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Abstract

Background: Reference-guided read alignment and variant genotyping are prone to reference allele bias,
particularly for samples that are greatly divergent from the reference genome. A Hereford-based assembly is the
widely accepted bovine reference genome. Haplotype-resolved genomes that exceed the current bovine reference
genome in quality and continuity have been assembled for different breeds of cattle. Using whole genome
sequencing data of 161 Brown Swiss cattle, we compared the accuracy of read mapping and sequence variant
genotyping as well as downstream genomic analyses between the bovine reference genome (ARS-UCD1.2) and a
highly continuous Angus-based assembly (UOA_Angus_1).

Results: Read mapping accuracy did not differ notably between the ARS-UCD1.2 and UOA_Angus_1 assemblies. We
discovered 22,744,517 and 22,559,675 high-quality variants from ARS-UCD1.2 and UOA_Angus_1, respectively. The
concordance between sequence- and array-called genotypes was high and the number of variants deviating from
Hardy-Weinberg proportions was low at segregating sites for both assemblies. More artefactual INDELs were
genotyped from UOA_Angus_1 than ARS-UCD1.2 alignments. Using the composite likelihood ratio test, we detected
40 and 33 signatures of selection from ARS-UCD1.2 and UOA_Angus_1, respectively, but the overlap between both
assemblies was low. Using the 161 sequenced Brown Swiss cattle as a reference panel, we imputed sequence variant
genotypes into a mapping cohort of 30,499 cattle that had microarray-derived genotypes using a two-step
imputation approach. The accuracy of imputation (Beagle R2) was very high (0.87) for both assemblies. Genome-wide
association studies between imputed sequence variant genotypes and six dairy traits as well as stature produced
almost identical results from both assemblies.

Conclusions: The ARS-UCD1.2 and UOA_Angus_1 assemblies are suitable for reference-guided genome analyses in
Brown Swiss cattle. Although differences in read mapping and genotyping accuracy between both assemblies are
negligible, the choice of the reference genome has a large impact on detecting signatures of selection that already
reached fixation using the composite likelihood ratio test. We developed a workflow that can be adapted and reused
to compare the impact of reference genomes on genome analyses in various breeds, populations and species.
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Background
Representative reference genomes are paramount for
genome research. A reference genome is an assembly of
digital nucleotides that are representative of a species’
genetic constitution. Like the coordinate system of a
two-dimensional map, the coordinates of the reference
genome unambiguously point to nucleotides and anno-
tated genomic features. Because the physical position and
alleles of sequence variants are determined according to
reference coordinates, the adoption of a universal refer-
ence genome is required to compare findings across stud-
ies. Otherwise, the conversion of genomic coordinates
between assemblies is necessary [1]. Updates and amend-
ments to the reference genome change the coordinate
system.
Reference genomes of important farm animal species

including cattle, pig and chicken were assembled more
than a decade ago using bacterial artificial chromosome
and whole-genome shotgun sequencing [2–4]. The initial
reference genome of domestic cattle (Bos taurus taurus)
was generated from a DNA sample of the inbred Here-
ford cow �L1 Dominette 01449� [3, 5]. An annotated
bovine reference genome enabled systematic assessment
and characterization of sequence variation within and
between cattle populations using reference-guided align-
ment and variant detection [3, 6]. A typical genome-wide
alignment of DNA sequences from aB. taurus taurus indi-
vidual differs at between 6 and 8 million single nucleotide
polymorphisms (SNPs) and small (<50 bp) insertions
and deletions (INDELs) from the reference genome
[7, 8]. More variants are detected in cattle with greater
genetic distance from the Hereford breed [9]. The bovine
reference genome neither contains allelic variation nor
nucleotides that are private to animals other than �L1
Dominette 01449�. As a result, read alignments may
be erroneous particularly at genomic regions that dif-
fer substantially between the sequenced individual and
the reference genome [10]. The use of consensus refer-
ence genomes or variation-aware reference graphs may
mitigate this type of bias [11–13].
The quality of reference genomes improved spectac-

ularly over the past 15 years. Decreasing error rates
and increasing outputs of long-read (>10 Kb) sequenc-
ing technologies such as PacBio single molecule real-
time (SMRT) [14] and Oxford Nanopore sequencing
[15] revolutionised the assembly of reference genomes.
Sophisticated genome assemblymethods enable to assem-
ble gigabase-sized and highly-repetitive genomes from
long sequencing reads at high continuity and accuracy
[16–18]. The application of “trio-binning” [19] facilitates
the de novo assembly of haplotype-resolved genomes that
exceed in quality and continuity all previously assembled
reference genomes. This approach now offers an oppor-
tunity to obtain reference-quality genome assemblies and

identify hitherto undetected variants in non-reference
sequences, thus making the full spectrum of sequence
variation amenable to genetic analyses [17, 19].
Reference-quality assemblies are available for Here-

ford (ARS-UCD1.2) [20], Angus (UOA_Angus_1) [17]
and Highland cattle [21]. In addition, reference-quality
assemblies are available for yak (Bos grunniens) [21] and
Brahman (Bos taurus indicus) [17] which are closely
related to taurine cattle. Any of these resources may
serve as a reference for reference-guided sequence read
alignment, variant detection and annotation. Linear map-
ping and sequence variant genotyping accuracy may be
affected by the choice of the reference genome and
the divergence of the DNA sample from the refer-
ence genome [22–25]. It remains an intriguing question,
which reference genome enables optimum read mapping
and variant detection accuracy for a particular animal
[11–13].
Here, we assessed the accuracy of reference-guided

read mapping and sequence variant detection in 161
Brown Swiss (BSW) cattle using two highly continuous
bovine genome assemblies that were created from Here-
ford (ARS-UCD1.2) and Angus (UOA_Angus_1) cattle.
Moreover, we detect signatures of selection and per-
form sequence-based association studies to investigate the
impact of the reference genome on downstream genomic
analyses.

Results
Short paired-end whole-genome sequencing reads of 161
BSW cattle (113 males, 48 females) were considered for
our analysis. All raw sequencing data are publicly avail-
able at the Sequencing Read Archive of the NCBI [26] or
the European Nucleotide Archive of the EMBL-EBI [27].
Accession numbers are listed in the Supplementary File 1:
Table S1.

Alignment quality and depth of coverage
Following the removal of adapter sequences, and reads
and bases of low sequencing quality, between 173 and
1,411 million reads per sample (mean: 360 ± 165 million
reads) were aligned to expanded versions of the Hereford-
based ARS-UCD1.2 and the Angus-based UOA_Angus_1
assemblies that included sex chromosomal sequences and
unplaced scaffolds (see Material and Methods) using
a reference-guided alignment approach. The Hereford
assembly is a primary assembly because it was created
from a purebred animal [20]. The Angus assembly is
haplotype-resolved because it was created from an Angus
x Brahman cross using “trio-binning” [17]. The average
number of reads per sample that aligned to sex chromo-
somes, the mitochondrial genome and unplaced contigs
were slightly higher for UOA_Angus_1 (66 ± 39 million)
than ARS-UCD1.2 (64 ± 38 million).
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We considered the 29 autosomes to investigate align-
ment quality. The total length of the autosomes was
2,489,385,779 bp for ARS-UCD1.2 and 2,468,157,877 bp
for UOA_Angus_1. An average number of 295 ± 131 and
293 ± 130 million reads per sample aligned to autosomal
sequences of ARS-UCD1.2 and UOA_Angus_1, respec-
tively. The slightly higher number of reads that mapped
to ARS-UCD1.2 is likely due to its longer autosomal
sequence. In order to ensure consistency across all anal-
yses performed, we retained 263 ± 118 (89.28%) and 261
± 117 (89.17%) uniquely mapped and properly paired
reads (i.e., all reads except those with a SAM-flag value
of 1796) that had mapping quality higher than 10 (high-
quality reads hereafter) per sample, as such reads qualify
for sequence variant genotyping using the best practice
guidelines of the Genome Analysis Toolkit (GATK) [28,
29] (Table 1). The number of reads that mapped to the
autosomes but were discarded due to lowmapping quality
(either SAM-flag 1796 or MQ <10) were almost identi-
cal (32 ± 20 million) for both assemblies (Supplementary
File 2: Table S2). Most of the discarded reads (83.37%
for ARS-UCD1.2 and 82.29% for UOA_Angus_1) were
flagged as duplicates.
The mean percentage of high-quality reads was

slightly higher (0.10 ± 0.63) for the ARS-UCD1.2 than
UOA_Angus_1 autosomes but greater differences existed
at some chromosomes. The proportion of high-quality
reads was higher for the ARS-UCD1.2 assembly than the
UOA_Angus_1 assembly at 16 out of the 29 autosomes.
The greatest difference was observed for chromosome
20, for which the proportion of high-quality reads was
2.03 percent points greater for the ARS-UCD1.2 assem-
bly than the UOA_Angus_1 assembly (P = 4.5 x 10-4). Of
8.59 ± 3.81 and 8.69 ± 3.88 million reads that aligned
to chromosome 20 of ARS-UCD1.2 and UOA_Angus_1,
respectively, 7.66 ± 3.42 and 7.57 ± 3.38 million were
high-quality reads. Among the 13 autosomes for which
the percentage of high-quality reads was greater for the
UOA_Angus_1 than ARS-UCD1.2 assembly, the greatest

difference (0.75 percent points) was observed for chromo-
some 13.
Average genome coverage ranged from 8.8- to 62.4-fold

per sample for both assemblies. The mean coverage of
the BAM files was nearly identical for the ARS-UCD1.2
(14.13 ± 7.26) and UOA_Angus_1 (14.11 ± 7.25) assem-
bly. Chromosome wise, no differences were detected
(P = 0.36) across the two assemblies considered. The
mean coverage was between 13.76 (chromosome 19) and
14.45 (chromosome 27) for ARS-UCD1.2 and between
13.76 (chromosome 19) and 14.52 (chromosome 14) for
UOA_Angus_1.

Sequence variant genotyping and variant statistics
Single nucleotide polymorphisms (SNPs), insertions and
deletions (INDELs) were discovered from the BAM files
following the GATK best practice guidelines [28, 29].
Using the HaplotypeCaller and GenotypeGVCFs modules
of GATK, we detected 24,760,861 and 24,557,291 autoso-
mal variants from the ARS-UCD1.2 and UOA_Angus_1
alignments, respectively, of which 22,744,517 (91.86%)
and 22,559,675 (91.87%) high-quality variants were
retained after applying site-level hard filtration using the
VariantFiltration module of GATK (Supplementary File 3:
Table S3). Themean transition/transversion ratio was 2.15
for the high-quality variants detected from either of the
assemblies.
For 32.40 and 33.80% of the high-quality variants, the

genotype of at least one out of 161 BSW samples was
missing using the ARS-UCD1.2 and UOA_Angus_1 align-
ments, respectively. Across all chromosomes, the number
of missing genotypes was slightly higher (P = 0.087) for
variants called from UOA_Angus_1 than ARS-UCD1.2
alignments. The percentage of variants withmissing geno-
types was highest on chromosome 12 in both assem-
blies. At least one missing genotype was observed for
49.79 and 37.39% of the chromosome 12 variants for
the UOA_Angus_1 and ARS-UCD1.2-called genotypes.
Beagle [30] (version 4.1) phasing and imputation was

Table 1 Mapping statistics for the 161 BSW samples

Parameter Unit ARS-UCD1.2 UOA_Angus_1

Autosomal reads Million 47,502 47,128

Million / sample 295 ± 131 293 ± 130

Autosomal high-quality reads Million 42,418 42,029

Million / sample 263 ± 118 261 ± 117

% / sample 89.28 ± 5.06 89.17 ± 5.06

% / chromosome 89.28 ± 0.34 89.17 ± 0.56

Coverage fold / sample 14.13 ± 7.26 14.11 ± 7.25

fold / chromosome 14.13 ± 0.14 14.11 ± 0.15

Summary statistics extracted from the BAM files after aligning the samples to either the ARS-UCD1.2 or UOA_Angus_1 assembly. Uniquely mapped and properly paired reads
with MQ >10 are considered as high-quality reads. The percentage of autosomal reads that are high-quality reads is calculated per sample and per chromosome. Coverage
of high-quality reads is calculated per sample and per chromosome
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Table 2 Comparisons between array-called and sequence variant genotypes

GATK hard filtering GATK hard filtering + Beagle imputation

NRS NRD CONC NRS NRD CONC

ARS-UCD1.2 99.14 2.75 98.13 99.77 0.60 99.59

UOA_Angus_1 99.37 2.45 98.09 99.88 0.47 99.64

Non-reference sensitivity (NRS), non-reference discrepancy (NRD) and the concordance (CONC) between array-called and sequence-called genotypes for 112 BSW cattle that
had BovineHD and sequence-called genotypes at 530,372 autosomal SNPs

applied to improve the genotype calls from GATK and
impute the missing genotypes.
112 sequenced animals that had an average fold

sequencing coverage of 13.47 ± 6.45 and 13.46 ±
6.44 when aligned to ARS-UCD1.2 and UOA_Angus_1,
respectively, also had Illumina BovineHD array-called
genotypes at 530,372 autosomal SNPs. We considered
the microarray-called genotypes as a truth set to cal-
culate non-reference sensitivity, non-reference discrep-
ancy and the concordance between array-called and
sequence-called genotypes (Table 2). The average concor-
dance between array- and sequence-called genotypes was
greater than 98 and 99.5% before and after Beagle imputa-
tion, respectively, for variants called from both assemblies.
We observed only slight differences in the concordance
metrics between variants called from either ARS-UCD1.2
or UOA_Angus_1, indicating that the genotypes of the
112 BSW cattle were accurately called from both assem-
blies, and that Beagle phasing and imputation further
increased the genotyping accuracy.
Because Beagle phasing and imputation improved the

genotype calls from GATK, the subsequent analyses are
based on the imputed sequence variant genotypes. After
imputation, 81,674 (0.36%, 72,121 SNPs, 9,553 INDELs)
and 104,217 (0.46%, 75,342 SNPs, 28,875 INDELs) vari-
ants were fixed for the alternate allele in ARS-UCD1.2
and UOA_Angus_1, respectively (Supplementary File 3:
Table S3). Both the number and the percentage of vari-
ants fixed for the alternate allele was higher (0.10 percent
points the latter, P = 0.027) for the UOA_Angus_1 than
the ARS-UCD1.2 assembly. While the proportion and
number of SNPs fixed for the alternate allele did not differ
significantly (P = 0.65) between the assemblies, 0.61 per-
cent points more INDELs (P = 1.45 x 10-9) were fixed for
the alternate allele in UOA_Angus_1 than ARS-UCD1.2.
22,488,261 and 22,289,905 variants were polymorphic
(i.e., minor allele count ≥ 1) among the 161 BSW ani-
mals in ARS-UCD1.2 and UOA_Angus_1, respectively
(Table 3). The number of variants detected per sample
ranged from 6.91 to 8.58 million (7.28 ± 0.15) in ARS-
UCD1.2 and from 6.93 to 8.44 million (7.26 ± 0.15) in
UOA_Angus_1. More SNPs and INDELs were discovered
for the ARS-UCD1.2 than UOA_Angus_1 assembly.
To take the length of the autosomes into consideration,

we calculated the number of variants per Kb. While the

overall variant and INDEL density was slightly higher for
the ARS-UCD1.2 assembly, the SNP density was slightly
higher for the UOA_Angus_1 assembly (Table 3).
The number and density of high-quality variants seg-

regating on the 29 autosomes was 2.04 (P = 0.51) and
0.45 (P = 0.39) percent points higher, respectively, for the
ARS-UCD1.2 than the UOA_Angus_1 assembly (Fig. 1,
Supplementary File 4: Figure S1). The difference in the
number of variant sites detected from both assemblies
was lower for SNPs (1.71 percent points) than INDELs
(4.28 percent points). Chromosomes 9 and 12 were the
only autosomes for which more variants were detected
using the UOA_Angus_1 than ARS-UCD1.2 assembly.
Differences in the number of variants detected were evi-
dent for chromosomes 12 and 28. While chromosome 12
has 29% more variants when aligned to UOA_Angus_1,
chromosome 28 has 31% more variants when aligned to
ARS-UCD1.2.
The variant density of 26 out of the 29 autosomes

(except for chromosomes 9, 12 and 26) was higher for the
ARS-UCD1.2 assembly than the UOA_Angus_1 assembly.
However, the density of INDELs was only higher for chro-
mosome 12. Chromosome 23 had a higher variant density
than all other chromosomes for both assemblies, with
an average number of 13 variants detected per Kb. The
high variant density at chromosome 23 primarily resulted
from an excess of polymorphic sites within a ∼5 Mb seg-
ment (between 25 and 30 Mb in the ARS-UCD1.2 and
between 22 and 27 Mb in UOA_Angus_1) encompass-
ing the bovine major histocompatibility complex (BoLA)
(Supplementary File 5: Figure S2). Other autosomes with
density above 10 variants per Kb for both assemblies
were chromosomes 12, 15 and 29. We observed the least
variant density (∼8 variants per Kb) at chromosome 13.

Table 3 Variants segregating among 161 BSW samples

ARS-UCD1.2 UOA_Angus_1

Non-fixed variants (per Kb) 22,488,261 (9.03) 22,289,905 (9.03)

Non-fixed SNPs (per Kb) 19,557,039 (7.86) 19,446,648 (7.88)

Non-fixed INDELs (per Kb) 2,931,222 (1.18) 2,843,257 (1.15)

Number of high-quality non-fixed variants discovered after aligning the samples to
ARS-UCD1.2 and UOA_Angus_1 assemblies. Numbers in parentheses reflect the
variant density (number of variants per Kb) along the autosomes
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Fig. 1 Total number of variants of autosomes for both assemblies. Number of variants detected on autosomes when the 161 BSW samples are
aligned to the ARS-UCD1.2 (blue) and UOA_Angus_1 (orange) assembly

Chromosome 12 carries a segment with an excess of vari-
ants at ∼70 Mb in both assemblies. Visual inspection
revealed that the segment with an excess of polymor-
phic sites was substantially larger in UOA_Angus_1 (7.6
Mb) than ARS-UCD1.2 (3.5 Mb) (Fig. 2). The variant-rich
region at chromosome 12 coincides with a large seg-
mental duplication that compromises reference-guided
variant genotyping from short-read sequencing data and
that has been described earlier [31–33]. Because of
the greater number of variants and variant density in
UOA_Angus_1, this extended region had a large impact
on the cumulative genome-wide metrics presented in
Table 3. When the same metrics were calculated without
chromosome 12, the average density of both SNPs and
INDELs was higher for ARS-UCD1.2 than UOA_Angus_1
(Supplementary File 6: Table S4). Segments with an
excess of polymorphic sites were also detected on the
ARS-UCD1.2 chromosomes 4 (113-114 Mb), 5 (98-105
Mb), 10 (22-26 Mb), 18 (60-63 Mb), and 21 (20-21
Mb). The corresponding regions in the UOA_Angus_1
assembly showed the same excess of polymorphic sites.
However, these regions were shorter, and their vari-
ant density was lower compared to the extended seg-
ment at chromosome 12. The strikingly higher number
(+31%) of variants discovered at chromosome 28 for ARS-
UCD1.2 than UOA_Angus_1 was due to an increased
length of chromosome 28 in the ARS-UCD1.2 assembly
(Fig. 2).
Of 22,488,261 and 22,289,905 high-quality non-

fixed variants, 848,100 (3.78%) and 857,206 (3.83%)
had more than two alleles in the ARS-UCD1.2 and
UOA_Angus_1 alignments, respectively (Supplementary
File 7: Table S5). Most (69.75% for ARS-UCD1.2 and
69.09% for UOA_Angus_1) of the multi-allelic sites were
INDELs. The difference in the percentage of multiallelic

SNPs across assemblies was negligible. However, the
difference in percentage of multiallelic INDELs was 0.69
percent points higher (P = 2.55 x 10-9) for UOA_Angus_1
than ARS-UCD1.2 autosomes.
In order to detect potential flaws in sequence variant

genotyping, we investigated if the genotypes at the high-
quality non-fixed variants agreed with Hardy-Weinberg
proportions. We observed 218,734 (0.97%) and 243,408
(1.09%) variants for ARS-UCD1.2 and UOA_Angus_1,
respectively, for which the observed genotypes deviated
significantly (P < 10-8, Supplementary File 7: Table S5)
from expectations. The proportion of high-quality non-
fixed variants for which the genotypes do not agree
with Hardy-Weinberg proportions is 0.12 percent points
higher for the UOA_Angus_1 than ARS-UCD1.2 assem-
bly. At chromosome 12, 3.29 percent points more vari-
ants deviated from Hardy-Weinberg proportions for
the UOA_Angus_1 than the ARS-UCD1.2 assembly
(Supplementary File 8: Figure S3); more than twice
the difference observed for any other autosome. When
variants located on chromosome 12 were excluded
from this comparison, we observed 199,304 (0.92%)
and 180,264 (0.85%) variants for the ARS-UCD1.2 and
UOA_Angus_1 assembly, respectively, for which the
observed genotypes deviated significantly (P < 10-8) from
expectations.

Functional annotation of polymorphic sites
Using the VEP software, we predicted functional con-
sequences based on the Ensembl genome annotation
for 19,557,039 and 19,446,648 SNPs, and 2,931,222
and 2,843,257 INDELs, respectively, that were discov-
ered from the ARS-UCD1.2 and UOA_Angus_1 align-
ments. Most SNPs were in either intergenic (66.30%
and 56.56%) or intronic regions (32.55% and 42.09%) for
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a

b

Fig. 2 Density of variants across chromosomes 12 and 28. The number of variants within non-overlapping windows of 10 Kb for chromosome 12 (a)
and 28 (b). The x-axis indicates the physical position along the chromosome (in Mb). The number of variants within each 10 Kb window is shown on
the y-axis. Assembly ARS-UCD1.2 is displayed above the horizontal line (blue) and assembly UOA_Angus_1 is displayed below the horizontal line
(orange)

ARS-UCD1.2 and UOA_Angus_1, respectively (Table 4,
Supplementary File 9: Table S6). Only 224,549 and 262,775
(1.15% and 1.35%) of the SNPs were in exons for ARS-
UCD1.2 and UOA_Angus_1, respectively. The majority
of INDELs was in either intergenic (65.76% and
55.95%) or intronic regions (33.84% and 43.47%) for
ARS-UCD1.2 and UOA_Angus_1, respectively (Table 4,
Supplementary File 9: Table S6). Only 11,561 and 16,391
(0.40% and 0.58%) INDELs were in exonic sequences.
While the number and proportion of variants in cod-
ing regions was similar for both assemblies, we observed
marked differences in the number of variants annotated

to intergenic and intronic regions. The percentage of
SNPs and INDELs annotated to intergenic regions is
9.74 and 9.81 percent points higher, respectively, for the
ARS-UCD1.2 than UOA_Angus_1 assembly. In con-
trast, the percentage of SNPs and INDELs annotated
to intronic regions is 9.54 and 9.63 percent points
higher, respectively, for the UOA_Angus_1 than the ARS-
UCD1.2 assembly. According to the Ensembl annota-
tion of the autosomal sequences, intergenic, intronic
and exonic regions span respectively 61.53, 34.77 and
3.80% in ARS-UCD1.2 and 52.32, 42.32 and 5.36% in
UOA_Angus_1.
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Table 4 Number of SNPs and INDELs annotated using the VEP software per region and assembly

ARS-UCD1.2 UOA_Angus_1

SNPs INDELs SNPs INDELs

Exonic regions (%) 224,549 (1.15) 11,561 (0.40) 262,775 (1.35) 16,391 (0.58)

Intronic regions (%) 6,365,765 (32.55) 992,015 (33.84) 8,185,503 (42.09) 1,236,006 (43.47)

Intergenic regions (%) 12,966,725 (66.30) 1,927,646 (65.76) 10,998,370 (56.56) 1,590,860 (55.95)

Annotated SNPs and INDELs are classified by region where detected. The total number of annotated variants per assembly and region are displayed here. The table lists only
the most severe annotation. The percentage of variants placed in each region per variant type and assembly is shown between parentheses

Either moderate or high impacts on protein function
were predicted for 89,812 and 103,576 SNPs, and 10,259
and 11,847 INDELs (0.46 and 0.53% of the total annotated
SNPs and 0.35 and 0.41% of the total annotated INDELs),
respectively, that were discovered from ARS-UCD1.2 and
UOA_Angus_1 alignments (Tables 5 and 6). The num-
ber of variants with putatively high or moderate effects
was higher for the UOA_Angus_1 than ARS-UCD1.2
assembly for 14 of 16 functional classes of annotations.
Differences across all autosomes were observed for SNPs
that potentially affect splice acceptor variants (345 for
ARS-UCD1.2 and 395 for UOA_Angus_1, P = 0.032)
and SNPs that potentially cause the loss of a stop codon
(155 for ARS-UCD1.2 and 218 for UOA_Angus_1, P =
0.037). Differences across all autosomes also resulted for
INDELs that potentially cause inframe deletions (1,761 for
ARS-UCD1.2 and 1,972 for UOA_Angus_1, P = 0.0035),
INDELs that potentially cause inframe insertions (850 for
ARS-UCD1.2 and 985 for UOA_Angus_1, P = 0.0013) and
INDELs that potentially cause the gain of a stop codon
(218 for ARS-UCD1.2 and 288 for UOA_Angus_1, P =
0.016).

Signatures of selection
Next, we investigated how the choice of the reference
genome impacts the detection of putative signatures of
selection in the 161 BSW cattle. We used the composite
likelihood ratio (CLR) test to identify beneficial adaptive
alleles that are either close to fixation or recently reached
fixation [34]. As information on ancestral and derived

Table 5 SNPs in high or moderate effect categories

ARS-UCD1.2 UOA_Angus_1

Missense variant* 86,634 99,773

Stop gained 1,466 1,911

Splice donor variant 506 525

Splice acceptor variant 345 395

Start lost 271 319

Stop lost 155 218

Number of SNPs in high and moderate (marked with an asterisk) effect categories
per assembly

alleles was not available, we considered 19,370,683 (ARS-
UCD1.2) and 19,255,155 (UOA_Angus_1) sequence vari-
ants that were either polymorphic or fixed for the alter-
nate allele in the 161 BSW cattle. The CLR test revealed
40 and 33 genomic regions (merged top 0.1% win-
dows) encompassing ∼2.5 and ∼2.48 Mb, and 29 and
27 genes, respectively, from the ARS-UCD1.2 and the
UOA_Angus_1 alignments (Fig. 3, Supplementary File 10:
Table S7, Supplementary File 11: Table S8).
A putative signature of selection on chromosome 6

encompassing the NCAPG gene had high CLR values in
both assemblies (CLRARS−UCD1.2 = 4064; CLRUOA_Angus_1
= 3838). Another signature of selection was detected for
both assemblies upstream the KITLG gene on chromo-
some 5 (ARS-UCD1.2: 18.48 - 18.86 Mb, CLRARS−UCD1.2
= 655; UOA_Angus_1: 18.48 - 18.84, CLRUOA_Angus_1 =
657). However, most of the signatures of selection were
detected for only one assembly. A putative selective sweep
on chromosome 13 was identified using the ARS-UCD1.2
but not the UOA_Angus_1 assembly. The putative selec-
tive sweep was between 11.5 and 12 Mb encompass-
ing three protein coding (CCDC3, CAMK1D and ENS-
BTAG00000050894) and one non-coding gene (ENSB-
TAG00000045070). The top window (CLR=1373) was
between 11,962,310 and 12,022,317 bp. In order to inves-
tigate why the CLR test revealed strong evidence for the

Table 6 INDELs in high or moderate effect categories

ARS-UCD1.2 UOA_Angus_1

Frameshift variant 6,289 7,435

Inframe deletion* 1,761 1,972

Inframe insertion* 850 985

Splice donor variant 291 298

Splice acceptor variant 292 292

Stop gained 218 288

Protein altering variant* 87 107

Start lost 20 14

Stop lost 11 15

Transcript ablation 5 6

Number of INDELs in high and moderate (marked with an asterisk) effect categories
per assembly



Lloret-Villas et al. BMC Genomics          (2021) 22:363 Page 8 of 17

Fig. 3 Genome wide distribution of selection signals from CLR. Selection signal distribution for both ARS-UCD1.2 (top panel) and UOA_Angus_1
assemblies (bottom panel). Red dotted line shows top 0.1% signal

presence of a signature of selection in ARS-UCD1.2 but
not in UOA_Angus_1, we investigated the corresponding
region in both assemblies using dot plots, variant density,
alternate allele frequency and alignment coverage. The
dot plot revealed that the orientation of bovine chromo-
some 13 is flipped in the UOA_Angus_1 assembly. The
putative signature of selection is next to but clearly dis-
tinct from a region with a very high SNP density and
sequence coverage in both assemblies (Supplementary
File 12: Figure S4). We detected 350 SNPs within the top
window (5.87 SNPs / Kb) of which 145 were fixed for
the alternate allele. Within the corresponding region on
UOA_Angus_1, we detected 209 SNPs (3.48 SNPs / Kb)
of which 13 were fixed for the alternate allele. This pat-
tern indicates that the 161 sequenced BSW cattle carry a
segment in the homozygous state that is more similar to
the UOA_Angus_1 than ARS-UCD1.2 reference genome.
We observed the reciprocal pattern for a putative selec-
tive sweep on chromosome 22 that was detected using
UOA_Angus_1 but not ARS-UCD1.2 (Supplementary
File 13: Figure S5).

Genome-wide association testing
Next, we imputed genotypes for autosomal variants
that were detected using the two assemblies for 30,499
cattle that had (partially imputed) Illumina BovineHD
array-derived genotypes. The average imputation accu-
racy (Beagle R2) was 0.87 ± 0.27 (median: 0.99) in the
ARS-UCD1.2 and 0.87 ± 0.26 (median: 0.99) in the
UOA_Angus_1 assembly. To prevent bias resulting from
imputation errors, we removed variants that had low
frequency (minor allele count < 3), low accuracy of
imputation (Beagle R2 < 0.5) or for which the observed

genotypes deviated significantly (P < 10-6) from Hardy-
Weinberg proportions from the imputed data. Following
quality control, 12,761,165 and 12,602,069 imputed vari-
ants were respectively retained (with imputation accuracy
of 0.95 ± 0.11 and 0.95 ± 0.10) for genetic investiga-
tions in the ARS-UCD1.2 and UOA_Angus_1 dataset
representing 56.75 and 56.54% of the 22,488,261 and
22,289,905 high-quality segregating variants. We then
carried out genome-wide association studies (GWAS)
between imputed sequence variant genotypes and six
traits, including stature and five dairy traits (milk yield,
fat yield, protein yield, protein and fat percentage), for
which between 11,294 and 12,396 cattle had phenotypes
in the form of de-regressed proofs. The resulting Manhat-
tan plots appeared very similar for both datasets (Fig. 4,
Supplementary File 14: Figure S6). Across the six traits
analysed, the number of significantly associated variants
was similar when the association analyses were performed
using imputed sequence variants identified in the two
builds. The difference in the number of significantly asso-
ciated variants (P< 10-8) between the two builds is mainly
due to variants that had P-values that were slightly above
the threshold of 10-8 in one but not the other build.
To investigate if causal variants can be readily iden-

tified from both assemblies, we inspected the QTL for
dairy traits at chromosomes 14 and 20, respectively, for
which p.Ala232Lys in DGAT1 encoding Diacylglycerol
O-Acyltransferase 1 and p.Phe279Tyr in GHR encod-
ing Growth Hormone Receptor have been proposed as
causal variants [35, 36]. The accuracy of imputation for
the Phe279Tyr variant in the GHR gene was 0.92 and
0.88 for the ARS-UCD1.2 and UOA_Angus_1 assembly,
respectively. In the association studies for milk yield, fat
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Fig. 4Manhattan plots for fat percentage, protein percentage, and milk yield. Number of significantly (P < 10-8) associated variants in GWAS for
seven traits. Estimated genomic heritability for stature and six dairy traits. Manhattan plots showing association of sequence variants - imputed
using ARS-UCD1.2 (blue and grey) and UOA_Angus_1 (orange and grey) - with fat percentage (a), protein percentage (b) and milk yield (c). The
orientation of some autosomes (e.g., chromosome 14 & chromosome 20) is flipped between ARS-UCD1.2 and UOA_Angus_1. The number (in
thousands) of variants - imputed using ARS-UCD1.2 (blue) and UOA_Angus_1 (orange) - significantly (P < 10-8) associated with the seven traits
considered for GWAS (d). Genomic heritability estimated using all autosomal variants imputed using ARS-UCD1.2 (blue) and UOA_Angus_1
assemblies (orange) (e). Standard errors of the estimates are indicated in read lines

percentage and protein percentage, for which chromo-
some 20 QTL was detected, the p.Phe279Tyr variant was
the most significantly associated variant in both assem-
blies. The SNP is located at 31,888,449 and 39,903,176 bp
on the ARS-UCD1.2 and UOA_Angus_1 build (the ori-
entation of chromosome 20 is flipped in UOA_Angus_1).
The frequency of the milk yield-increasing and fat and
protein content-decreasing tyrosine-encoding T allele was
12.90 and 13.02% in ARS-UCD1.2 and UOA_Angus_1,
respectively, and the P-values for milk yield, fat percent-
age and protein percentage were 3.18 x 10-12, 1.11 x 10-42,
6.98 x 10-50 and 7.40 x 10-14, 6.89 x 10-38, 5.57 x 10-48.
Two adjacent SNPs (ARS-UCD1.2: g.611019G>A

& g.611020C>A; UOA_Angus_1: g.81672806C>T &
g.81672805G>T; the orientation of chromosome 14
is flipped in UOA_Angus_1), in the coding sequence
of DGAT1 cause the p.Ala232Lys substitution that has
a large effect on milk yield and composition. In 161
sequenced BSW cattle of our study, the alternate allele
was detected in the heterozygous state in two and one
animals using the ARS-UCD1.2 and UOA_Angus_1
datasets. When imputed into array-derived genotypes of

the mapping cohort, the lysine variant had a frequency of
0.0082 (Beagle R2: 0.98) and 0.0002 (Beagle R2: 0.82) in
the ARS-UCD1.2 and UOA_Angus_1 imputed genotypes.
An association study between imputed sequence variant
genotypes and fat percentage revealed strong association
(P = 1.46 x 10-76) at the proximal region of chromosome
14 encompassing DGAT1 in the ARS-UCD1.2 data
(Fig. 4a). The top association signal resulted from a vari-
ant at position 420,486. The P-value of the p.Ala232Lys
variant was only slightly higher (P = 2.18 x 10-76). Using
the UOA_Angus_1 imputed data, we detected strong
association at the corresponding region (Fig. 4a). The
most significantly associated variant (P = 1.80 x 10-76)
was at 81,673,955 bp. However, the p.Ala232Lys variant
was not associated with fat percentage (P = 0.33). Also,
the DGAT1 gene was missing in the Ensembl annotation
of the UOA_Angus_1 assembly.
Next, we estimated the genomic heritability (h2) for

stature and six dairy traits using a genomic restrictedmax-
imum likelihood estimation (GREML) approach. There-
fore, we built a genomic relationship matrix separately
for each assembly using the genotypes of all imputed
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autosomal variants that had minor allele count > 3 and
imputation accuracy (Beagle R2) > 0.5. The estimates for
the genomic h2 did not differ for all seven traits (Fig. 4e).
We then partitioned (genomic) h2 by the 29 autosomes
using the two imputed datasets. As seen for the total h2,
we found no difference in variance explained by individual
autosomes between the two assemblies.

Discussion
We investigated whether the choice of the reference
genome impacts genomic analyses in BSW cattle that
have been sequenced with short paired-end reads. To
the best of our knowledge, such an evaluation had not
been performed so far in cattle. AHereford-based genome
assembly [20] is accepted by the bovine genomics commu-
nity as reference genome for reference-guided alignment
and variant detection in both taurine and indicine cattle
[8, 9]. Recently, the application of sophisticated methods
to assemble long sequencing reads provided reference-
quality assemblies for cattle breeds other than Hereford
[17, 21]. None of these novel reference-quality assemblies
has been considered as a reference genome for sequence
variant analysis so far. The genetic distance between the
reference genome and the target sample and the proper-
ties (GC content, genome size, proportion of repeats) of
the reference genome impact reference-guided mapping
and variant genotyping [17, 24, 25, 37, 38]. To investi-
gate reference-guided sequence analyses from different
assemblies, we aligned short sequencing reads of 161 BSW
cattle to the Hereford-based ARS-UCD1.2 and Angus-
based UOA_Angus_1 assemblies. Widely used metrics
(contig N50, scaffold N50, BUSCO completeness) sug-
gest that both assemblies are of reference quality [17, 20].
The sequence read mapping and variant genotyping accu-
racy did not differ notably between the ARS-UCD1.2 and
UOA_Angus_1 assemblies, indicating that both assem-
blies are suitable for reference-guided genome analyses
in BSW cattle. The BSW, Angus and Hereford breeds
are closely related as these breeds diverged relatively
recently [39]. Greater genetic distance between the tar-
get breed and the reference genome might compromise
mapping rate and alignment quality [24, 25, 40]. How-
ever, it is worth mentioning that the orientation of some
chromosomes is flipped in UOA_Angus_1 (i.e., the begin-
ning of the chromosome corresponds to the end in the
corresponding ARS-UCD1.2 entry). This does not affect
sequence read mapping and variant genotyping but needs
to be considered when comparing selection signatures and
association signals across assemblies.
The number and density of INDELs that segregate in

161 BSW cattle was slightly lower when variants were
called from the UOA_Angus_1 than ARS-UCD1.2 align-
ment. However, the proportion of multiallelic INDELs
and INDELs fixed for the alternate allele was higher in

the UOA_Angus_1 than ARS-UCD1.2 alignment. In fact,
the absolute number of INDELs fixed for the alternate
allele was three times higher when the sequence data
were aligned against the UOA_Angus_1 assembly. An
excess of artefactual INDELs in long-read sequencing-
based assemblies was noted by Watson and Warr [41].
Both the ARS-UCD1.2 and UOA_Angus_1 assembly were
constructed from PacBio continuous long reads. While
ARS-UCD1.2 was polished with short reads and manually
curated, this step was not as extensively carried out for the
UOA_Angus_1 assembly [17, 20]. Our results may indi-
cate that UOA_Angus_1 contains somewhat more arte-
factual INDELs than ARS-UCD1.2. However, the absolute
number of artefactual INDELs is low for both assem-
blies and their genotypes are likely to be discarded from
most downstream analyses as most of them will be fixed
for the alternate allele. Importantly, the concordance
between sequence- and array-called genotypes was very
high and the number of variants deviating from Hardy-
Weinberg proportions was very low at segregating sites for
both assemblies, indicating that reliable genotypes can be
obtained from both ARS-UCD1.2 and UOA_Angus_1.
The length of chromosomes 12 and 28 differs con-

siderably between the assemblies. A large segmental
duplication affects chromosome 12 in both assemblies.
This duplication compromises the mapping of sequenc-
ing reads, thereby causing misalignments and flaws in the
resulting genotypes [31–33]. An excess of variants, includ-
ing many for which the genotypes deviate from Hardy-
Weinberg proportions, was detected for both assemblies
within the segmental duplication. Because the segmen-
tal duplication is two times longer in UOA_Angus_1
than ARS-UCD1.2, the genome-wide number of vari-
ants, variant density, proportion of missing genotypes
and number of variants deviating from Hardy-Weinberg
proportions was higher using UOA_Angus_1. At chro-
mosome 28, the variant density was similar for both
assemblies, but the absolute number of variants detected
was lower for UOA_Angus_1 because the chromosome
was shorter. The UOA_Angus_1 assembly lacks approxi-
mately 9.5million bases that likely correspond to the ARS-
UCD1.2 chromosome 28 sequence from 36,496,661 bp
onwards. According to the Ensembl (build 101) annota-
tion of ARS-UCD1.2, this segment encompasses 67 genes
that are consequentlymissing in the autosomal annotation
of UOA_Angus_1.
Differences in the functional annotations predicted for

variants obtained from ARS-UCD1.2 and UOA_Angus_1
were evident from the output of the VEP tool. The
number of variants annotated to inter- and intragenic
regions differed between the assemblies because the
length of these features differed in the annotation files.
The accuracy and quality of the annotation depend on
whether a posterior manual validation of structures and
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functions is performed [42, 43]. An example for a striking
difference in the coding sequence between both annota-
tions is DGAT1, a gene that harbours a missense variant
(p.Ala232Lys) with a large impact on dairy traits [36].
Our GWAS identified a QTL for dairy traits at chro-
mosome 14 in both assemblies. The QTL encompassed
DGAT1 using the ARS-UCD1.2 annotation. However,
DGAT1 was not annotated at the corresponding sequence
of the UOA_Angus_1 assembly. Given the manual cura-
tion efforts of the ARS-UCD1.2 annotation in contrast to
the mere computational-based inference of annotations
for UOA_Angus_1 from the Ensembl database, we sus-
pect that the latter produces more erroneous annotations
[43]. In fact, the ARS-UCD1.2 assembly is currently the
widely accepted and universally applied bovine reference
genome [44, 45]. It is very unlikely that this will change
soon because besides the completeness and continuity of
the reference assembly, its functional annotation is crucial
for downstream analyses. While tools exist to lift physical
coordinates from one genomic context to another based
on flanking sequences, this approach is cumbersome.
Consequently, errors and gaps in the functional annota-
tions of bovine reference-quality assemblies other than
ARS-UCD1.2 are a major obstacle to switch references.
The application of an augmented reference genome that
contains ARS-UCD1.2 and its functional annotations as
backbone as well as variants detected in other assemblies
might solve such problems [12, 46].
We applied the composite likelihood ratio test to detect

alleles that are either close to fixation or already reached
fixation using genotypes obtained from both references.
Supplying information about ancestral and derived alleles
to the composite likelihood ratio test is required to deter-
mine which allele has been under selection and increases
the statistical power to detect signatures of selection
[34, 47]. Although we were unable to differentiate between
ancestral and derived alleles, we identified strong signa-
tures of selection from both assemblies at regions encom-
passing genes that were previously detected in different
cattle breeds including BSW [48–50]. However, quan-
tifying the overlap between the signatures of selection
detected in our and previous studies is not readily possi-
ble. First, a resource like AnimalQTLdb [51] that would
allow for a systematic assessment of signatures of selec-
tion across studies does not exist. Second, differences in
marker density and parameter settings (e.g., folded vs.
unfolded site frequency spectrum) may affect the map-
ping precision and preclude an immediate comparison
between studies. Third, the use of different assemblies,
as it was the case in our study, results in coordinates
that need to be lifted from one to another assembly. By
visually inspecting the genes encompassed by the signa-
tures of selection and manually lifting coordinates from
ARS-UCD1.2 to UOA_Angus_1, we were able to confirm

that the signatures of selection at chromosome 6 encom-
passing the NCAPG and on chromosome 5 upstream
KITLG were indeed identical between both assemblies
and detected previously in BSW cattle [50, 52]. This
finding suggests that plausible signatures of selection
can be identified using folded site frequency spectrum.
However, we also detected signatures of selection that
did not overlap between both assemblies. For instance,
a strong selective sweep on chromosome 13 was only
detected using the ARS-UCD1.2 assembly, while a puta-
tive sweep on chromosome 22 was only detected using the
UOA_Angus_1 assembly. These differences were unex-
pected because the two assemblies were constructed from
breeds that diverged relatively recent. In fact, Hereford
and Angus are both taurine beef breeds that originate
from Great Britain and phylogenetic analyses suggest that
they are closely related [39]. The BSW cattle breed is
also a taurine breed of European ancestry. When the
BSW samples were aligned to the ARS-UCD1.2 assem-
bly, the chromosome 13 region harbouring the signature
of selection was depleted for variation, suggesting that
the selected allele(s) already reached fixation. In fact, we
observed many variants that were fixed for the alter-
nate allele within the top windows at chromosome 13.
These variants were absent when the sequencing data
were aligned to UOA_Angus_1, because their alternate
alleles in ARS-UCD1.2 correspond to reference alleles in
UOA_Angus_1. Thus, our findings suggest that detect-
ing selective sweeps that already reached fixation with
the composite likelihood ratio test depends on the rela-
tionship between the study population and the refer-
ence genome if a folded site frequency spectrum is used.
The CLR test would reveal the same regions from both
assemblies if only segregating sites are considered for the
analysis. However, restricting the analysis to segregating
sites bears a risk of missing sweeps that already reached
fixation.
To our knowledge, a quantitative assessment of differ-

ences arising from the use of different reference genomes
had only been performed in humans at a single nucleotide
variant (SNV) level [25, 38]. Recently, Low et al. [17]
mapped 38 cattle samples from 7 breeds against the Brah-
man and Angus assemblies to detect larger structural vari-
ants that may be involved in the adaptability of indicine
cattle to harsh environments. We considered 161 BSW
cattle for a thorough characterization of reference-guided
analyses from two assemblies. As such an evaluation may
be regularly performed in the future for many species,
we developed a workflow that can be adapted and reused
for varies breeds, populations and species [53]. In fact,
our evaluation is the first to compare sequence variant
discovery from primary and haplotype-resolved assem-
blies. Therefore, our findings also show that haplotype-
resolved reference-quality assemblies may readily serve as
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reference genomes for linear read mapping and variant
genotyping.

Conclusions
Our results suggest that both the ARS-UCD1.2 and
UOA_Angus_1 assembly are suitable for reference-guided
genome analyses in BSW cattle. The choice of the ref-
erence may have a large impact on detecting signatures
of selection that already reached fixation. Furthermore,
curation of the reference genomes is required to improve
the characterisation of functional elements. The work-
flow herein developed is a starting point for a compre-
hensive comparison of the impact of reference genomes
on genomic analyses in various breeds, populations and
species.

Methods
Data availability and code reproducibility
Short paired-end whole-genome sequencing reads of 161
BSW cattle were considered for our analyses. Accession
numbers for all animals are available in the Supplementary
File 1: Table S1.
In order to investigate the effect of different assem-

blies on downstream analyses, we considered the current
bovine Hereford-based reference genome (ARS-UCD1-
2) [20] and an Angus-based reference-quality assembly
(UOA_Angus_1) [17] that was generated from a F1 Angus
x Brahman cross. The assemblies were downloaded from
the public repositories of the NCBI (GCA_002263795.2,
GCA_003369685.2). The UOA_Angus_1 assembly does
not contain the X chromosomal sequence because it rep-
resents the paternal haplotype of a male animal. The
ARS-UCD1.2 assembly was created from a female cow,
thus does not contain a Y chromosomal sequence. For
the sake of completeness, we expanded the ARS-UCD1.2
assembly with the Y chromosomal sequence from Btau 5.0
and theUOA_Angus_1 assembly with the X chromosomal
sequence from ARS-UCD1.2.
We compared the assemblies regarding mapping and

variant calling, functional annotation, detection of signa-
tures of selection, imputation and genome-wide associa-
tion testing. Alignment, coverage, variant calling, impu-
tation, annotation and analysis workflows were imple-
mented as described below using Snakemake [54] (version
5.10.0). Python 3.7.4 has been used for running custom
scripts as well as for submission and generation of Snake-
make workflows.
Unless stated otherwise, the R (version 3.3.3) soft-

ware environment and ggplot2 package (version 3.0.0)
were used to create figures and perform statistical
analyses. Paired t-test and Kruskal-Wallis rank sum
test were applied to assess differences between assem-
blies for normal and not normal distributed values,
respectively.

Alignment quality and depth of coverage
Quality assessment and control (removal of adapter
sequences and reads and bases with low quality) of the
raw sequencing data was carried out using the fastp soft-
ware [55] (version 0.19.4) with default parameter settings.
Reads were discarded when the phred-scaled quality was
below 15 for more than 15% of the bases.
When necessary, the resulting FASTQ files were split

into up to 13 read-group-specific FASTQ files to facili-
tate the read group aware processing of the data using
gdc-fastq-splitter [56] (version 0.0.1). The filtered reads
were subsequently aligned to both the ARS-UCD1.2 and
UOA_Angus_1 assemblies (see above) using the MEM-
algorithm of the Burrows-Wheeler Alignment (BWA)
software [57, 58] (version 0.7.17) with option -M and -R to
mark shorter split hits as secondary alignments and sup-
ply read group identifier and default values for all other
parameters. Samblaster [59] (version 0.1.24) was used to
mark duplicates in the SAM files, which were then con-
verted into the binary format by using SAMtools [60]
(version 1.6). Sambamba [61] (version 0.6.6) was used
for coordinate-sorting (sort function) and to combine the
read group-specific BAM files into sample-specific sorted
BAM files. Duplicated reads and PCR duplicates of the
merged and coordinate-sorted BAM files were marked
using the MarkDuplicates module from Picard Tools [62]
(version 2.18.17).
Uniquely mapped and properly paired reads that had

mapping quality greater than 10 were obtained using
SAMtools view -q 10 -F 1796. We considered a phred-
scaledmapping quality threshold of 10 to retain only reads
(referred to as high-quality reads) that qualify for vari-
ant genotyping according to best practice guidelines of the
GATK [28, 29].
The mosdepth software [63] (version 0.2.2) was used to

extract the number of reads that covered a genomic posi-
tion in order to obtain the average coverage per sample
and chromosome. We considered only high-quality reads
(by excluding reads with mapping quality <10 and SAM
flag 1796).

Sequence variant genotyping and variant statistics
We used the BaseRecalibrator module of the Genome
Analysis Toolkit (GATK - version 4.1.4.1) [64, 65] to
adjust the base quality scores using 115,815,241 (ARS-
UCD1.2) and 87,710,119 (UOA_Angus_1) unique posi-
tions from the Bovine dbSNP version 150, as known
variants. To obtain the coordinates of known sites for
the UOA_Angus_1 assembly, we used liftover coordinates
obtained from the mapping of 120 bases flanking the
known ARS-UCD1.2 positions to UOA_Angus_1 using
the MEM-approach of BWA (see above) with option
–k 120 to consider only full-length matches. To dis-
cover and genotype variants from the recalibrated BAM
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files, we used the GATK according to the best practice
guidelines [28, 29]. The GATK HaplotypeCaller module
was run to produce gVCF (genomic Variant Call For-
mat) files. The gVCF files were then consolidated using
GenomicsDBImport and passed to the GenotypeGVCFs
module to genotype polymorphic SNP and INDELs. We
applied the VariantFiltration module for site-level filtra-
tion with the following recommended thresholds to retain
high-quality SNP and INDELs: QualByDepth (QD) > 2.0,
Qual > 30, Strand Odds Ratio (SOR) < 3.0, FisherStrand
(FS) < 60.0, RMSMappingQuality (MQ) > 40.0, Map-
pingQualityRankSumTest (MQRankSum) > 12.5, Read-
PosRankSumTest (ReadPosRankSum) > 8.0 for SNPs, and
(QD) > 2.0, Qual > 30, Strand Odds Ratio (SOR) < 10.0,
FisherStrand (FS) < 200.0, ReadPosRankSumTest (Read-
PosRankSum) > − 20.0 for INDELs. Only variants with a
genotyping rate of 50% or higher (this is, minimum of 161
alleles - AN) were considered. Variants not meeting all the
criteria were discarded.
Beagle [30] (version 4.1) haplotype phasing and imputa-

tion was run to improve the raw genotype calls and impute
missing genotypes. The genotype likelihood (gl) mode was
applied in order to infer missing and adjust existing geno-
types based on the phred-scaled likelihoods of all other
non-missing genotypes.
Alternate allele frequency was calculated using the `–

keep-allele-order –freq` flags with PLINK 1.9 [66] and
non-segregating variants were subsequently filtered out
from the imputed VCF file with the option `–mac 1 –
remove-filtered-all` from VCFtools [67]. Biallelic variants
have been retrieved by using the filter `–min-alleles 2
–max-alleles 2` with VCFtools. Index and stats for the
relevant VCF files were generated through tabix [68],
VCFtools and BCFtools [69], respectively. Per-sample
stats were obtained by adding the `-v` flag when gener-
ating the stats with VCFtools. Observed genotypes were
tested for deviation from Hardy-Weinberg proportions
using the `–hwe 10e-8` and `–hardy –recode` flags with
PLINK 1.9 [66]. Transition and transversion ratio of SNPs
were calculated via VCFtools.

Functional annotation of polymorphic sites
Functional consequences of high-quality and non-fixed
SNPs and INDELs were predicted according to the
Ensembl (release 101) annotation of the bovine genome
assembly ARS-UCD1.2 and UOA_Angus_1, respectively,
using the Ensembl Variant Effect Predictor tool (VEP -
version 91.3) [70] with default parameters and `–hgvs
–symbol` nomenclature. The classification of variants
according to sequence ontology terms and the predic-
tion of putative impacts on protein function followed
Ensembl guidelines. Basic statistics of the annotation were
calculated using AGAT [71] (version v0.5.1).

Signatures of selection
Signatures of recent selection were identified using the
composite likelihood ratio (CLR) approach implemented
in Sweepfinder2 [72]. We considered 19,370,683 (ARS-
UCD1.2) and 19,255,155 (UOA_Angus_1) biallelic SNP
(segregating sites and SNP that were fixed for the non-
reference allele) to calculate the CLR in 20 Kb windows
with pre-computed empirical alternate allele frequency.
The top 0.1% windows were considered as putative selec-
tive sweeps. Adjacent top 0.1% windows were merged into
regions. The gene content of the regions was determined
according to the annotations from Ensembl (release 101)
using BEDTools [73].

Dot plots
To identify sequence similarities and dissimilarities
between the two assemblies, we inspected chromosome
wise dot plots of pair-wise sequence alignments using
LASTZ [74] (v1.04.03) with the options `–notransition
–nogapped –step=20 –exact=50` using repeat-masked
assemblies which we downloaded from Ensembl (release
101).

Imputation
Microarray-derived SNP genotypes were available for
30,499 BSW cattle typed on seven low-density (20k-
150k) and one high-density chip (Illumina BovineHD;
777k). Coordinates of the SNP were originally deter-
mined according to the ARS-UCD1.2 build. To remap
the SNP to the UOA_Angus_1 assembly, we used liftover
coordinates obtained from the mapping of 120 bases
flanking the BovineHD probes to the UOA_Angus_1
assembly using the MEM algorithm of BWA [57, 58]
with option -k 120 to consider only full-length matches.
Both the original and the remapped genotype data were
imputed (separately) to the whole genome sequence
level using a stepwise approach with reference pan-
els aligned to the respective genome assemblies. First,
genotypes for all animals typed at low density were
imputed to higher density (N = 683,752 (ARS-UCD1.2)
and 622,699 (UOA_Angus_1) SNP) using 1,166 refer-
ence animals with BovineHD-derived genotypes. In a
second step, the partially imputed high-density genotypes
were imputed to the sequence level using a reference
panel of 161 sequenced animals. Both steps of impu-
tation were carried out with Beagle 5.1 [75]. Variants
with MAC > 3 (or) deviating significantly from Hardy-
Weinberg proportions (P < 10-6), (or) with imputation
accuracy (Beagle R2) less than 0.5 were filtered out.
The imputed data with variants aligned to the ARS-
UCD1.2 and UOA_Angus_1 assembly respectively, con-
tained genotypes at 12,761,165 and 12,602,069 sequence
variants.
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Genome-wide association testing and estimation of
genomic heritability
We tested the association between phenotypes in the form
of de-regressed proofs for six traits and sequence variants
in between 11,294 and 12,434 BSW cattle. We considered
phenotypes for stature (N=11,294), milk yield (N=13,388),
protein yield (N=12,392), fat yield (N=12,388), protein
content (N=12,439), and fat content (N=12,434). The
SNP-based association study was carried out using a lin-
ear mixed model implemented with the MLMA-approach
of the GCTA software package [76]. The model included a
genomic relationshipmatrix built from 560,777 autosomal
SNPs that were typed on the BovineHD chip (positions
mapped according to ARS-UCD1.2) and four principal
components to account for relatedness and population
stratification. The genomic heritability was estimated for
the six traits using the genomic restricted maximum like-
lihood (GREML) approach implemented in GCTA [76].
Therefore, we used genomic relationship matrices (GRM)
that were built from all imputed autosomal sequence vari-
ants. We also partitioned the genomic heritability onto
individual autosomes using GRM built from variants of
the respective autosomes.
Abbreviations
bp: Base pairs; BSW: Brown Swiss; CLR: Composite likelihood ratio; GATK:
Genome analysis toolkit; GWAS: Genome-wide association study; h2:
Heritability; INDELs: Insertions and deletions; Kb: Kilo base pairs; Mb: Mega
base pairs; QTL: Quantitative trait locus; SNP: Single nucleotide polymorphism
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Additional file 1: Table S1: BSW cattle IDs. Accession IDs of the 161
bovine samples used for our study.

Additional file 2: Table S2: Number of mapped reads contained in the
original files but not considered for our study. Number of reads mapped to
sexual chromosomes and to unplaced contigs for both assemblies. Low
quality mapping includes the number of reads filtered out when
considering only uniquely mapped properly paired reads with a mapping
quality threshold of 10. Sample-wise mean and standard deviation can be
found between parentheses. The length of the sexual chromosomes and
unplaced contigs is also included.

Additional file 3: Table S3: Number of variants during the different
filtering steps: from original variants to high-quality and non-fixed variants.
Original variants are considered as the raw variants retrieved from GATK.
Low quality variants are discarded during hard-filtering and fixed variants
are identified when the minor allele count (MAC) is set to 1 in VCFtools. The
percentage of variants to the original variants before hard-filtering are in
parentheses.

Additional file 4: Figure S1: Variant density of the autosomes for both
assemblies. Number of variants detected per kilo base pair (Kb) along
autosomal sequences of 161 BSW samples when aligned to the
ARS-UCD1.2 (blue) and UOA_Angus_1 (orange) assembly.

Additional file 5: Figure S2: Density of variants across chromosomes 13
and 23. The number of variants is shown within non-overlapping windows
of 10 Kb for chromosome 13 (A) and 23 (B). The x-axis indicates the length
of the chromosome (in Mb). The number of variants within each 10 Kb
window is shown on the y-axis. Assembly ARS-UCD1.2 is displayed in the
top panel (blue) and assembly UOA_Angus_1 is displayed as a mirror
image in the bottom panel (orange).

Additional file 6: Table S4: Density of high-quality and non-fixed
variants per Kb along the autosomal genome. Unlike Table 3 in the main
text, densities are calculated here when chromosome 12 is not considered.

Additional file 7: Table S5: Number and percentage of multiallelic
variants. Percentage of multiallelic variants is obtained from the division of
multiallelic variants to non-fixed high-quality variants. Multiallelic variants
are identified when the ‘-min-alleles 2 –max-alleles 2‘ flag is set in VCFtools.
Alleles not in Hardy-Weinberg proportions are the number of variants with
P-value below the threshold of 10-8 when testing for Hardy-Weinberg
proportions with PLINK. Percentages are between parentheses.

Additional file 8: Figure S3: Density of variants deviating from
Hardy-Weinberg proportion for chromosome 12. The number of variants
differing from Hardy-Weinberg proportion are plotted as non-overlapping
windows of 10 Kb along the autosomal sequence. The y-axis relates the
variant density, number of variants per 100 Kb, for each 10-Kb-windows.

Additional file 9: Table S6: Summary of the annotated sequence
ontology classes of SNPs and INDELs. SO terms are described by Ensembl.
Total number of high-quality and non-fixed annotated SNPs and INDELs for
both assemblies that were annotated using the release 101 annotation files
with VEP tool.

Additional file 10: Table S7: Candidate selection signatures detected
using ARS-UCD1.2 as reference. Genomic coordinates, CLR values, P-values
and encompassed genes for 40 candidate selection signatures.

Additional file 11: Table S8: Candidate selection signatures detected
using UOA_Angus_1 as reference. Genomic coordinates, CLR values,
P-values and encompassed genes for 33 candidate selection signatures.

Additional file 12: Figure S4: Selective sweeps on chromosome 13.
Chromosome 13 region in ARS-UCD1.2 from 10,501,688 - 12,506,844 Mb
and corresponding region on UOA_Angus_1 between 71,231,671 -
73,018,009 Mb with highlighted six selective sweep region from 11.5 Mb to
12 Mb. (A) Dot plot between the two assemblies, (B) SNP density per Kb
(red line represents the average SNP density/chromosome), (C)
Standardized coverage per 0.5 Kb, (D) Alternate allele frequency of each
SNP (each dot is per SNP).

Additional file 13: Figure S5: Selective sweeps on chromosome 22.
Chromosome 22 region in ARS-UCD1.2 from 11,928,425 - 12,925,926 Mb
and corresponding region on UOA_Angus_1 between 12,003,259 -
13,000,720 Mb with highlighted two selective sweep region. (A) Dot plot
between the two assemblies, (B) SNP density per Kb (red line represents
the average SNP density/chromosome), (C) Standardized coverage per 0.5
Kb, (D) Alternate allele frequency of each SNP (where each dot is per SNP).

Additional file 14: Figure S6: Genome Wide Association Study (GWAS).
Manhattan plots showing association of sequence variants - imputed using
ARS-UCD1.2 (blue and grey) and UOA_Angus_1 (orange and grey) - with
fat yield (A), protein yield (B) and stature (C).
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