
1

Vol.:(0123456789)

Scientific Reports | (2022) 12:15429 | https://doi.org/10.1038/s41598-022-19284-4

www.nature.com/scientificreports

Formal synthesis of non‑fragile
state‑feedback digital controllers
considering performance
requirements for step response
Thiago Cavalcante1, Iury Bessa2, Eddie B. de Lima Filho1,3 & Lucas C. Cordeiro1,4*

This work describes an approach for synthesizing state-feedback controllers for discrete-time systems,
taking into account performance aspects. The proposed methodology is based on counterexample-
guided inductive synthesis (CEGIS), producing safe controllers based on step response performance
requirements, such as settling time and maximum-overshoot. Controller candidates are generated
through constrained optimization based on genetic algorithms. Each iteration that does not satisfy
the initial system requirements is learned as a failed result and then used in another attempt. During
the verification phase, it is considered the controller fragility to ensure deployable implementations.
Such an approach assists the discrete-time control system design since weaknesses occur during
implementation on digital platforms, where systems that meet design requirements are employed.
The proposed method is implemented in DSVerifier, a tool that uses bounded (and unbounded) model
checking based on satisfiability modulo theories. Experimental results showed that our approach is
practical and sound regarding the synthesis of discrete state-feedback control systems that present
performance requirements. It considers finite word-length effects, unlike other methods that routinely
ignore them.

The design of digital controllers is one of the essential tasks regarding digital control systems1. In particular,
such structures consist of sensors, controlled system, control algorithms, and actuators, which together seek to
maintain the desired behavior of plants’ (controlled system) variables under control, i.e., they ensure the desired
transient and steady-state responses2. The digital control theory aims to preserve some properties, based on
discrete-time models, e.g., stability and robustness. Those properties are necessary for the correct operation of
real plants through a digital controller; however, controlling continuous systems with digital controllers raises
new challenges such as: round-off and quantization of samples and coefficients in digital controllers, due to
finite word-length (FWL) implementations, can lead to overflow, poles and zeros sensitivity, limit-cycle oscil-
lation (LCO), approximation errors, and other types of deviations from expected behavior, which might cause
system instability and performance degradation3,4. Indeed, the sensitivity concerning implementation issues is
called fragility3 and the design of control systems should address that issue, which drives the attention of control
systems and verification communities.

Some initiatives applying formal verification to dynamic control systems have been developed4–8 in the past
years which includes verification methods that take into account implementation aspects and determine uncer-
tain linear-system stability regarding digital controllers4, schemes that address validation of robustness at both
model and code level5, approaches for verifying digital filters w.r.t overflow and approximation errors, due to
quantization and round-off effects6, and controller synthesis, in an attempt to generate correct-by-construction
elements8. Moreover, there exists also an approach that aims to formally verify whether a digital control system
meets performance requirements, such as settling time and maximum overshoot, using both open- and closed-
loop forms and considering FWL effects9. Such a work gathered on a unified framework, fragility aspects, and
performance requirements, making it possible to check systems and ensure that they could be promptly deployed
on real scenarios.

OPEN

1Graduate Program in Electrical Engineering, Federal University of Amazonas, Manaus, AM 69067‑005,
Brazil. 2Department of Electricity, Federal University of Amazonas, Manaus, AM 69067‑005, Brazil. 3TPV
Technology, Manaus, AM 69058‑581, Brazil. 4Department of Computer Science, The University of Manchester,
Manchester M13 9PL, UK. *email: lucas.cordeiro@manchester.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-19284-4&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2022) 12:15429 | https://doi.org/10.1038/s41598-022-19284-4

www.nature.com/scientificreports/

In recent years, the control-system literature brought some studies that tackle program synthesis, which is a
technique used for finding entities that satisfy user intent expressed in some form of constraints10. Besides, stud-
ies that aim to formally synthesize controllers can also be found11,12. Among other options, a program synthesis
technique called counterexample guided inductive synthesis (CEGIS) is of particular interest, given its main
features. It is an approach that determines unknown parameters inside partial programs so that the resulting ele-
ments satisfy correctness properties13. Some studies have been done using CEGIS for performing synthesis14 and
such a work can be successfully used for designing stable controllers for continuous plants; however, when FWL
effects are considered, a further verification step should then be performed, given the possibility of overflow, LCO,
and instability, for instance15. Indeed, it suggests that an additional verification phase could be integrated into
the mentioned CEGIS approach and then used to generate elements already suitable for a given FWL scenario.
Work that applies CEGIS for stabilizing controllers can also be found in literature13, and, as a consequence, one
may argue that CEGIS could also be combined with performance-requirement verification, such as overshoot
and settling time, to satisfy a specific behavior.

The idea of combining fragility verification, performance requirement, and CEGIS served as inspiration for
the present work, which introduces a formal methodology for synthesizing a controller while evaluating perfor-
mance requirements in digital control systems by using the CEGIS technique and genetic algorithms (GAs)16 to
generate controller candidates. The CEGIS technique has two main stages, a verification step and a synthesizing
one (learning step), and both are tackled here. The first step is implemented as part of another recently published
work9 and it was enhanced here by integrating a formal verification methodology into an automatic controller
synthesizer as a part of our CEGIS methodology designed in the presented work. Regarding the second step, we
have devised an optimization problem and then solved it using GAs to generate candidates for the associated
CEGIS engine. The resulting scheme was implemented in a bounded (and unbounded) model checker named
as DSVerifier17, which is a tool able to find FWL problems in digital controllers and filters. The reasons behind
that are multifold, which includes using a validating framework, a practical tool for designing digital controllers,
and the availability of base modules already suitable for formal checking.

Additionally, according to a recent survey on the state-of-the-art of verification and synthesis methods for
cyber-physical systems18, most papers published in the area in the past ten years only study the verification of
performance properties over mathematical representations of digital controllers. However, a top-to-bottom
synthesis process of digital controllers will need to cover various aspects, including, for example, the hardware
platform with which the digital controllers are implemented. Thus, there is a considerable gap between low- and
high-level models and between engineering and theoretical research efforts. In summary, this paper makes the
following original contributions in this research direction.

•	 We describe a novel approach for synthesizing open- and closed-loop linear time-invariant systems while
considering performance requirements, system fragility, and FWL effects in fixed-point representations of
controllers. As a result, this paper is the first to address the problem of designing correct-by-construction
controllers, which takes into account performance requirements, encoded in an automated CEGIS-based
methodology, which can handle different FWL formats.

•	 Experimental results show that our approach can effectively synthesize settling time and overshoot specifi-
cations in control applications suffering from FWL effects. Our results also show the provision of a system
model description capable of being integrated into the setup of a GA-based optimization, leading to substan-
tial improvements for synthesizing digital controllers for different FWL formats.

The remainder of this paper is organized as follows. In “Preliminaries” section presents basic concepts of digital
dynamic systems, FWL effects in digital systems, and CEGIS, while “Verifying non-fragile performance specifica-
tion requirements” section shows the verification methodology employed for evaluating digital control systems.
In “Non-fragile synthesis for performance requirements” section describes the proposed method for synthesizing
digital controllers, considering FWL effects. In “Experimental evaluation” section, in turn, reports experiments
regarding a set of benchmarks and discusses their results. Next, “Related work” section presents a summary of
studies related to formal verification and synthesis applied to system controllers. Finally, “Conclusion” section
draws our conclusions.

Preliminaries
A system can be seen as a process with inputs and outputs, which is usually simplified to only one input and one
output. In particular, a system produces a transformation regarding an input signal x(t), which then generates an
output one y(t) that is usually described by a mathematical operator S{·} . Controllers are employed for modifying
a system to make it present a given desirable behavior. This section aims to introduce fundamental concepts of
digital systems, design problems, and tools necessary for developing a methodology based on CEGIS that can
produce correct-by-construction controllers.

Digital dynamic systems.  The state-space representation of a single-input single-output (SISO) linear
time-invariant (LTI) system � controlled by a state feedback controller is described as

(1)� :

{

x(k + 1) = Ax(k)+ Bu(k),
y(k) = Cx(k)+ Du(k),
u(k) = r(k)− Kx(k),

3

Vol.:(0123456789)

Scientific Reports | (2022) 12:15429 | https://doi.org/10.1038/s41598-022-19284-4

www.nature.com/scientificreports/

where A ∈ R
n×n , B ∈ R

n×1 , C ∈ R
1×n , and D ∈ R are the state-space realization matrices (A, B, C, D) of � ,

K ∈ R
1×n is a state-feedback controller, u(k) ∈ R is the control signal, y(k) ∈ R is the system’s output signal,

r(k) ∈ R is a control reference signal, and x(k) ∈ R
n is a state vector.

Figure 1 illustrates the generic step response of (1), where one may notice the area bounded by Lupp and
Llow , i.e., the settling time region � , where a signal remains within p% of its final value yss , which happens for
the first time at kr (reach time) and definitively begins at ks (settling time). Moreover, there exists a maximum
overshoot Mp occurring at kp.

FWL effects in digital systems.  Usually, control systems are designed with real valued coefficients. None-
theless, system parameters and signal variables are implemented with limited word-length through hardware
registers19, which gives rise to FWL effects due to truncation and round-off errors3,20.

Indeed, controllers of a digital control system are heavily impaired by FWL effects9, as one may notice in
Fig. 2, which illustrates the block diagram of a discrete-time feedback control system, where �K denotes FWL
effects. Consequently, such variations can influence a system’s response and its required settling time tsr , which
could be neglected due to underestimation of FWL effects21,22. As indicated by Cavalcante et al.9, FWL effects
can be formulated as

where Rm×n
Q is the discrete set of matrices m× n composed by elements of Rm×n , which can be represented in

the fixed-point format 〈I , F〉 , while I and F are the number of bits of integer and fractional parts, respectively. As
the coefficients of K are subject to FWL effects9, a state-space representation can be written as

(2)FWL�I ,F�[·] : R
m×n → R

m×n
Q ,

Figure 1.   We illustrate the generic step response of a digital control system represented by Eq. (1), which
emphasizes the settling time region bounded by Lupp and Llow and the maximum overshoot Mp occurring at kp.

Figure 2.   We illustrate the block diagram of a discrete-time feedback control system with FWL effects, where
�K denotes FWL effects.

4

Vol:.(1234567890)

Scientific Reports | (2022) 12:15429 | https://doi.org/10.1038/s41598-022-19284-4

www.nature.com/scientificreports/

where the matrix KFWL := FWL�I;F�[K] is the controller gain considering FWL effects.
The FWL effects due to round-offs and quantization have been investigated in the recent literature4,15,23 which

indicates that they might lead to imprecision and even instability. Most of the non-fragile control techniques
describes FWL effects in the digital controller implementation as parametric uncertainties and adopt robust con-
trol techniques to ensure the closed-loop properties20. However, the FWL effects might be accurately computed
if the implementation characteristics (e.g., number of fractional and integer bits of fixed-point representation)
are known. This paper adopts the accurate FWL effects on fixed-point implementations of state-feedback con-
trollers as described in23.

Additionally, other control issues related to FWL effects are investigated in the literature, e.g., overflows and
limit cycle oscillations (LCOs)15,24. However, to the best of our knowledge, it is the first work to propose CEGIS-
based design of state-feedback controllers considering the step response performance requirements.

CounterExample‑guided inductive synthesis.  CEGIS is an iterative process for program synthesis
that is becoming popular, where each iteration performs inductive generalization based on counterexamples
provided by a verification engine. Typically, inductive generalization uses information about a limited number
of inputs to make claims about all possible inputs in the form of candidate solutions14.

Figure 3 shows the typical CEGIS’ framework14 and consists of two main stages: synthesis and verification.
The former performs the generation of a candidate program, which can presumably satisfy a given property.
The latter, in turn, provides a way of checking requirement satisfiability regarding the same property, i.e., if it
fails or succeeds.

In the synthesis stage, a learning algorithm exists responsible for refining candidate solutions based on
counterexamples provided by a verification engine. The learning algorithm proceeds by searching the space of
candidate concepts for one consistent with the examples seen so far. There may be several consistent concepts,
but the employed search strategy determines the chosen candidate, then presented to a verification engine and
checked against a correctness specification. If the current candidate is correct, the synthesizer terminates and
outputs it; otherwise, the verification engine generates a counterexample, which informs the reason for this fail-
ure. Next, the same counterexample is forwarded to the learning algorithm, which adds it to a specific group and
then repeats its search. It is possible that, after a given number of iterations, the learning algorithm is unable to
find a consistent candidate concept, in which case the learning step and hence the overall CEGIS procedure fail25.

Although the CEGIS’ framework is well-defined, and all associated steps are clear and self-contained, there
still exists room for improvement. For instance, in the synthesis stage, it is possible to generate candidates that
present more chance to be correct, i.e., it is likely that they meet the input requirements, which may range from
an auxiliary model to specific generation algorithms. In this work, we decided to formulate an optimization
problem and solve it using GAs to generate candidates that meet design requirements in the form of constraints
for an optimization problem. GAs perform a global search and then explore the search space using different
kinds of crossover. Besides, as a controller generated by a GA already satisfies the constraints of the optimization
problem (here, constraints are the same as requirements), the synthesis mechanism only needs to ensure that it
behaves this way when operating under FWL effects.

The compliance with respect to the performance requirements by considering the FWL is checked in the
verification step. It is possible to use formal verification approaches to check candidates, given that they are
robust solutions and proved to be practical and effective4,26. In this paper, the verifier stage is performed based
on the digital control system verification methodology presented in9, which is summarized in the next “Verify-
ing non-fragile performance specification requirements” section. The synthesizer step proposes a GA-based
optimization where the constraints are updated when a verifier stage indicates that the solution is invalid. A
candidate controller generated by the GA is considered valid only if its quantized version KFWL succeeds in the
verification step. The former step is discussed in “Non-fragile synthesis for performance requirements” section.

(3)�FWL :

{

x(k + 1) = Ax(k)+ Bu(k)
y(k) = Cx(k)+ Du(k)
u(k) = r(k)− KFWLx(k)

,

Figure 3.   We illustrate the traditional CEGIS’ block diagram9, where the synthesizer provides candidate
solutions, while the verifier checks whether these solutions meet the specification. We implement a learning
algorithm in the synthesizer, responsible for refining candidate solutions based on feedback (counterexamples)
provided by the verifier.

5

Vol.:(0123456789)

Scientific Reports | (2022) 12:15429 | https://doi.org/10.1038/s41598-022-19284-4

www.nature.com/scientificreports/

Verifying non‑fragile performance specification requirements
In this study, we use a CEGIS synthesis technique to generate a controller to satisfy performance requirements.
In this CEGIS implementation, we have two main stages: synthesis and verification, the latter being tackled in
this section. Specifically, we show the synthesis schemes developed for settling time and maximum overshoot
in the context of digital control systems.

Maximum overshoot estimation.  A formal parameter is needed to verify the maximum overshoot in
a control system using formal methods, which involves property satisfiability. Regarding this, Algorithm 1 was
developed, which describes a procedure to estimate yp , i.e., the maximum peak value in the response of a system,
and kp , i.e., the sample where yp is located, in order to find a formal approach to verify the maximum overshoot
used in the proposed CEGIS approach.

Algorithm 1 was developed in a previous work9, thus it will be shortly discussed here. The main parameters
of Algorithm 1 are defined as follows:

•	 ∇k is the variation in the output signal;
•	 y∇i is the amplitude of the sample where the last gradient was detected;
•	 i is the sample index where this amplitude is located;
•	 ξ is the number of detected peaks that are not of interest for the current analysis, i.e., false peaks smaller than

the current one;
•	 k is the current sample number iteration.

As inputs for Algorithm 1, we have state matrices A , B , C and D , controller K (if the analysis regards a closed-
loop system), and system input u. Indeed, input data are used for intermediate calculations, such as obtaining
y(k) and yss , with their respective formulae. The outputs of Algorithm 1 are the maximum peak ( yp ) and the
peak time ( kp).

Finally, the maximum overshoot Mp is computed as follows:

(4)Mp = yp − yss.

6

Vol:.(1234567890)

Scientific Reports | (2022) 12:15429 | https://doi.org/10.1038/s41598-022-19284-4

www.nature.com/scientificreports/

Settling time invariant estimation.  Cavalcante et al.9 provide a methodology to compute an invariant
for settling time of discrete-time systems. In the verification literature, an invariant is a logical proposition which
over-approximates the set of reachable states by allowing the reduction of the verification space27. In this paper,
we find an upper-bound for the settling-time to allow pruning the verification space up to that bound. In sum-
mary, the following function based on the eigenvalues is defined:

where c is a constant that makes y(k) enter the settling time region, based on the slowest eigenvalue �̄ . Given the
definition of the settling time itself and the heuristic function, the instant ( ̂k ) a system enters its settling time
region can be found with

 where p indicates the setting time region, in percentage (please, see “Digital dynamic systems” section). A
design procedure, with Eq. (5), kp , and yp , could then obtain c , which allows modeling of the settling time region
dynamics, based on the slowest eigenvalue:

In a nutshell, the reasoning behind this mathematical formulation is that if the slowest eigenvalue indicates that
the desired settling time is reached, i.e., k̂ ≤ ks , it is assured that the entire system meets this requirement, given
that the other eigenvalues are faster. Nonetheless, when that does not happen, it is not assured that a given system
does not meet ks , given the net result of the interaction among eigenvalues, which may then lead to a direct verifi-
cation regarding output samples. Finally, the most direct use of k̂ is as an invariant during verification procedures.

Settling time and overshoot verification algorithms.  Based on the estimates of the settling time-
invariant and the maximum overshoot, verification algorithms for overshoot and settling time requirements are
presented in9.

The overshoot verification technique9consists in checking if the actual percentage overshoot PO (as computed)
is lower than or equal to the required percentage overshoot ( POr ). If the latter is true, it consequently leads to a
Verification SUCCESSFUL; otherwise, Verification FAILED is reported. In summary, yss and POr
are the necessary inputs for this algorithm, which performs a simple comparison.

In order to find the overshoot percentage, based on the maximum overshoot ( Mp ) shown in Fig. 1, one can
use9

which can be run after Algorithm 1.
The overshoot verification consists basically in checking if the computed percentage overshoot P.O. (Eq. 8)

is lower than the required percentage overshoot ( P.O.r ), which, if true, consequently leads to a Verification
SUCCESSFUL.

Regarding the settling time verification algorithm, we assume that the main algorithm has access to all param-
eters used by it and produces Verification SUCCESSFUL or Verification FAILED, as output. There
also exists a straightforward companion algorithm (not shown here) that receives, as inputs, system specifica-
tions (state-space matrices, input samples, and a controller) and produces kr (instant where that output reaches
the settling time region), as output. This algorithm is useful when yp is in the settling time region (see the last
conditional block of Algorithm 2).

The proposed procedure for verifying settling time, which was developed by Cavalcante et al.9, is described in
Algorithm 2 and consists in first checking if k̂ , as computed with Eq. (6) (see “Settling time invariant estimation”
section), is lower than the required settling time ksr , which promptly assures success. Nonetheless, if that is not
the case, a system’s output must then be directly checked. Indeed, the invariant approach’s main advantage is
based on the adopted heuristic function: no computation based on a system’s model is needed, which provides
high speed and simplicity.

(5)y(k) = yss + c�
k
,

(6)k̂ = ⌈ log
�

(p

100c
yss

)

⌉,

(7)c̄ =
yp − yss

�̄
kp

.

(8)PO = 100×
Mp

yss
,

7

Vol.:(0123456789)

Scientific Reports | (2022) 12:15429 | https://doi.org/10.1038/s41598-022-19284-4

www.nature.com/scientificreports/

Notice that both Algorithms 1 and 2 can be used to verify systems with or without FWL effects. In order to
guarantee the safety of the implemented controller, it is necessary to check the system �FWL with the quantized
controller KFWL.

For a deeper understanding of the presented verification methodologies, we refer the reader to the work
developed by Cavalcante et al.9.

Non‑fragile synthesis for performance requirements
In this section, we describe our proposed synthesis methodology based on the specification of performance
requirements for digital control systems. The synthesis methodology is based on the CEGIS technique, with two
stages: verification and learning (where a specific synthesizer is located), as illustrated in Fig. 3. In the learning
stage, we generate a controller K to satisfy our performance requirements (settling time and/or overshoot), using
GAs16, where we take system definitions and specifications as constraints. After generating K, a verification stage
employs the verification approaches for settling time and overshoot on the system �FWL described in (3) and
considering the FWL effects, as explained in “Settling time and overshoot verification algorithms” section. Then,
it receives the mentioned controller K and verifies if the latter meets the initial requirements. If the presented
procedure fails in that stage, it goes back to the learning step and keeps repeating that loop until it is successful
regarding the associated verification.

In our CEGIS methodology, GAs perform a global search and explore search spaces using different kinds of
crossover, i.e., combination procedures, afterwards28. That feature provides a great advantage to GAs regarding
finding a solution, which is not necessarily the global optimal, for a given optimization problem and is very
interesting regarding digital controllers due to the need for individual coefficient tuning. Moreover, as a controller
generated by GAs already satisfies the constraints of the underlying optimization problem, in the CEGIS-based
scheme proposed here, a synthesis mechanism only needs to ensure that it still meets the input requirements
when operating under FWL effects.

In Fig. 4, we illustrate the proposed synthesis methodology, in a general form, where system definitions rep-
resent the overall system (state-space matrices and input). Moreover, the parameter requirements contains
the requirements to be synthesized (settling time and/or overshoot), total_attempts is the total number
of attempts to synthesize a controller, which is empirically defined by a user, attempts represents the number
of attempts without changing any synthesis parameter (when a change occurs, a parameter is then reset and
a new cycle is started, which also results in an increment to total_attempts), GA Engine is the block
that performs the generation of a candidate controller through genetic algorithms, verify() is the verifica-
tion engine (“Settling time and overshoot verification algorithms” section), which is basically the DSVerifier
tool where we implemented our verification methodologies, MAXATT​ is the maximum number of attempts to
synthesize a controller (as informed by a user), MAXINNERATT​ represents the maximum number of attempts
without changing any GA parameter (MAXINNERATT​ is reset to zero, when a GA parameter is changed, while
MAXATT​ continues to increment), popsize is the population size of the genetic algorithm, which was set to 100
chromosomes, as suggested by Roeva et al.29, and STEP is the step to increment the GA’s population, which, in
the present work, was empirically obtained as 10. Besides, the proposed verification engine relies on what we are
synthesizing (settling time and/or overshoot) and, as it is a generic framework, we could have also implemented
different verification procedures and fed their results to the GA module.

In Fig. 4, we first define the system to be synthesized, which comprehends a plant, i.e., its state space matrices
( A , B , C and D ), a system’s input (we have used only the unit step), and the requirements a specified system
should meet (settling time and/or overshoot). Next, we can step into GA Engine, where an optimization problem

8

Vol:.(1234567890)

Scientific Reports | (2022) 12:15429 | https://doi.org/10.1038/s41598-022-19284-4

www.nature.com/scientificreports/

is implemented, based on a given system and considering the informed requirements as constraints (see details
in “Generating a candidate controller K” section). Finally, as an output of GA Engine, a candidate controller
K, which possibly makes a system satisfies the input requirements, is generated. Then, the verification process
itself (according to the chosen property to synthesize) can now be performed, considering system definitions,
the generated controller candidate, and the requirements to be verified (see “Verifying non-fragile performance
specification requirements” section).

If the verification succeeds, then the associated synthesis procedure is successful and the entire process is
terminated; otherwise, the total number of attempts (total_attempts) is evaluated to check if it exceeds
the maximum number of attempts (MAXATT). If that is the case, the synthesis process fails and is terminated;
otherwise, the number of attempts (attempts) is evaluated, without changing any GA parameter (e.g., popu-
lation size), to check if it exceeds the maximum number defined for that (MAXINNERATT​). If the latter is not
valid, the population size of the GA is also incremented by a fixed step (STEP). Finally, GA Engine runs again,
the entire process is repeated.

Generating a candidate controller K.  In our CEGIS-based synthesis methodology, we use genetic algo-
rithms for generating a candidate controller K, in order to satisfy the desired requirements (overshoot and set-
tling time). Our methodology uses two objective functions to solve three separated problems: synthesize for
overshoot, settling time, or both. The objective functions are

(9)f1(K) = K⊤K ,

(10)f2(K) = k̂ ,

Figure 4.   Proposed synthesis architecture.

9

Vol.:(0123456789)

Scientific Reports | (2022) 12:15429 | https://doi.org/10.1038/s41598-022-19284-4

www.nature.com/scientificreports/

where K is the controller matrix and k̂ is given by Eq. (6).
We have chosen the objective function f1 because of its simplicity and also to avoid a high noise sensitivity,

which may happen as a result of significant gains (K). Therefore, minimizing f1 implies minimizes the controller
induced norm, which may help to avoid overshooting. Besides, f2 is based on settling time calculation ( ̂k ), which
is easy to specify as an optimization problem. It is worth noticing that it is not mandatory to specify an objective
function related to a specific constraint, although some intrinsic advantages may come from that. Indeed, we
must only specify a function, while the associated solver (in the present case, a genetic algorithm) will try to find
a solution, considering the input constraints. Other objective functions have indeed been tested, such as norms
H2 and H∞ , but they have not provided good results due to the lack of relationship with input requirements and
global outcome. Moreover, objective functions related to overshoot were not successful either.

Optimization problem to meet overshoot and settling time.  In order to generate a controller K, using a genetic
algorithm that satisfies both overshoot and settling time requirements, we formulate the following optimization
problem:

The constraints above are precisely what we look for, as they directly represent the desired requirements.
The last constraint ( ̄� ≤ 1 ) is crucial, given that an output system must be stable; indeed, without stability,
performance analysis can not be executed. In the case a problem with different constraints is needed, i.e., other
requirements, the given problem is specified in the same way, but an applicable rule that satisfies the underly-
ing requirements must then be formulated. For instance, if a critically damped system is desired, the constraint
ζ = 12 could be added.

In the present case, we want no minimize the multi-objective functions ( f1 and f2 ) constrained to k̂ ≤ ksr ,
PO ≤ POr , and �̄ ≤ 1 . The first constraint guarantees that the system meets the settling time requirement, since
ksr ≥ k̂ (cf. Algorithm 2). The second one, in turns, assures the required maximum percentage overshoot. Finally,
the third one ensures that the controller K will keep a system stable, with �̄ being the largest absolute eigenvalue
that is also smaller than 1, which provides stability.

It is worth to mention that the candidate controller generated by solving the problem (11) does not consider
the FWL effects. However, the verification step of the proposed CEGIS algorithm considers the FWL effects by
computing KFWL := FWL�I;F�[K] . Therefore, the verification step is based on Algorithms 1 and 2 for the sys-
tem (3), and the synthesized controller K is considered safe only if the performance requirements hold for KFWL.

Architecture of DSVerifier.  The synthesis methodology presented above was implemented within the
DSVerifier tool to experiment with the techniques developed in the present work in the context of several bench-
marks. Moreover, such a development would enhance DSVerifier even further and make it a comprehensive
tool for digital systems, but now regarding performance requirements and robustness aspects such as overflow,
limit-cycle oscillation, and finite word-length17. The architecture illustrated in Fig. 4 was added to DSVerifier.

The synthesis part was implemented in C++, where all the necessary matrix operations were performed with
the help of library Eigen30, while the GA module was implemented with the support of library Galgo31, also
available for C++, which was used as an optimization tool for generating candidate controllers. The settling time
and overshoot verification algorithms shown in “Verifying non-fragile performance specification requirements”
section were already implemented within DSVerifier, due to a previous work9.

Experimental evaluation
Experimental objectives.  In order to validate the methodology proposed in this work effectively, the
related features were developed and implemented in C++ as part of DSVerifier. With their addition, we were
able to submit our methodology to a set of benchmarks created exclusively for this work so that two original
contributions are promptly identified. First, we provide a suitable test suite for future work. Second, we present
results with tests targeting controllers synthesized for meeting performance requirements.

Apart from implicit contributions, our experiments have the following goals:

EG1 (Suitability) Demonstrate the suitability of the proposed methodology regarding digital-controller
synthesis;
EG2 (Performance) Evaluate the effectiveness and the advantages of the proposed methodology when com-
paring it with other existing approaches.

Experimental setup.  The experiments presented here were carried out on four similar computers with
slightly different configurations. That was done to speed up result generation, since the synthesis experiments
executed here demand considerable time for their completion, as they consume many resources. If they were all
executed on the same machine, the associated results would take very long to complete in parallel. The chosen
machines have the following base configuration: a processor Intel (R) Core (TM) i7–4500 CPU @ 1.8 GHz, with

(11)

min (f1(K), f2(K)),

s.t. k̂ ≤ ksr,
PO ≤ POr,

�̄ ≤ 1.

10

Vol:.(1234567890)

Scientific Reports | (2022) 12:15429 | https://doi.org/10.1038/s41598-022-19284-4

www.nature.com/scientificreports/

16 GB of RAM and running Ubuntu 64-bits. More informations to run the experiments can be found in the
supplementary material.

Description of the benchmarks.  The benchmarks with the control systems used to evaluate the proposed
approach are described below. In particular, they are available at Appendix with the information about state-
space matrices A , B and C , required settling time tsr , and required percentage overshoot POr . We have assumed
that all benchmarks present a state-space matrix D = 0.

Those systems were chosen based on the possibility of providing different scenarios, in relation to the eigen-
values of A . All experiments were conducted using the following configuration: ts = 0.5, p = 5, bounds_l
= -0.5, bounds_u = 0.5, popsize = 100, and nbgen = 100. The first four parameters match
what is used in practice, while the last two were empirically defined by performing extensive baseline tests. The
performance of the proposed methodology, as implemented in DSVerifier, was then obtained with those same
values, with the goal of successfully synthesizing controllers. In addition, there exist systems of 2nd (benchmarks
1, 5, 8, 12 and 15), 3rd (benchmarks 2, 9 and 13), 4th (benchmarks 3, 6, 7, 10 and 14), and 5th (benchmarks 4
and 11) order.

The chosen benchmarks present different eigenvalue configurations. Considering σA the set of eigenvalues
of matrix A , there exist systems with σA = {all �n are the same, depending on a system’s order | � ∈ R }, σA = {all
�n are different | �n ∈ R and/or �n ∈ C }, and σA = { ∀�n | � ∈ R }, in our benchmark set. With this diversity, it is
possible to cover scenarios that present different behaviors, such as overdamped, underdamped, and critically
damped systems, in addition to second, third, fourth and fifth-order systems, with the goal of making a thorough
analysis. Moreover, benchmark 15 is the model of a DC motor.

The chosen benchmarks were tested with 3 different FWL configurations (8, 16 and 32 bits), in the following
scenarios: considering only settling time, only overshoot, and both properties simultaneously (settling time and
overshoot). Consequently, that amounts to 45 tests per property scenario and 135 in total.

As a matter of avoiding corner cases and complex scenarios, which may present little practical use, we have
empirically fixed the test time-out to 15 days. Consequently, if an individual experiment reaches a running time
of 15 days, it is aborted.

Experimental results.  The Table 1 summarizes the experimental results for our benchmarks. The column
ID identifies each benchmark, Order indicates the number of continuous variables, R represents the result of the
associated synthesis (successful or failed), T is the number of attempts to perform a synthesis procedure, and,
finally, 〈4, 4〉 , 〈8, 8〉 and 〈16, 16〉 represent the considered FWL format, where they represent a total of 8, 16, and 32
bits, respectively. When an experiment fails, Table 1 indicates MA or TO, which means the maximum number of
attempts has been reached or there was time-out during a specific execution, respectively.

On the one hand, the synthesis process performed by DSVerifier, which applies the methodology proposed
in this work, presented, in total, 101 cases of successful synthesis, with 39 being experiments considering only
settling time, where there were 13 success cases for each of the considered FWL configurations (8, 16, and 32
bits). Additionally, 32 experiments considering only overshoot were successful, where 10 employed 8 bits, 11

Table 1.   We show the experimental results considering settling time and overshoot specifications. ID
identifies each benchmark, Order indicates the number of continuous variables, R represents the result of the
associated synthesis (successful or failed), T is the number of attempts to perform a synthesis procedure, MA
means the maximum number of attempts has been reached, TO indicates that there was time-out during a
specific execution, S means synthesis successful, F means synthesis failed.

ID Order

Settling time Overshoot Settling time and overshoot

<4,4> <8,8> <16,16> <4,4> <8,8> <16,16> <4,4> <8,8> <16,16>

R T R T R T R T R T R T R T R T R T

1 2 S 1 S 1 S 3 S 5 S 1 S 1 S 1 S 1 S 3

2 3 S 1 S 1 S 4 F TO S 1 S 1 S 1 S 1 S 4

3 4 S 1 S 2 S 2 S 1 S 1 S 1 S 1 S 2 S 2

4 5 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1

5 2 S 1 S 1 S 7 S 19 S 1 S 1 S 1 S 1 S 7

6 4 S 1 S 5 S 41 S 5 S 1 S 1 F TO F TO F TO

7 4 S 1 S 1 S 1 F TO F TO F TO F TO F TO F TO

8 2 S 1 S 1 S 3 S 3 S 3 S 1 S 1 S 1 S 1

9 3 S 1 S 1 S 3 S 1 S 1 S 1 S 22 S 1 S 3

10 4 S 3 S 2 S 6 S 1 S 1 S 1 S 3 S 2 S 2

11 5 S 1 S 1 S 1 S 1 S 1 S 1 S 12 S 1 S 1

12 2 F MA F MA F MA F MA F MA F MA F MA F MA F MA

13 3 F MA F MA F MA F MA F MA F MA F MA F MA F MA

14 4 S 1 S 1 S 1 F TO F TO F TO F TO F TO F TO

15 2 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1

11

Vol.:(0123456789)

Scientific Reports | (2022) 12:15429 | https://doi.org/10.1038/s41598-022-19284-4

www.nature.com/scientificreports/

used 16 bits, and the rest were configured with 32 bits. Moreover, there were 10 successful cases for each FWL
configuration (8, 16, and 32 bits), considering both settling time and overshoot, adding up 30 successful experi-
ments to the total. On the other hand, there were 34 cases in which the proposed synthesis failed. Among those,
18 presented this result due to reaching the maximum number of pre-established attempts (MAXATT = 200),
while 16 due to the synthesis execution time being exceeded (as mentioned in “Description of the benchmarks”
section, the test time-out was fixed to 15 days). Thus, the maximum number of attempts was fixed to 200. This
limit was empirically chosen during baseline experiments due to the obtained results, which usually presented
worse figures when larger values were employed.

Indeed, there are two causes for those results, which we noticed during experiments and led to failures in
synthesis processes: nature of closed-loop system’s eigenvalues and open-loop instability. Regarding long syn-
thesizing times curbed by the imposed time-out value of 15 days, one apparent reason is the nature of a system’s
eigenvalues, together with the number of bits used for the chosen FWL format. In summary, there exists no way
to predict how long a synthesis process will take because each case presents its particularities.

As illustrated in Fig. 5, experiments related to only settling time presented a success rate of 87%, when dealing
with the 3 different FWL formats considered here ( 〈4, 4〉 , 〈8, 8〉 , and 〈16, 16〉 ). Regarding experiments tackling only
overshoot, success rates of 73%, for formats 〈8, 8〉 and 〈16, 16〉 , and 67%, for format 〈4, 4〉 were achieved. Finally,
concerning experiments considering both requirements, a success rate of 67% was obtained for all the analyzed
FWL formats. Indeed, one may notice that combined requirements present a more complex scenario for the pro-
posed synthesis scheme, with overshoot being more difficult than settling time. Moreover, the rates of successful
attempts are mostly dictated by a specific requirement arrangement. Indeed, a system’s overshoot can be tightly
controlled by tuning a controller’s gain32; however, it is still heavily influenced by a system’s eigenvalues and their
relation with other parameters33, such as sampling time. Settling time figures, in turn, are mostly dominated by
the largest eigenvalue9 in a system. Consequently, it becomes more challenging to control overshoot responses.
The results generated by DSVerifier, i.e. the controller, were validated after each experiment, using Matlab, where
we have simulated specific systems (i.e., state-space matrices and input), together with the synthesized control-
lers. Then, the obtained results were manually checked with the plot of the resulting step response to assure the
desired settling time and/or overshoot values.

In experiments targeting only settling time, when applying FWL format 〈4, 4〉 , the synthesis was successfully
carried out with one attempt, for benchmarks 1–9, 11, 14, and 15, and three attempts, for benchmark 10. Indeed,
this is an interesting behavior for such experiments, given that, for instance, benchmark 11, which is a 5th-order
system, needed only one attempt, as benchmark 1, which is a 2nd-order system. In summary, there is no clear
relationship between FWL format, the nature of systems’ eigenvalues, and open-loop stability.

With FWL format 〈8, 8〉 , the successful cases carried out one, in case of benchmarks 1, 2, 4, 5, 7–9, 11, 14,
and 15, two, in case of benchmarks 3 and 10, and five attempts, in case of benchmark 6. Again, there seems to be
no clear relation between FWL format and the nature of a system’ eigenvalues, which makes some experiments
need more attempts than others. However, there is a simple explanation for the behavior of benchmark 6, which
will be clarified for the next format.

Figure 5.   We present the percentage of success in experiments considering the settling time and overshoot
specifications. We obtain the highest success rate (around 87%) when synthesizing digital controllers concerning
settling time, while the experiments that tackle only overshoot varied from 67% to 73%, depending on the FWL
format. Lastly, for the experiments considering both requirements, a success rate of 67% was obtained for all the
analyzed FWL formats.

12

Vol:.(1234567890)

Scientific Reports | (2022) 12:15429 | https://doi.org/10.1038/s41598-022-19284-4

www.nature.com/scientificreports/

Experiments with FWL format 〈16, 16〉 presented, in general, a more significant number of attempts than the
other formats, which is indeed intuitively expected, where they needed one to forty-one attempts to success-
fully synthesize benchmarks 1–11, 14, and 15. Most of them needed more than one attempt to be successfully
synthesized. A compelling case intrigued us: benchmark 6 needed 41 attempts, and the reason for that is not
related to the nature of its eigenvalues (complex numbers) its open-loop instability. The combination of a more
significant number of bits and eigenvalues profile created, for this specific benchmark, a state space system
which took longer to be explored by GA Engine, as also happened with format 〈8, 8〉 . Indeed, the latter required
an intermediate number of attempts, which clearly influences the chosen FWL format.

In order to provide a more transparent evaluation regarding synthesis attempts, the weighted average was
used as a merit figure, which can be computed as

where ATTAVG is the average number of attempts, Gn is the group n of benchmarks with the same number of
attempts, and ATTn is the number of attempts for this same group. Format 〈4, 4〉 took 1.15, format 〈8, 8〉 took
1.46, and, finally, format 〈16, 16〉 took 5.69 attempts, in average. Consequently, with settling time, larger FWL
formats require more attempts.

This same trend is also noticed by using an area chart to relate the number of attempts in each experiment
and chosen FWL format. The ordinate axis shows the number of attempts for synthesizing a given controller
that meets specific requirements. At the same time, the ID of the experiments is described on the abscissa axis,
as illustrated in Fig. 6.

The gaps in Fig. 6 refer to the developed tool not being able to synthesize benchmarks successfully due to
reaching the established maximum limit of attempts. In those cases, i.e., benchmarks 12 and 13, that happened
due to poles that lead to system instability, in open-loop.

Considering only overshoot, experiments with format 〈4, 4〉 took between one and nineteen attempts to suc-
cessfully execute synthesis procedures regarding benchmarks 1, 3–6, 8–11, and 15. Moreover, the other formats
( 〈8, 8〉 and 〈16, 16〉 ) took only one attempt to be successfully synthesized, with benchmarks 1–6, 8–11, and 15,
mainly because most of them have real eigenvalues, which led to outputs without a large ripple.

Regarding overshoot experiments, ATTAVG figures of 3.8, 1.0, and 1.0 attempts were obtained for formats
〈4, 4〉 , 〈8, 8〉 , and 〈16, 16〉 , respectively. Although this reverse behavior may initially seem strange, it is indeed
expected: coarser quantization strategies may impair algorithm convergence. As already mentioned, the over-
shoot is heavily influenced by a system’s eigenvalues and their relation with other parameters and, in the present
case, a coarser representation led to situations where the exact coefficient values (their combination) were not
found, for expected behavior, due to larger gaps between consecutive quantized numbers, which ultimately
resulted in a higher number of attempts.

The area chart in Fig. 7 shows the opposite behavior noticed earlier. Indeed, benchmarks 1, 5, and 8, with
format 〈4, 4〉 , presented a more significant number of attempts for successful synthesis procedures, while bench-
mark 8, with format 〈8, 8〉 , required as many attempts as those for format 〈4, 4〉 . One could also notice that
benchmark 5 demanded many attempts (19) during synthesis when considering format 〈4, 4〉 ), which is related
to its complex eigenvalues. Unlike experiments considering settling time, benchmark 5 had a more significant

(12)ATTAVG =

∑N
n=0 Gn × ATTn
∑N

n=0 Gn

,

Figure 6.   We illustrate the area chart for our settling time experiments under different FWL formats ( 〈4, 4〉 ,
〈8, 8〉 , and 〈16, 16〉 ) and the number of attempts to synthesis the digital controllers from 1 to 15. As we can
observe, the FWL format directly influences the number of attempts to synthesize these digital controllers
considering the settling time specification.

13

Vol.:(0123456789)

Scientific Reports | (2022) 12:15429 | https://doi.org/10.1038/s41598-022-19284-4

www.nature.com/scientificreports/

number of attempts for a smaller amount of bits. We did not find any plausible explanation for that behavior
during the experiments.

When experiments considering both requirements (settling time and overshoot) were performed, in FWL
format 〈4, 4〉 , they took between one and twenty-two attempts, with benchmarks 1–5, 8–11, and 15. It is interest-
ing to mention that benchmarks 9 to 11 have 3 eigenvalues in common ( −0.2 , −0.3 and −0.7 ), and the reason for
more attempts to synthesize those lies in the combination of those eigenvalues, when dealt with by GA Engine.

When format 〈8, 8〉 was used, one or two attempts were necessary to successfully synthesize benchmarks 1–5,
8–11, and 15. Specifically, only benchmarks 3 and 10, both of 4th order, needed more than one attempt to be
successfully synthesized.

In format 〈16, 16〉 , experiments took from one to seven attempts, with benchmarks 1–5, 8–11, and 15. The
majority of those experiments needed more than one attempt to be successfully synthesized.

In experiments with formats 〈4, 4〉 , 〈8, 8〉 , and 〈16, 16〉 , ATTAVG figures of 4.4, 1.2, and 2.5 attempts were
obtained. Although there seems to be no trend, a simple analysis regarding attempts for single requirements
reveals what happened: for format 〈4, 4〉 , overshoot led to a high number of average attempts, which also hap-
pened to format 〈16, 16〉 , but now due to settling time. Finally, format 〈8, 8〉 presented an intermediate number
of average attempts, which is true for single requirements.

Figure 7.   We illustrate the area chart for our overshoot experiments under different FWL formats ( 〈4, 4〉 , 〈8, 8〉 ,
and 〈16, 16〉 ) and the number of attempts to synthesis the digital controllers from 1 to 15. As we can observe, the
FWL format directly influences the number of attempts to synthesize these digital controllers considering the
overshoot specification.

Figure 8.   We illustrate the area chart for our experiments considering both settling time and overshoot under
different FWL formats ( 〈4, 4〉 , 〈8, 8〉 , and 〈16, 16〉 ) and the number of attempts to synthesis the digital controllers
from 1 to 15. As we can observe, the FWL format directly influences the number of attempts to synthesize these
digital controllers, considering settling time and overshoot as specification.

14

Vol:.(1234567890)

Scientific Reports | (2022) 12:15429 | https://doi.org/10.1038/s41598-022-19284-4

www.nature.com/scientificreports/

On the one hand, the area chart in Fig. 8 shows that benchmarks from 1 to 5 behave similarly to what can be
noticed in Fig. 6, where more restricted FWL formats require fewer attempts. The reason behind this is that a
coefficient combination for satisfying the overshoot requirement is quickly found, and, this way, settling time ends
up being the dominant goal. On the other hand, benchmarks from 9 to 11 behave similarly to what is found in
Fig. 7. Again, the smaller the number of bits in an FWL, the more attempts are needed to synthesize a controller,
whose explanation lies on a dominant overshoot requirement. As a general consideration, an experiment behav-
ior depends on the dominant requirement and possible combinations for achieving the desired figure, which,
if known, might lead to a previous parameter tuning (e.g., FWL format and settling time/overshoot value). That
indeed paves the way for a new study involving the creation of specification files. Nonetheless, one may notice
that there are more unsuccessful procedures related to the synthesis of combined requirements.

Among groups of experiments organized by requirement configuration (settling time, overshoot, and both),
we found out that overshoot ones, in average, took 1.93 attempts to synthesize a controller, followed by experi-
ments considering both parameters, with 2.7, and settling time, with 2.77. Of course, the number of bits for an
FWL format also impacts our tool in terms of attempts, as already shown.

One may notice that the synthesis tool failed to synthesize a controller that meets the requirements for
benchmarks 12 and 13, whether considering only settling time, overshoot, or both. Such experiments failed due
to reaching the established maximum-attempts limit, i.e., MAXATT = 200). A direct cause is the presence of
unstable open-loop systems. In that case, the proposed methodology cannot find a controller that meets stabil-
ity and performance requirements together. Indeed, GA engine (see Fig. 4) is unable to generate candidates that
meet such requirements at the optimization problem level and still ensure stability.

Regarding cases where the proposed methodology with the chosen parameters and requirements was not able
to synthesize a controller because the chosen time-out or the maximum attempts was reached, we have tried to
change some parameters for them, such as the MAXATT​ and the time-out itself (in some cases, it was fixed to 30
days). Nonetheless, that was still not enough.

In addition, our tool failed in synthesizing benchmarks 2, 6, 7, and 14, for some combinations of format
and requirements, due to exceeding the execution time limit. This fact can be related to the nature of systems’
eigenvalues, which are specifically complex eigenvalues. In that sense, other GAs with different strategies could
also be employed, which is regarded as an extension to the present study.

In our experiment, we noticed that our methodology is more effective when synthesizing controllers for
meeting only one requirement: settling time (39 successful and 6 failed) or overshoot (12 successful and 13
failed). Therefore, we still need to improve our methodology, regarding such a context, by using some effective
multi-objective optimization tools.

Threats to validity.  We have shown a favorable assessment of our method over a set of digital control sys-
tems. Nonetheless, those benchmarks are limited within this paper’s scope, which means the proposed method’s
performance should be further assessed on a more extensive set of real-world systems. Besides, we have a few
parameters to be configured, such as the maximum number of attempts, which may lead to unsuccessful results,
e.g., if the chosen maximum number of attempts is not sufficient for synthesizing a controller. The same happens
to the parameters related to population size and the number of generations for the GA module, given that they
can directly influence results. Nonetheless, in this paper, we indicate values for those parameters that we found
suitable for the current experiments.

Moreover, we did not take into account the execution time needed to solve a specific problem. Instead, we
have concentrated our effort on finding a correct controller able to make a system that meets a set of require-
ments. Consequently, our methodology can be time-consuming, depending on the system to be synthesized
and the chosen parameters. As a consequence, one may argue that a consequent and necessary study regards
parameter configuration based on target requirements and operation scenario, which may lead to an algorithm
for generating SpecsFile.ss.

Experiments with power converter models.  We have chosen two power converter system examples:
buck34 and boost35 converters. They demonstrate our formal synthesis methodology in physically motivating
examples. In particular, those converters regulate the voltage and interconnect electrical systems. They are vital
elements in the green economy due to their intensive application to low/zero carbon energy generation systems
and consumers36–38.

Buck converter system.  Buck converter (step-down converter)34 is a DC/DC converter that decreases the volt-
age (while increasing the current) from its input (power supply) to its output (load). Buck converters are used,
for example, to reduce the voltage of laptop batteries (12-24V), providing the few volts necessary for modern
processors to work such as Apple M2’s or Intel’s (x86)39. Figure 9 depicts the block diagram of a typical buck
converter control loop.

To experiment with this system against our methodology, we present the state-space model for a Buck con-
verter extracted from Iordanov & Halton40. The state-space model is described as follows.

(13)�buck :















x(k + 1) =

�

1− Ts
RC

Ts
C

−Ts
L 1− TSRC

L

�

x(k)+

�

(Ts−td)VgTs
LC

VgTs
L −

(Tstd)VgTsRC
L2

�

u(k),

y(k) =
�

R
R+RC

RCR
RC+R

�

x(k),

15

Vol.:(0123456789)

Scientific Reports | (2022) 12:15429 | https://doi.org/10.1038/s41598-022-19284-4

www.nature.com/scientificreports/

where R, L, C, RL , RC , Vg , Ts and td are, respectively, the load resistance, inductance, capacitance, line resistance,
DC-link resistance, the power supply voltage, sampling time, and the delay time induced by the sampling pro-
cess. In this paper, the values of those parameters are borrowed from Iordanov & Halton40 and are provided in
Table 2 for convenience.

Boost converter system.  A boost converter35 is used to “step-up” an input voltage to some higher level required
by a load. This unique capability is achieved by storing energy in an inductor and releasing it to the load at a
higher voltage. This capability highlights some of the more common pitfalls when using boost regulators. These
include maximum achievable output current and voltage, short circuit behavior, and fundamental layout issues.
We present a discrete state-space model for a Boost converter, which was directly extracted from Alkrunz et al.41.
The state-space model is described as follows.

All these values in the equation were taken from the work developed by Alkrunz et al.41.

Results.  We conducted these experiments using our formal synthesis methodology implemented on the
DSVerifier tool17,42 to synthesize a buck and a boost converter systems. In addition, we considered a required
settling time and/or overshoot for such models (c.f. Eqs. 13, 14).

The state-feedback controllers are synthesized from the buck and boost converters models (cf. “Buck converter
system” and “Boost converter system” sections). Here, we consider three-step response requirements: only maxi-
mum admissible settling time, maximum admissible overshooting, and maximum settling time and overshoot.
Moreover, we consider the FWL effects in 3 different formats, namely 〈4, 4〉 , 〈8, 8〉 , and 〈16, 16〉.

(14)�boost :







x(k + 1) =

�

0.9968 − 0.0663
0.0955 0.9882

�

x(k)+

�

6.9671
−0.5687

�

u(k),

y(k) =
�

0 1
�

x(k)

Figure 9.   Buck Converter with Digital Control.

Table 2.   Buck converter parameters with the respective nominal value.

Parameter Nominal value

R 1.6 �

L 500 nH

C 470 µF

RL 25 m�

RC 3 m�

Vg 12 V

Ts 1 µs

td 500ns

16

Vol:.(1234567890)

Scientific Reports | (2022) 12:15429 | https://doi.org/10.1038/s41598-022-19284-4

www.nature.com/scientificreports/

Table 3 summarizes the synthesis results, considering only the settling time property. We can see that our
approach was capable of synthesizing controllers for either Buck and Boost converter systems and every FWL
format ( 〈4, 4〉 , 〈8, 8〉 , and 〈16, 16〉 ). However, as we can see, with the lowest number of bits in the FWL format, we
took longer to synthesize, especially the Buck converter, due to the variable’s range and the number of constraints
to be checked by our approach. So, as we increase the FWL format, we also increase the number of candidate
solutions that our synthesizer stage can produce, and our verifier stage can check to meet the specification.

Table 4 shows the results considering only the overshoot property. We can see that our methodology could
synthesize digital controllers in all cases. However, for Buck converter experiments, we took longer to synthesize
a controller to satisfy overshoot and FWL effects aspects due to the extensive state exploration produced by the
underlying model and the property under verification.

It is worth mentioning that both buck and boost converters exhibit fast dynamics with poor damping. Thus,
synthesizing state-feedback controllers to guarantee some settling time property, as reported in Table 3, is not
a challenging task. Furthermore, although the damping is poor, meeting only overshoot requirements is also
easily achieved by sacrificing the response speed since those converters are open-loop stable systems. However,
meeting tight settling time and overshooting requirements simultaneously become challenging.

Table 5 shows the results considering both settling time and the overshoot properties. This experiment
helped evaluate our proposed synthesizer because in the Buck converter, considering both properties and FWL
effects, our tool tried to synthesize a digital controller. However, only after the 29th attempt could it synthesize
a satisfiable controller. It happens because our synthesizer stage struggles to produce candidate solutions using
the GA algorithm, considering the underlying state-space model that can meet the given specification. In this
respect, the verifier stage must also check more challenging verification conditions, considering settling time
and overshoot properties.

Table 3.   Experiments for settling time only. It contains information about the converter name, FWL format,
synthesis result, the synthesized controller, number of attempts to synthesize the controller, and total synthesis
time.

Name FWL Result Controller Attempts ET (dd:hh:mm:ss)

Buck converter 〈4, 4〉 SUCCESFUL [0.312500, 0.062500] 6 7:00:48:00

Buck converter 〈8, 8〉 SUCCESFUL [0.4687500000, 0.0078125000] 1 1:03:35:00

Buck converter 〈16, 16〉 SUCCESFUL [0.437271118178390983, 0.011184692383179000] 1 1:04:53:00

Boost converter 〈4, 4〉 SUCCESFUL [0.250000, 0.250000] 1 0:02:46:00

Boost converter 〈8, 8〉 SUCCESFUL [0.3085937500, 0.2265625000] 1 0:02:01:00

Boost converter 〈16, 16〉 SUCCESFUL [0.302810668955235007, 0.155609130864474005] 1 0:02:21:00

Table 4.   Experiments for overshoot only. It contains information about the converter name, FWL format,
synthesis result, the synthesized controller, number of attempts to synthesize the controller, and total synthesis
time.

Name FWL Result Controller Attempts ET (dd:hh:mm:ss)

Buck converter 〈4, 4〉 SUCCESFUL [0.250000, 0.062500] 1 1:16:12:00

Buck converter 〈8, 8〉 SUCCESFUL [0.4726562500, 0.0078125000] 1 1:00:20:00

Buck converter 〈16, 16〉 SUCCESFUL [0.449462890639727997 0.011352539062871999] 1 1:05:50:00

Boost converter 〈4, 4〉 SUCCESFUL [0.312500, 0.250000] 1 0:03:19:00

Boost converter 〈8, 8〉 SUCCESFUL [0.3125000000, 0.2890625000] 1 0:03:51:00

Boost converter 〈16, 16〉 SUCCESFUL [0.314514160166555978, 0.312530517588366030] 1 0:03:37:00

Table 5.   Experiments for both settling time and overshoot. It contains information about the converter name,
FWL format, synthesis result, the synthesized controller, number of attempts to synthesize the controller, and
total synthesis time.

Name FWL Result Controller Attempts ET (dd:hh:mm:ss)

Buck converter 〈4, 4〉 SUCCESFUL [0.312500, 0.062500] 29 21:16:04:00

Buck converter 〈8, 8〉 SUCCESFUL [0.4843750000, 0.0078125000] 1 1:01:05:00

Buck converter 〈16, 16〉 SUCCESFUL [0.486404418961251028, 0.011489868164439001] 1 1:10:12:00

Boost converter 〈4, 4〉 SUCCESFUL [0.250000, 0.187500] 1 0:02:04:00

Boost converter 〈8, 8〉 SUCCESFUL [0.3125000000, 0.2812500000] 1 0:03:22:00

Boost converter 〈16, 16〉 SUCCESFUL [0.304702758799047013, 0.188201904303042011] 1 0:02:47:00

17

Vol.:(0123456789)

Scientific Reports | (2022) 12:15429 | https://doi.org/10.1038/s41598-022-19284-4

www.nature.com/scientificreports/

Figure 10 shows the response output for the buck converter system illustrated in “Buck converter system”
section. This response refers to the synthesized controller considering both settling time and overshoot specifica-
tion and FWL effects of the form 〈4, 4〉 in (a), 〈8, 8〉 in (b), and 〈16, 16〉 in (c). As we can see, DSVerifier, using the
proposed methodology, could successfully synthesize a controller in all cases ( 〈4, 4〉 , 〈8, 8〉 , and 〈16, 16〉 ). In our
experiment, we required a settling time of 1 ms and an overshoot of 45% , and all three synthesized controllers
met the requirements under FWL effects. In the 3 cases, for the required settling time, the response is already
in the settling time region, i.e., it meets the requirement. In addition, the overshoot in all 3 cases is under the
maximum required in these experiments. If we consider Fig. 4, we have a main loop where the learning module
(genetic algorithms) generates a candidate controller to test against our verification engine to see if it meets the
requirements. In the case of this experiment, it required to loop 29 times for FWL format 〈4, 4〉 , and one time
for the other two formats to find a controller that meets all the requirements, including the FWL effects, as we
can see in Table 5 (Column Attempts).

Figure 11 shows the response of the Boost converter system in “Boost converter system” section, when the
synthesized controller is applied. In all 3 cases—Fig. 11a–c, the required settling time ( ksr = tsr/Ts ) is already
in the settling time region (as the response reached the settling time region, it did not leave it anymore), which
means that the system meets this specific requirement. Adding to that, we also see that the overshoot in the

Figure 10.   Response output of the buck converter with different FWL effect formats, showing that our
controllers meet the requirements. (a) FWL 〈4, 4〉 (b) FWL 〈8, 8〉 (c) FWL 〈16, 16〉.

18

Vol:.(1234567890)

Scientific Reports | (2022) 12:15429 | https://doi.org/10.1038/s41598-022-19284-4

www.nature.com/scientificreports/

response is under the required one, which leads to meeting this requirement as well (calculated overshoot less
than 1% , much smaller than the required one—45% ). For all FWL formats evaluated in this work, our tool,
according to Fig. 4, only needed one attempt to generate a controller that met all the requirements.

One vital observation we noticed in the results is related to the experiment with the Buck converter, con-
sidering both settling time and overshoot and the FWL effects in format 〈4, 4〉 . In that experiment, DSVerifier
took total_attempts= 29 to synthesize a controller that met the requirements, representing 21 days to
finish the synthesis process. The reason why that happened is intriguing, given that for the other formats of
FWL, the methodology did not have a problem synthesizing a controller (about one day and one attempt). It can
be explained by the loss of performance due to the quantization. Indeed, it is easier to meet the step response
requirements with more bits since it produces a more extensive set of candidate controllers. Thus, the synthe-
sizer takes more time to produce a valid controller with the lowest number of bits in the FWL format because
of consecutive failed attempts.

Figure 11.   Response output of the boost converter with different FWL effect formats, showing that our
controllers meet the requirements. (a) FWL 〈4, 4〉 (b) FWL 〈8, 8〉 (c) FWL 〈16, 16〉.

19

Vol.:(0123456789)

Scientific Reports | (2022) 12:15429 | https://doi.org/10.1038/s41598-022-19284-4

www.nature.com/scientificreports/

Related work
The CEGIS synthesis technique can be regarded as the problem of computing correct-by-construction programs
from a set of high-level specifications. In recent years, methods to solve this kind of problem have been used in
different applications. For instance, Buchwald, Fried, and Hackin43 presented a fully automatic approach to create
probably correct rule libraries, from formal specifications of an instruction set architecture and a compiler IR,
using a hybrid approach that combines enumerative techniques with template-based CEGIS.

Abate et al.23,44 presented an approach to synthesizing safe digital feedback controllers for physical plants
represented as linear time-invariant models. That approach uses the CEGIS technique, which has two phases. The
first one synthesizes a static feedback controller that stabilizes a given system, but may not be safe for all initial
conditions. Safety is then verified via BMC or abstract acceleration: if the verification step fails, a counterexample
is provided to the synthesis engine and the process iterates until a safe controller is obtained.

Bloem et al.45 proposed an approach for the automatic synthesis of Byzantine-tolerant self-stabilizing systems
in the form of distributed labeled transition systems. In this work, the synthesis method takes, as input, a descrip-
tion of the network of processes and a specification in linear-time temporal logic and a bound on the number of
Byzantine processes in the same network. It encodes the existence of a solution into a problem in satisfiability
modulo theories (SMT) and then tries to synthesize correct implementations for all processes if they do exist.

Lv, Zhang, and Zhang46 presented a robust stabilization algorithm based on a periodic observer for linear
discrete-time periodic (LDP) systems. In their paper, the problem of state observer design is transformed into
the solution to the corresponding matrix equation, and an iterative algorithm is given based on the conjugate-
gradient (CG) algorithm. Initially, they consider the state observer design problem for linear discrete-time
periodic systems without disturbances and give the expected algorithm. In that way, they consider the case where
uncertain disturbances existed in a system’s parameters and provided an algorithm considering minimum norm
and robustness.

Farahani et al.47 automatically synthesize reactive controllers for cyber-physical systems subject to signal
temporal logic (STL) specifications. They explored three different methods for solving the required worst-case
model predictive control (MPC) problem: a multi-parametric mixed-integer linear programming (MILP) solu-
tion, a Monte Carlo approach, and a dual optimization scheme. In addition, the main goal of this work is to
obtain a controller that satisfies desired properties despite a potentially adversarial environment: the controller
must therefore be robust to uncertain exogenous actions.

Abate et al.14 presented an approach to program synthesis that combined the strengths of a counterexample-
guided inductive synthesizer with those of a theory solver. It is focused on one particular challenge for program
synthesizers: the generation of programs that require non-trivial constants. Unfortunately, that work does not
focus on the digital control system. Consequently, it does not consider FWL effects, showing the lack of research
that provides the analysis that our work targets.

Eriksen et al.48 presented an on-line controller technique for a signalized intersection. The controller reads
the current data from the radar sensors and uses it to learn a near-optimal controller at each control step. This
strategy uses machine learning techniques to synthesize near-optimal traffic light controllers. The authors have
shown that properly using more detailed information from radars can dramatically decrease the waiting times
and queue lengths. This work presented to be very good for solving this kind of problem. However, it does not
seem good enough for the application we are applying in the present work, given that it does not consider either
performance parameters in the controller or FWL effects.

The presented related work tackles different system synthesis applications, while some are restricted to safe
and stable controllers. Nonetheless, in control systems, performance requirements are of paramount importance
in the design phase of controllers, and, sometimes, designers do need that a system response meets a particular
settling time and/or overshoot. The main difference between those studies and the one presented here is that
the latter tackles performance requirements for digital control systems together with FWL effects. Indeed, FWL
effects impair the behavior of a system and can lead to critical mistakes, such as those caused by disregarding
the chosen hardware for a given final implementation. In that sense, our methodology provides a correct-by-
construction controller that already takes into account hardware issues (e.g., FWL effects). In addition, the fact
that we use GAs, which are capable of good convergence49, means there is potential for finding a solution for
different types of systems, given their optimization strategy.

Conclusion
This work assumes the main goal: the development of a correct-by-design methodology suitable to the synthesis
of digital controllers that meet performance requirements of control systems, i.e., settling time and overshoot,
concerning the step response and already considering FWL effects.

To this end, the development of synthesis and verification methodologies was supported by some algorithms
shown in this work, which helped on the formal verification process of performance requirements, consider-
ing the FWL effects. For the synthesis, such algorithms are used in the verification process, one of the CEGIS-
methodology stages, as another module of this synthesis scheme. Specifically, a genetic algorithm was used to
generate controller candidates.

As shown in “Experimental evaluation” section, the synthesis methodology implemented in the DSVerifier
tool was able to synthesize digital controllers in a variety of control-system benchmarks specially created for the
present work, which is also a contribution, i.e., a test database. The CEGIS technique was used as a synthesizing
method in an iterative way, where, at each iteration, a candidate controller is generated with the aid of a genetic
algorithm.

The experimental evaluations carried out in this work aim to show the application of the proposed synthe-
sis methodology to digital controllers that should meet the requirements of settling time, overshoot, or both,

20

Vol:.(1234567890)

Scientific Reports | (2022) 12:15429 | https://doi.org/10.1038/s41598-022-19284-4

www.nature.com/scientificreports/

simultaneously, already considering the FWL effects. The methodology developed in this work, implemented in
C++, as a new functionality of DSVerifier, synthesized most of the benchmarks used here.

Further work should include the support to parametric uncertainties by using non-deterministic verification.
In addition, the synthesis engine may benefit from using techniques ranging from machine learning to more
robust formulations for generating candidates in the synthesis scheme. Finally, it is also possible to extend our
methodology to MIMO systems.

Received: 28 January 2022; Accepted: 26 August 2022

References
	 1.	 Simons, R. Levers of Control: How Managers Use Innovative Control Systems to Drive Strategic Renewal (Harvard Business Press,

1994).
	 2.	 Chen, C.-T. Linear System Theory and Design (Oxford University Press, 1995).
	 3.	 Istepanian, R. & Whidborne, J. F. Digital Controller Implementation and Fragility: A Modern Perspective (Springer, 2012).
	 4.	 Bessa, I., Ismail, H., Palhares, R., Cordeiro, L. & Chaves Filho, J. E. Formal non-fragile stability verification of digital control systems

with uncertainty. IEEE Trans. Comput. 66, 545–552 (2017).
	 5.	 Wang, T. E., Garoche, P., Roux, P., Jobredeaux, R. & Feron, E. Formal analysis of robustness at model and code level. In HSCC

125–134 (ACM, 2016).
	 6.	 Abreu, R. B., Gadelha, M. Y. R., Cordeiro, L. C., de Lima Filho, E. B. & da Silva, W. S. Jr. Bounded model checking for fixed-point

digital filters. J. Braz. Comput. Soc. 22, 1 (2016).
	 7.	 Racchetti, L., Fantuzzi, C. & Tacconi, L. Verification and validation based on the generation of testing sequences from timing

diagram specifications in industrial automation. In IECON 002816–002821 (IEEE, 2015).
	 8.	 Nilsson, P. et al. Correct-by-construction adaptive cruise control: Two approaches. IEEE Trans. Control Syst. Technol. 24, 1294–1307

(2016).
	 9.	 Cavalcante, T. et al. Formal non-fragile verification of step response requirements for digital state-feedback control systems. J.

Control Autom. Electr. Syst. 31, 557–573 (2020).
	10.	 Jha, S., Gulwani, S., Seshia, S. A. & Tiwari, A. Oracle-guided component-based program synthesis. In Proceedings of the 32nd ACM/

IEEE International Conference on Software Engineering, Vol. 1, 215–224 (ACM, 2010).
	11.	 Kundu, A., Soto, M. G. & Prabhakar, P. Formal synthesis of stabilizing controllers for periodically controlled linear switched

systems. In 2019 Fifth Indian Control Conference (ICC) 484–489 (IEEE, 2019).
	12.	 Soto, M. G., Henzinger, T. A., Schilling, C. & Zeleznik, L. Membership-based synthesis of linear hybrid automata. In International

Conference on Computer Aided Verification 297–314 (Springer, 2019).
	13.	 Ravanbakhsh, H. & Sankaranarayanan, S. Counter-example guided synthesis of control Lyapunov functions for switched systems.

In 2015 IEEE 54th Annual Conference on Decision and Control (CDC) 4232–4239 (IEEE, 2015).
	14.	 Abate, A., David, C., Kesseli, P., Kroening, D. & Polgreen, E. Counterexample guided inductive synthesis modulo theories. In

International Conference on Computer Aided Verification 270–288 (Springer, 2018).
	15.	 Chaves, L. C., Ismail, H. I., Bessa, I. V., Cordeiro, L. C. & de Lima Filho, E. B. Verifying fragility in digital systems with uncertainties

using DSVerifier v2. 0. J. Syst. Softw. 153, 22–43 (2019).
	16.	 Deb, K. Introduction to genetic algorithms for engineering optimization. In New Optimization Techniques in Engineering 13–51

(Springer, 2004).
	17.	 Ismail, H. I., Bessa, I. V., Cordeiro, L. C., de Lima Filho, E. B. & Chaves Filho, J. E. Dsverifier: A bounded model checking tool for

digital systems. In Model Checking Software 126–131 (Springer, 2015).
	18.	 Cordeiro, L. C., de Lima Filho, E. B. & de Bessa, I. V. Survey on automated symbolic verification and its application for synthesising

cyber-physical systems. IET Cyper-Phys. Syst. Theory Appl. 5, 1–24 (2020).
	19.	 Davldek, V., Antonosova, M. & Psenicka, B. Finite word-length effects in digital state-space filters. Radioengineering 8, 1999 (1999).
	20.	 Yang, G.-H., Guo, X.-G., Che, W.-W. & Guan, W. Linear Systems: Non-fragile Control and Filtering (CRC Press, 2013).
	21.	 Gross, K. H. Formal specification and analysis approaches for spacecraft attitude control requirements. In Aerospace Conference

1–11 (IEEE, 2017).
	22.	 Jin, X., Donzé, A., Deshmukh, J. V. & Seshia, S. A. Mining requirements from closed-loop control models. IEEE Trans. Comput.

Aided Des. Integr. Circuits Syst. 34, 1704–1717 (2015).
	23.	 Abate, A. et al. Automated formal synthesis of provably safe digital controllers for continuous plants. Acta Inform. 57, 223–244

(2020).
	24.	 Chaves, L. et al. DSVerifier-aided verification applied to attitude control software in unmanned aerial vehicles. IEEE Trans. Reliab.

67, 1420–1441 (2018).
	25.	 Alur, R. et al. Syntax-guided synthesis. In Formal Methods in Computer-Aided Design (FMCAD) 2013 1–8 (IEEE, 2013).
	26.	 Ganai, M. & Gupta, A. SAT-Based Scalable Formal Verification Solutions (Springer, 2007).
	27.	 Tiwari, A., Rueß, H., Saïdi, H. & Shankar, N. A technique for invariant generation. In Tools and Algorithms for the Construction

and Analysis of Systems 113–127 (Springer, 2001).
	28.	 Zhang, Y. & Randall, R. Rolling element bearing fault diagnosis based on the combination of genetic algorithms and fast kurtogram.

Mech. Syst. Signal Process. 23, 1509–1517 (2009).
	29.	 Roeva, O., Fidanova, S. & Paprzycki, M. Population size influence on the genetic and ant algorithms performance in case of cultiva-

tion process modeling. In Recent Advances in Computational Optimization 107–120 (Springer, 2015).
	30.	 Guennebaud, G., Jacob, B. et al. Eigen. http://​eigen.​tuxfa​mily.​org (2010).
	31.	 Mallet, O. Galgo: Genetic algorithm in C++ with template metaprogramming and abstraction for constrained optimization. https://​

github.​com/​olmal​let81/​GALGO-2.0 (2017).
	32.	 Basilio, J. C. & Matos, S. R. Design of pi and pid controllers with transient performance specification. IEEE Trans. Educ. 45, 364–370

(2002).
	33.	 Skogestad, S. Simple analytic rules for model reduction and pid controller tuning. J. Process Control 13, 291–309 (2003).
	34.	 Fossas, E. & Olivar, G. Study of chaos in the buck converter. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 43, 13–25 (1996).
	35.	 Rosas-Caro, J. C., Ramirez, J. M., Peng, F. Z. & Valderrabano, A. A dc–dc multilevel boost converter. IET Power Electron. 3, 129–137

(2010).
	36.	 Babazadeh, Y., Babaei, E. & Sabahi, M. A new non-isolated buck-boost converter with high voltage gain and positive output volt-

age for renewable energy applications. In 2019 10th International Power Electronics, Drive Systems and Technologies Conference
(PEDSTC) 201–206 (IEEE, 2019).

	37.	 Maalandish, M., Hosseini, S., Jalilzadeh, T. & Pourjafar, S. A buck-boost dc/dc converter with high efficiency suitable for renewable
energies. Int. J. Emerg. Electr. Power Syst.https://​doi.​org/​10.​1515/​ijeeps-​2017-​0250 (2018).

http://eigen.tuxfamily.org
https://github.com/olmallet81/GALGO-2.0
https://github.com/olmallet81/GALGO-2.0
https://doi.org/10.1515/ijeeps-2017-0250

21

Vol.:(0123456789)

Scientific Reports | (2022) 12:15429 | https://doi.org/10.1038/s41598-022-19284-4

www.nature.com/scientificreports/

	38.	 Salim, K. et al. Low-stress and optimum design of boost converter for renewable energy systems. Micromachines 13, 1085 (2022).
	39.	 Dalakoti, V. & Chakraborty, D. Apple m1 chip vs intel (x86). EPRA Int. J. Res. Dev. 7, 207–211 (2022).
	40.	 Iordanov, P. & Halton, M. Discrete-time modelling and robust analysis of a buck converter. IFAC Proc. Vol. 45, 647–652 (2012).
	41.	 Alkrunz, M. F. et al. Design of discrete time controllers for DC–DC boost converter. Master’s thesis, Sakarya Üniversitesi (2015).
	42.	 Chaves, L. C., Ismail, H. I., de Bessa, I. V., Cordeiro, L. C. & de Lima Filho, E. B. Verifying fragility in digital systems with uncer-

tainties using DSVerifier v20. J. Syst. Softw. 153, 22–43. https://​doi.​org/​10.​1016/j.​jss.​2019.​03.​015 (2019).
	43.	 Buchwald, S., Fried, A. & Hack, S. Synthesizing an instruction selection rule library from semantic specifications. In Proceedings

of the 2018 International Symposium on Code Generation and Optimization 300–313 (ACM, 2018).
	44.	 Abate, A. et al. Automated formal synthesis of digital controllers for state-space physical plants. In International Conference on

Computer Aided Verification 462–482 (Springer, 2017).
	45.	 Bloem, R., Braud-Santoni, N. & Jacobs, S. Synthesis of self-stabilising and byzantine-resilient distributed systems. In International

Conference on Computer Aided Verification 157–176 (Springer, 2016).
	46.	 Lv, L., Zhang, Z. & Zhang, L. A periodic observers synthesis approach for ldp systems based on iteration. IEEE Access 6, 8539–8546

(2018).
	47.	 Farahani, S. S., Raman, V. & Murray, R. M. Robust model predictive control for signal temporal logic synthesis. IFAC-PapersOnLine

48, 323–328 (2015).
	48.	 Eriksen, A. B. et al. Uppaal stratego for intelligent traffic lights. In 12th ITS European Congress (2017).
	49.	 Sivanandam, S. & Deepa, S. Genetic algorithms. In Introduction to Genetic Algorithms 15–37 (Springer, 2008).

Acknowledgements
The work in this paper is partially funded by the EPSRC grants EP/T026995/1, EP/V000497/1, EU H2020
ELEGANT 957286, and Soteria project awarded by the UK Research and Innovation for the Digital Security by
Design (DSbD) Programme.

Author contributions
All authors contributed to the study conception. Software development and experiments were conducted by
T.C. The development of methodology, and creation of models were performed by T.C. and I.B. Supervision was
conducted by E.B.L.F. and L.C. The first draft of the manuscript was written by T.C. and all authors commented
on previous versions of the manuscript. All authors read and approved the final manuscript. L.C. was responsible
for funding acquisition.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​19284-4.

Correspondence and requests for materials should be addressed to L.C.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.1016/j.jss.2019.03.015
https://doi.org/10.1038/s41598-022-19284-4
https://doi.org/10.1038/s41598-022-19284-4
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Formal synthesis of non-fragile state-feedback digital controllers considering performance requirements for step response
	Preliminaries
	Digital dynamic systems.
	FWL effects in digital systems.
	CounterExample-guided inductive synthesis.

	Verifying non-fragile performance specification requirements
	Maximum overshoot estimation.
	Settling time invariant estimation.
	Settling time and overshoot verification algorithms.

	Non-fragile synthesis for performance requirements
	Generating a candidate controller K.
	Optimization problem to meet overshoot and settling time.

	Architecture of DSVerifier.

	Experimental evaluation
	Experimental objectives.
	Experimental setup.
	Description of the benchmarks.
	Experimental results.
	Threats to validity.
	Experiments with power converter models.
	Buck converter system.
	Boost converter system.
	Results.

	Related work
	Conclusion
	References
	Acknowledgements

