test samples were randomly chosen from each sample batch at each timepoint.

Thalli Substrates

48 h (S2M4C03-L) 1 72 h (S1M5C14-L) 48 h (S2M5C03-S) 72 h (S2M1C03-S)

Well Carbon-Source RSD 2 Mean CI 3 RSD Mean CI RSD Mean CI RSD Mean CI

1 Water (blank) 0.76 0.577 0.011 6.31 0.408 0.064 13.79 0.505 0.173 8.59 0.198 0.042
2 Pyruvic acid methyl ester 2.72 1.054 0.071 2.31 1.147 0.066 1.20 1.523 0.045 3.26 1.402 0.114
3 Tween 40 1.85 1.261 0.058 23.41 1.520 0.884 5.58 2.011 0.279 5.24 1.604 0.209
4 Tween 80 4.73 0.963 0.113 11.93 1.983 0.588 2.53 1.639 0.103 5.27 1.161 0.152
5 α-cyclodextrin 0.49 0.627 0.008 6.53 0.399 0.065 3.81 0.512 0.048 7.27 0.436 0.079
6 Glycogen 2.85 0.614 0.044 2.30 0.437 0.025 11.54 1.294 0.371 3.42 1.039 0.088
7 D-cellobiose 0.83 0.625 0.013 7.88 0.414 0.081 8.08 0.962 0.193 4.69 0.530 0.062
8 α-D-lactose 2.20 0.618 0.034 3.08 0.406 0.031 2.33 1.597 0.093 6.08 1.770 0.267
9 β-methyl-D-glucoside 2.16 0.604 0.032 7.04 0.408 0.071 3.25 2.024 0.164 1.33 1.977 0.065

10 D-xylose 1.85 1.572 0.072 11.23 0.706 0.197 1.47 1.677 0.061 5.90 1.414 0.207
11 i-erythritol 3.58 0.622 0.055 9.91 0.460 0.113 6.27 0.774 0.121 10.32 0.473 0.121
12 D-mannitol 1.37 1.473 0.050 2.92 3.016 0.219 1.30 2.383 0.077 5.18 2.045 0.263
13 N-acetyl-D-glucosamine 1.18 0.634 0.019 6.41 1.140 0.182 6.51 2.345 0.379 5.43 2.332 0.314
14 D-glucosaminic acid 0.87 1.367 0.030 11.71 0.594 0.173 1.02 1.523 0.039 4.63 1.831 0.210
15 Glucose-1-phosphate 2.70 0.715 0.048 7.63 0.447 0.085 11.65 1.530 0.443 2.06 1.119 0.057
16 D.L-α-glycerol phosphate 1.01 0.897 0.023 5.73 0.635 0.090 10.21 1.140 0.289 2.76 0.494 0.034

17 D-galactonic
acid-gamma-lactone 3.39 1.723 0.145 7.88 1.465 0.287 1.96 1.581 0.077 5.82 1.860 0.269

18 D-galacturonic acid 2.92 2.280 0.166 7.70 0.807 0.154 11.80 2.135 0.626 5.01 2.245 0.279
19 2-Hydroxy benzoic acid 5.42 0.167 0.023 5.73 0.107 0.015 1.17 1.702 0.049 2.57 0.243 0.016
20 4-Hydroxy benzoic acid 1.52 0.497 0.019 3.57 1.788 0.159 3.59 1.559 0.139 5.04 1.588 0.199
21 γ-hydroxybutyric acid 6.12 0.758 0.115 6.60 0.477 0.078 16.53 0.680 0.279 16.72 0.352 0.146
22 Itaconic acid 4.39 0.986 0.107 2.35 0.419 0.024 3.65 1.780 0.161 2.71 2.311 0.156
23 α-ketobutyric acid 6.81 0.250 0.042 9.45 0.132 0.031 1.97 0.456 0.022 9.67 0.216 0.052
24 D-malic acid 1.65 0.708 0.029 6.07 0.564 0.085 8.97 0.513 0.114 4.07 0.877 0.089
25 L-arginine 6.76 0.864 0.145 6.31 2.071 0.325 5.84 2.145 0.311 1.36 2.649 0.090
26 L-asparagine 1.44 1.804 0.065 1.62 3.016 0.121 2.32 2.307 0.133 2.33 3.011 0.174
27 L-phenylalanine 3.04 0.639 0.048 11.42 0.214 0.061 12.50 0.484 0.150 11.89 0.318 0.094
28 L-serine 8.25 1.028 0.211 1.29 2.730 0.088 3.55 2.553 0.225 14.38 2.384 0.851
29 L-threonine 7.02 0.783 0.137 14.97 0.463 0.172 15.38 0.596 0.228 6.31 0.266 0.042
30 Glycyl-L-glutamic acid 1.44 1.096 0.039 1.45 1.448 0.052 8.15 0.996 0.202 12.22 0.701 0.213
31 Phenylethylamine 9.75 0.578 0.140 18.82 0.279 0.130 7.06 0.583 0.102 4.34 1.623 0.175
32 Putrescin 2.43 0.656 0.040 3.23 1.655 0.133 4.16 1.496 0.154 7.53 1.175 0.220
1 The nomenclature for each composite sample indicates the site (S1 or S2), then the mycobiont (M1, M4 or M5),
then the cyanobiont (C03 or C14) and whether it originates from the lichen thallus (-L) or from the substrate (-S).
2 RSD: relative standard deviation. 3 CI: confidence interval.
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each composite sample indicates the site (S1 or S2), then the mycobiont (M1, M2, M4, M5, M6, or M8), 
then the cyanobiont (C01, C03, C10, C12, or C14) and whether it originates from the lichen thallus 
(-L) or from the substrate (-S). The significantly-different values (p ≤ 0.05) for each of the parameters 
are indicated by an asterisk (*) when comparing the kinetics of the thalli (■) and the substrates (●). 
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