
REVIEW ARTICLE
published: 20 February 2015

doi: 10.3389/fnins.2015.00050

Transcriptomic analysis and 3D bioengineering of
astrocytes indicate ROCK inhibition produces cytotrophic
astrogliosis
Ross D. O’Shea1*†, Chew L. Lau2†, Natasha Zulaziz1, Francesca L. Maclean3, David R. Nisbet3,

Malcolm K. Horne2,4 and Philip M. Beart2†

1 Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
2 Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
3 Research School of Engineering, The Australian National University, Canberra, ACT, Australia
4 Department of Neurology, St. Vincent’s Hospital, Fitzroy, VIC, Australia

Edited by:

Paul Lingor, University Medicine
Göttingen, Germany

Reviewed by:

Elly M. Hol, Brain Center Rudolf
Magnus, Netherlands
Veronica Estrada, Heinrich Heine
University Düsseldorf, Germany

*Correspondence:

Ross D. O’Shea, Department of
Physiology, Anatomy and
Microbiology, La Trobe University,
Health Sciences Building 2,
Bundoora, VIC 3086, Australia
e-mail: r.oshea@latrobe.edu.au

†These authors have contributed
equally to this work.

Astrocytes provide trophic, structural and metabolic support to neurons, and are
considered genuine targets in regenerative neurobiology, as their phenotype arbitrates
brain integrity during injury. Inhibitors of Rho kinase (ROCK) cause stellation of cultured
2D astrocytes, increased L-glutamate transport, augmented G-actin, and elevated
expression of BDNF and anti-oxidant genes. Here we further explored the signposts
of a cytotrophic, “healthy” phenotype by data-mining of our astrocytic transcriptome
in the presence of Fasudil. Gene expression profiles of motor and autophagic cellular
cascades and inflammatory/angiogenic responses were all inhibited, favoring adoption
of an anti-migratory phenotype. Like ROCK inhibition, tissue engineered bioscaffolds can
influence the extracellular matrix. We built upon our evidence that astrocytes maintained
on 3D poly-ε-caprolactone (PCL) electrospun scaffolds adopt a cytotrophic phenotype
similar to that produced by Fasudil. Using these procedures, employing mature 3D
cultured astrocytes, Fasudil (100 μM) or Y27632 (30 μM) added for the last 72 h of culture
altered arborization, which featured numerous additional minor processes as shown by
GFAP and AHNAK immunolabelling. Both ROCK inhibitors decreased F-actin, but increased
G-actin labeling, indicative of disassembly of actin stress fibers. ROCK inhibitors provide
additional beneficial effects for bioengineered 3D astrocytes, including enlargement of
the overall arbor. Potentially, the combined strategy of bio-compatible scaffolds with
ROCK inhibition offers unique advantages for the management of glial scarring. Overall
these data emphasize that manipulation of the astrocyte phenotype to achieve a “healthy
biology” offers new hope for the management of inflammation in neuropathologies.
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INTRODUCTION
Astrocytes make important contributions to the maintenance of
the function of the mammalian central nervous system (CNS)—
not only are they the most populous cells, but they play major
roles in the maintenance of CNS health through their involve-
ment in energetics, L-glutamate (Glu) homeostasis, anti-oxidant
activity and release of trophic factors and gliotransmitters (Ridet
et al., 1997; Maragakis and Rothstein, 2006; Parpura et al., 2012).

Abbreviations: CNS, central nervous system; dbcAMP, N6,2′-O-
dibutyryladenosine 3′,5′-cyclic monophosphate; DRP2, dystrophin related
protein 2; EAAT, excitatory amino acid transporter; ECM, extracellular matrix;
FOXO, mammalian forkhead members of class O; Glu, L-glutamate; HIF-1,
hypoxic-inducible factor 1; KIF, kinesin family member; MFN1, mitofusin 1;
MND, motor neurone disease; NFKB1, nuclear factor of kappa light chain gene
enhancer in B cells 1; PCL, poly-ε-caprolactone; RAB, member of RAS oncogene
family; RHOT1/2, ras homolog gene family members T1/2; ROCK, Rho kinase;
SOCS3, suppressor of cytokine signaling 3; SQSTM1, sequestosome 1; STX1A,
syntaxin binding protein 1A; VEGF, vascular endothelial growth factor.

Moreover astrocytes are well documented to be plastic cells that
change their morphology, and hence biology, in response to alter-
ations in the extracellular milieu, which may elicit short- and/or
long-term responses. These morphological changes occur in nor-
mal and pathological brain tissue, and there is an ever expanding
literature that astrocytes exist in diverse phenotypes across a con-
tinuum exhibiting pro-survival (“cytotrophic”) and destructive
(“cytotoxic”) components (McMillian et al., 1994; Panickar and
Norenberg, 2005; Sofroniew and Vinters, 2010). Astrocytes are
historically considered to contribute to brain pathologies in a
“secondary” mode during what has been termed reactive glio-
sis (Ridet et al., 1997; Maragakis and Rothstein, 2006), but there
is now a solid body of growing evidence supporting their pri-
mary role in non-cell autonomous injury, where they secrete toxic
entities and/or contribute to proteinopathies, driving disease pro-
gression in various neuropathologies (Lobsiger and Cleveland,
2007; Ilieva et al., 2009; Burda and Sofroniew, 2014). Astrocytes
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may contribute to non-cell autonomous injury in motor neurone
disease (MND; amyotrophic lateral sclerosis) (Pirooznia et al.,
2014) and other neurodegenerative conditions (Di Malta et al.,
2012). Whilst the glial scar has long been considered a genuine
target for drug development (Mueller et al., 2009), and especially
the application of inhibitors of Rho kinase (ROCK) (Mueller
et al., 2005), this view is simplistic given advances in our recent
knowledge since astrocytes are much more than an inflammatory
cell displaying adaptive plasticity in the functioning CNS. Thus
many aspects of astrocyte biology offer options as attractive tar-
gets to improve their brain health and hence to effect a resultant
improvement on synaptic function (Vargas and Johnson, 2010).

Our earlier research demonstrated the association between
astrocytic morphology and a number of important aspects of
astrocytic function, particularly the abundance and activity of
Glu transporters (excitatory amino acid transporters, EAATs). We
observed that altering the morphology of astrocytes, using cyclic
AMP analogs or ROCK inhibitors, also increased Glu uptake
(Lau et al., 2005), elevated transporter Vmax with an approx-
imate doubling of EAAT2 expression at the cell surface and a
smaller increase in EAAT1 expression as quantified by biotiny-
lation and immunoblotting (Lau et al., 2011). Similar changes in
EAAT activity or abundance were also observed in other treat-
ments altering astrocytic morhpoholgy (Zagami et al., 2005, 2009;
O’Shea et al., 2006). We concluded that ROCK inhibitor-induced
elevations in Glu transporter function may contribute to their
beneficial actions in brain pathologies, since enhanced EAAT
activity is likely to be beneficial in CNS injury where excitotoxicity
is a common mechanism effecting neurodegeneration (Beart and
O’Shea, 2007; Sheldon and Robinson, 2007). Later work led to
the hypothesis that changes to the astrocytic cytoskeleton induced
by Rho kinase inhibitors were accompanied by the adoption of a
“healthy” phenotype. We defined this pro-survival, healthy phe-
notype as possessing elevated expression of EAAT2, BDNF and
key anti-oxidant genes. A shift in the F-/G-actin ratio in favor
of G-actin, indicating a reduction in actin stress fibers and alter-
ations to cytoskeletal signaling mechanisms (Kuhn et al., 2000),
was also considered integral to this “healthy” phenotype. Much
more is known about ROCK inhibitors and their ameliorative
actions on destructive (“cytotoxic”) glial scarring (Mueller et al.,
2005), but our findings reveal diverse “healthy” effects on the
astrocyte transcriptome likely to be beneficial in brain injury.

Our continued interest in the relationship between astrocyte
morphology and biology led us to apply tissue engineering (Teo
et al., 2006) to astrocytes. We found that 3D poly-ε-caprolactone
(PCL) scaffolds altered astrocytic responses in vivo in a model of
traumatic brain injury (Nisbet et al., 2009). Here our hypothe-
sis was promotion by the bioscaffold of a cytotrophic astrocytic
phenotype, so when considered with a likely role for the extracel-
lular matrix (ECM) (Lau et al., 2012), we speculated about links
to Rho GTPases, perhaps involving the actin cytoskeleton. In pri-
mary culture, astrocytes on 3D PCL scaffolds displayed reduced
cytoskeletal stress as confirmed by decreased expression of GFAP
and increased G-actin (Lau et al., 2014), and, when maintained
over an extended periods, possessed an extensively arborized,
stellate morphology. These astrocytes showed a gene expression
profile strikingly similar to that of 2D astrocytes treated with

Fasudil, with up-regulation of genes for EAAT2, BDNF and anti-
oxidant enzymes (Lau et al., 2014). Since 2D astrocytes treated
with Rho kinase inhibitors also adopt a stellate shape, our astro-
cyte transcriptome (Lau et al., 2012) is likely to contain insights
into previously unsuspected mechanisms given new literature on
this class of molecules.

In this study, we sought to place our findings in their con-
temporary context (Parpura et al., 2012; Burda and Sofroniew,
2014), by further interrogating our transcriptome after Fasudil
treatment through mining this astrocytic database to reveal
previously unexplored biological themes. Secondly, given our
success with 3D bioengineered astrocytes, we undertook addi-
tional analyses on the possible combined benefits of Rho kinase
inhibitors in our 3D culture model. Together these data pro-
vide further evidence that ROCK inhibitors produce physiolog-
ically beneficial responses in astrocyte biology which are likely
to be beneficial in the management of inflammation in diverse
neuropathologies.

MATERIALS AND METHODS
ANIMALS
C57BL/6 mice were obtained from the Florey Neuroscience
Institutes (Melbourne, VIC, Australia). All experiments receive
ethical approval from the Florey Neuroscience Institutes Animal
Experimentation Ethics Committee (ethics approval number
07-061). Experiments were performed in accordance with the
Prevention of Cruelty to Animals Act 1986 under the guidelines of
the National Health and Medical Research Council Code for the
Care and Use of Animals for Experimental Purposes in Australia.

BIOENGINEERING, CYTOCHEMISTRY AND NEUROCHEMICAL ASSAYS
Secondary astrocytic cultures were established from forebrain of
postnatal d1.5 mice as described previously (Lau et al., 2011).

Briefly, forebrains were dissected in ice-cold solution (HBSS,
Hanks balanced salt salution: 137 mM NaCl, 5.37 mM KCl,
4.1 mM NaHCO3, 0.44 mM KH2PO4, 0.13 mM Na2HPO4,
10 mM HEPES, 1 mM sodium pyruvate, 13 mM D(+)glucose,
0.01 g/L phenol red), containing 3 mg/ml bovine serum albumin
(BSA) and 1.2 mM MgSO4, pH7.4). Cells were dissociated, cen-
trifuged, and the pellet resuspended in astrocytic medium (AM:
DMEM, Dulbecco’s modified eagle medium, 10% FBS, 100 U/ml
penicillin/streptomycin, 0.25% (v/v) Fungizone™), preheated to
36.5◦C at a volume of 5 ml per brain and plated at 10 ml per
75 cm2 flask. Cells were maintained in a humidified incubator
supplied with 5% CO2 at 36.5◦C and complete medium changes
were carried out twice weekly.

After 10 days in vitro (div), when a confluent layer had formed,
the cells were shaken overnight (180 rpm) and rinsed in fresh
medium to remove non-astrocytic cells. Astrocytes were sub-
sequently detached using 5 mM EDTA (10 min at 37◦C) and
seeded on 96-well plates, random or aligned PCL scaffolds in
96-well plates (all 8 × 103 cells/well) or on 13 mm glass cov-
erslips (conventional 2D controls) in 24-well plates (2 × 104

cells/well). 3D fibrous scaffolds were engineered from unfunc-
tionalized PCL using electrospinning (Nisbet et al., 2009); thick-
nesses were approximately 250 and 150 μm for random and
aligned scaffolds, respectively. Astrocytes were treated 8 div later
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with vehicle, N6,2′-O-dibutyryladenosine 3′,5′-cyclic monophos-
phate (dbcAMP,1 mM), or Rho kinase inhibitors Y27632 (30 μM)
or Fasudil (100 μM) for a further 72 h when biochemical and
morphological analyses were undertaken.

Cytochemistry for GFAP, F-actin and G-actin has been
described previously (Lau et al., 2011). For immunocyto-
chemistry, cells were washed with phosphate buffered saline
(PBS:137 mM NaCl, 0.5 M Na2HPO4, 0.5 M NaH2PO4, pH 7.4)
and fixed in 4% paraformaldehyde (PFA) in PBS for 10 min, fol-
lowed by three washes with Tris buffered saline (TBS: 50 mM
Tris–HCl, 1.5% NaCl, pH 7.6). Non-specific binding was blocked
with 10% normal goat serum/normal donkey serum (NGS/NDS)
in TBS containing 0.3% Triton X-100. Cells were then incubated
with primary antibodies against GFAP (1:1000; Chemicon) or
AHNAK (1:500; Molecular Probes), a marker of enlargeosome
activity (Racchetti et al., 2012), at 4◦C overnight on a rocker
platform. Cells were then washed and incubated with secondary
antibodies (anti-rabbit Alexa Fluor® 488 for GFAP 1:500; anti-
mouse Alexa Fluor®568 for AHNAK 1:500; Molecular Probes)
and Hoechst 33342 (1:500 dilution) diluted in 2% (v/v) NGS or
NDS in PBS containing 0.3% (v/v) Triton X-100 for 3 h at room
temperature. Cells were again washed with PBS three times at
room temperature. Coverslips and scaffolds were then mounted
on glass microscope slides using Dako fluorescence mounting
medium and left to dry in the dark overnight. Both coverslips and
scaffolds were stored at 4◦C until examined by microscopy.

For concurrent labeling of F- and G-actin, cells were washed
rapidly with PBS twice by vacuum aspiration and incubated in
stabilizing solution (10 mM Tris base, 0.15 M NaCl, 0.01% Triton
X-100, 2 mM MgCl2, 0.2 mM DTT (Bio Vectra, Canada), 10%
glycerol) for 1 min at 4◦C. Cells were then washed rapidly with
chilled PBS (4◦C) twice and fixed in 4% (v/v) PFA in PBS for
15 min at 4◦C. Cells were washed in PBS twice at room temper-
ature and excess PFA was quenched by adding 50 mM NH4Cl in
PBS for 15 min at room temperature. Cells were permeabilized
in 0.5% (v/v) Triton X-100 in PBS for 5 min and incubated in
blocking solution (2% (v/v) BSA, 0.1% (v/v) Triton X-100 in PBS)
for 15 min at room temperature. Following another two washes
with PBS, cells were incubated in dye solution (DNaseI-Alexa
Fluor 488 1:250; Molecular Probes; rhodamine-phalloidin 1:125
in blocking solution; BDH) for 30 min in the dark. Cells were
then washed in PBS three times and mounted on glass micro-
scope slides using Dako fluorescence mounting medium and left
to dry in the dark. Cells on scaffolds were mounted by placing
the scaffolds with the cells on top, mounted with Dako fluo-
rescence mounting medium and glass coverslips (13 mm round;
Menzel-Glaser). Slides were stored at 4◦C until required for
imaging.

Methods for measurement of cellular viability [3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT;
an index of mitochondrial function) and lactate dehydrogenase
assays] have been published (Lau et al., 2011). After treat-
mentd, MTT was added to the wells give a final concentration
of 0.5 mg/ml, incubated with the cells at 36.5◦C with 5% CO2 for
30 min. Media were aspirated and 300 μl of dimethyl sulfoxide
(DMSO) was added into each well to dissolve the formazan prod-
uct. The absorbance was subsequently measured at 570 nm using
a Bio-Rad Benchmark Plus microplate spectrophometer. Lactate

dehydrogenase (LDH) assay was carried out using a commer-
cially available kit (Roche). Medium (50 μl) was collected from
each well and placed in a 96-well plate. The samples were incu-
bated with the reaction mixture (Cytotoxicity Detection Kit from
Roche) according to the manufacturer’s protocol and left in the
dark for 30 min. The absorbance of the sample mixture was deter-
mined at 490 nm using a Bio-Rad Benchmark Plus microplate
spectrophometer. Data from these experiments were analyzed
using Two-Way repeated-measures ANOVA with Bonferroni’s
post-hoc test using Graphpad Prism software (Version 6).

To examine changes in relative abundance of F-actin and G-
actin, the G-actin image was “subtracted” from the corresponding
F-actin image after both images were converted to gray-scale, and
integrated optical density was measured using ImageJ (NIH: ver-
sion 1.37). Image analysis used data from 4 images/well from
2 wells/culture over 3 independent cultures. The average value
for all fields subjected to the same treatment in an individ-
ual experiment was analyzed as a single data point. All images
for each form of actin were obtained using the same expo-
sure settings. Statistical comparisons were made using Two-Way
repeated-measures ANOVA with Bonferroni’s post-hoc test using
Graphpad Prism software (Version 6).

MICROARRAY ANALYSES
Full details have been given previously (Lau et al., 2012), where we
validated microarray data by quantitative RT-PCR. Differentially
expressed genes between control and Fasudil-treated samples at
each time point were then filtered to include only those passing a
stringent false cut off of 0.05. Data have been previously deposited
in NCBI’s Gene Expression Omnibus and are accessible through
GEO Series accession number GSE25829 (Lau et al., 2012).

RESULTS
NOVEL INSIGHTS FROM TRANSCRIPTOMIC PROFILING INTO
BENEFICIAL ACTIONS OF FASUDIL IN ASTROCYTES
Our initial rationale for undertaking microarray analyses to
define the genomic changes induced by Fasudil in astrocytes was
the total “disconnect” between the extremely rapid changes in
astrocytic shape, which were quite obvious at 30 min, and the
alterations in Glu transport which were of a much slower time
course (≥24 h) (Lau et al., 2011, 2014). We reasoned that appre-
ciable transcription and new protein synthesis must be taking
place to underpin these large changes, and that understanding
the molecular changes in astrocytes should allow new mechanistic
insights into how ROCK inhibitors provide benefit during brain
insults. Our initial bioinformatics revealed that differentially
expressed genes at 2 and 6 h were predominantly down-regulated,
and after gene ontology analysis, did not appear to follow any
particular biological theme so our focus was on large significant
fold changes at later time points (12 and 24 h). Our attention
thus settled upon major biological processes regulating astrocytic
motility and cytoskeletal reorganization viz. actin cytoskeleton,
axon guidance, transforming growth factor-ß signaling and tight
junctions. We also found large changes in many genes associated
with the ECM (Lau et al., 2012). Here, in view of new under-
standing that astrocytic responses occur across a continuum that
is dependent upon the extent of trauma/disease, and which may
resolve when minor and be manageable even in glial scarring by
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pharmacological intervention (Mueller et al., 2009; Sofroniew,
2009), we undertook new mining of our transcriptomic database
accessible through GEO Series accession number GSE25829 (Lau
et al., 2012).

Transport and molecular motors
Since our published work had ended with a focus on the
pro-survival (“cytotrophic”) astrocytic phenotype produced by
ROCK inhibition (Lau et al., 2012), we took a step back and
focused our attention on mechanistic issues related more broadly
to signaling and trafficking events underpinning astrocytic motil-
ity and cytoskeletal reorganization. ROCK inhibitors effect dis-
assembly of actin stress fibers and focal adhesions (Mueller
et al., 2005), and we documented rapid dissipation (as early
as 15 min) of phalloidin-labeled actin stress fibers in cultured
murine astrocytes treated with Fasudil. Here we demonstrated
the actin cytoskeleton underwent a transition to a preponder-
ance of G-actin relative to F-actin, which were increased and
decreased 4-fold, respectively (Lau et al., 2010). Rho GTPases,
notably Rho and Rac, are key regulators of actin and micro-
tubule cytoskeletons, and actin flow can regulate the positioning
of the microtubule cytoskeleton. Active transport, be it antero-
or retro-grade, plays a key role in the delivery of gene prod-
ucts and cellular organelles and has been studied in detail in
neurones—its disruption leads to “transportopathies” in various
neurodegenerative conditions (Liu et al., 2012). Very little is
known of these events in astrocytes where we found expression

profiles of kinesin family members (KIF2A, KIF13A, KIF 18A, and
KIF21), involved in anterograde transport, were down-regulated
(2-3 fold) at 2 and 6 h after Fasudil (KIF2A, Table 1). Dynein and
dynactin members linked to the retrograde motor system also dis-
played reduced expression at early time points but had returned
to control by 24 h. We extended these analyses to include GTPase
Rabs, which act as molecular switches to mediate vesicular trans-
port along the cytoskeleton by engaging specific motor proteins
(Ng and Tang, 2008)—member of RAS oncogene family 3 (RAB3)
may play a role in exocytosis in astrocytes and there was a notable
down-regulation of the expression of its isoform RAB3D at 12
and 24 h (Table 1). Interestingly two targets of ROCK phospho-
rylation, syntaxin binding protein 1A (STX1A) involved in vesicle
docking/fusion (3-fold decrease, 6 h), and dystrophin related pro-
tein 2 (DRP2, collapsing response mediator protein 2; 2-fold
decreases, 12 and 24 h; Table 1) linked to semaphorin-mediated
guidance mechanisms (Arimura et al., 2000), were also down-
regulated. Given the general trend of data here after ROCK inhi-
bition was decreased gene expression, we wondered whether the
consequent stellation with astrocytes adopting an aligned linear
and a pro-survival phenotype (Lau et al., 2011, 2012) might also
reflect transition to a non-migratory state as has been suggested
in normal brain (Cárdenas et al., 2014).

Autophagic and lysososmal systems
Autophagy, a key system regulating cellular homeostasis includ-
ing protein and organelle degradation, is known to be affected by

Table 1 | Selected genes with expression changes passing the filter of fold change >2.0 and FDR <0.05 in at least one time point for

Fasudil-treated compared with untreated astrocytes.

Probeset ID Definition 2 h 6 h 12 h 24 h

P-value Fold- P-value Fold- P-value Fold- P-value Fold-

change change change change

KIF2A Kinesin family member 2A 8.89E-03 −1.48 1.34E-07 −2.89 1.89E-01 1.20 8.36E-01 −1.03

RAB3D Member RAS oncogene
family

8.14E-02 1.23 7.50E-03 1.40 1.76E-07 −2.37 1.55E-05 −1.88

DRP2 Dystrophin related protein 2 2.06E-02 1.53 5.92E-01 1.10 5.41E-05 −2.35 4.62E-03 −1.71

FOXO1 Forkhead box O1 1.99E-09 −4.19 2.62E-05 −2.16 1.96E-04 1.91 4.26E-02 1.36

SQSTM1 Sequestosome 1 1.43E-03 −1.36 8.35E-09 −2.17 1.04E-02 1.27 2.03E-04 1.46

MFN1 Mitofusin 1 4.32E-01 1.17 7.11E-06 −3.20 3.32E-01 −1.22 2.61E-01 1.26

JAK2 Janus kinase 2 3.59E-02 −1.34 1.29E-05 −2.10 2.78E-01 1.16 2.71E-01 1.16

NFKB1 Nuclear factor of kappa light
polypeptide gene enhancer
in B-cells 1

1.24E-06 −1.85 1.33E-03 1.40 2.26E-03 1.37 2.67E-01 1.11

SOCS3 Suppressor of cytokine
signaling 3

4.67E-08 −5.41 5.77E-02 −1.51 3.87E-01 1.20 4.94E-01 −1.15

HIF1A Hypoxia inducible factor 1,
alpha subunit

6.84E-01 1.07746 3.97E-02 −1.486 1.39E-01 1.32015 4.31E-01 1.15591

VEGFA Vascular endothelial growth
factor A

6.18E-06 −3.49 8.83E-02 −1.45 2.28E-01 1.30 5.78E-01 1.13

HK2 Hexokinase 2 4.25E-07 −4.96 2.95E-05 −3.25 3.48E-01 −1.24 1.92E-01 −1.35

Gene expression data are from NCBI’s Gene Expression Omnibus and are accessible through GEO Series accession number GSE25829 (Lau et al., 2012). The FDR

threshold of 0.05 corresponds to a P-value of 5.2 × 10−3, 01.47 × 10−2, 5.55 × 10−3 and 1.72 × 10−3 for the 2, 6, 12, and 24 h time points, respectively. P-value

passing the FDR threshold at each time point are italicized.
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ROCK inhibitors, and is also considered a novel target for man-
agement of neurodegenerative diseases (Harris and Rubinsztein,
2012). Indeed, actions here would hardly be surprising given
the cytoskeletal changes and the fact autophagosomes themselves
are membraneous cargo moving along microtubules and trans-
ported by the kinesin and dynein/dynactin complex—expression
of genes related to molecular motors was generally found to
be decreased here. ROCK1/2 regulate actin dynamics and cell
migration through phosphorylation of various substrates, but
little is known as to how the cytoskeleton influences the activ-
ity of the ubiquitin proteasome system and autophagy. ROCK
inhibitors have system-dependent actions being reported to accel-
erate autophagic flux (Mleczak et al., 2013), enhance both UPS
and autophagic activity (Bauer et al., 2009), and to inhibit
autophagosome formation (Aguilera et al., 2012). The litera-
ture on autophagy in astrocytes is relatively small (Dello Russo
et al., 2013), but suggestive that as highly plastic glia they adapt
to stress and support neurones (Lee et al., 2010; Titler et al.,
2013). Mammalian forkhead members of the class O (FOXO) are
master signaling integrators influencing many cellular responses,
including oxidative stress and inflammation. FOXO pathways
are linked to both autophagy and the UPS, and lack of FOXO1
prevents autophagy (Yang et al., 2013). While there is a sub-
stantial literature on the role of FOXO1 in inflammation, very
little is known about its involvement in astrogliosis. However,
recently oxidative-induced injury of astrocytes was reported to
involve metallothionein-3 via a FOXO-dependent mechanism
(Lee et al., 2014). In our database, substantial reductions were
found in the expression of FOXO1 at 2 and 6 h (4- and 2-fold,
respectively) post-Fasudil, although significant changes were not
observed at longer times (Table 1). We extended our examination
to other autophagic genes and found the expression of sequesto-
some 1 (SQTM1, p62), a multifunctional scaffolding/adaptor
protein interacting with both autophagosomal and proteosomal
systems (Korolchuk et al., 2010), was also decreased at both
2 and 6 h (Table 1). Mitochondrial transport is also driven by
molecular motors with adaptor proteins linking mitochondria
to microtubule-based transport, and there is a rapidly expand-
ing literature on mitochondrial dynamics and recruitment of
mitophagy, an unique form of autophagy handing damaged mito-
chondria (Baker et al., 2014). Expression of mitofusin 1 (MFN1),
an outer mitochondrial membrane protein involved in mito-
chondrial dynamics, was down-regulated 3-fold at 6 h (Table 1),
and had returned to control levels at longer time intervals. Ras
homolog gene family members T1/2 (RHOT1/2, Miro1/2), Rho
GTPases mediating mitochondrial transport by sensing [Ca2+],
also underwent two-fold decreases in expression at 6 h. Many
genes involved in mitochondrial dynamics, including fission and
fusion, contribute to the pathological events in brain pathologies
(Wang et al., 2009; Baker et al., 2014). Overall inhibition of Rho
kinase results in an astrocyte where protein degradation pathways
appear down-regulated initially and then assume a relatively inac-
tive mode consistent with adoption of a healthy, anti-migratory
phenotype.

Pro-inflammatory mechanisms
Inflammatory events related to glial scarring have received
attention in the earlier literature (Mueller et al., 2005; Ding

et al., 2010; Yu et al., 2010), so we examined these events in
our astrocytic system after ROCK inhibition. Unregulated acti-
vation of the Janus Kinase-Signal Transducer and Activators of
Transcription (JAK-STAT) pathway is a key driver of various
inflammatory conditions and has been identified as a target
for therapeutic intervention (Kaminska and Swiatek-Machado,
2008). Although less understood in brain, oxidative stress and
some cytokines activate via a JAK2-dependent mechanism STAT3
(Planas et al., 2006). Numerous changes, mainly at early time-
points, were noted in these pro-inflammatory mechanisms and
were suggestive of decreased activity. Although down-regulation
of expression of JAK2 was found at 2 and 6 h (Table 1), interest-
ingly in our mature cultured astrocytes the expression of STAT3
(data not shown) was unchanged by Fasudil. Although recent ele-
gant work points to a quite precise role of STAT3 in scar-forming
astroglia surrounding inflammatory cells in spinal cord injury
(Wanner et al., 2013), the recruitment of astrocyte cellular sig-
naling in inflammation appears context dependent (Sofroniew,
2014). We found that the expression of both nuclear factor of
kappa light chain gene exchanger in B cells (NFKB1) and sup-
pressor of cytokine signaling (SOCS3) was reduced at 2 h and
had returned to essentially control levels at longer time intervals
(Table 1). While NFKB deletion or knockdown reduces inflam-
mation in a number of CNS injury models (Sofroniew, 2014),
the regulation of SOCS system is extremely complex generally
functioning to reduce chronic inflammation (Linossi et al., 2013).
Indeed conditional ablation of SOCS3, but not STAT3, produces
contraction of lesion area and notable improvement in functional
recovery after spinal cord contusion (Okada et al., 2006).

Hypoxic-inducible factor-1 system and angiogenesis
We previously characterized the hypoxic-inducible factor-1
(HIF-1) system in an astrocytic model of tolerance against oxida-
tive injury where there was downstream production of vascular
endothelial growth factor (VEGF) (Chu et al., 2010). Thus herein
we were interested to explore the HIF-1 system and the effects on
downstream genes involved in angiogenesis and energetics, since
these mechanisms are potentially neuroprotective (Trendelenburg
and Dirnagl, 2005). Astrocytes are the major source of brain
VEGF in the brain and various stimuli can modulate its induc-
tion and secretion (Engelhardt et al., 2014). Whilst inhibition of
ROCK can activate VEGF-driven neovascularization and angio-
genesis (Kroll et al., 2009), it is very clear the VEGF-mediated
responses are concentration- and system-dependent being either
beneficial or detrimental in the brain (Ellison et al., 2013). The
expression levels of VEGFA and HIF1A were significantly reduced
at 2 and 6 h, respectively, and had returned to control levels
at longer time intervals (Table 1); significant changes were not
found for erythropoietin (data not shown). Whilst a small body
of evidence pertinent to astrocytes indicates that HIF1A regu-
lates downstream expression of VEGF (Chavez et al., 2006; Chu
et al., 2010), we were surprised to find a large 3-fold decrease
of VEGFA at 2 h, evidence which might support the recently
described regulation of VEGFA expression independent of HIF1
signaling in astrocytes (Arany et al., 2008; Schmid-Brunclik et al.,
2008). Recently, astrocyte-derived VEGFA was reported to drive
blood-brain barrier disruption (where astrocytes also retract
their endfeet from vessels) in brain inflammatory disease and
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inhibition of VEGFA signaling suggested as a protective approach
(Argaw et al., 2012). Astrocytes are less susceptible than neu-
rones to injury by impairment of oxidative metabolism, at least
in part because of their capacity to switch to glycolysis, which
particularly under conditions of hypoxia is linked to the HIF-
1 system (Schmid-Brunclik et al., 2008). Here hexokinase 2
(HK2), a key glycolytic enzyme, considered an integral compo-
nent of the downstream response displayed large reductions in
expression at both 2 and 6 h consistent with the VEGFA data
(Table 1).

ROCK INHIBITORS PROVIDE ADDITIONAL BENEFITS FOR ASTROCYTES
ON 3D ELECTROSPUN SCAFFOLDS
Effects of drug treatments on astrocytes cultured on glass
coverslips
Cultures of mouse astrocytes were established on glass cover-
slips (2D) or on random or aligned PCL scaffolds for 18 div
and immunolabeled with antibodies against GFAP and AHNAK.
In agreement with previous studies, conventional 2D astro-
cytes exhibited a more stellate morphology with more exten-
sive processes when treated for 3 days with dbcAMP (1 mM),
Fasudil (100 μM) or Y27632 (30 μM) (Figure 1) (c.f. Lau et al.,
2012). Under control conditions, 2D astrocytes appeared as flat-
tened, polygonal cells and most were GFAP positive. Labeling
for AHNAK immunocytochemistry was more widespread and
partially co-localized with GFAP under conventional conditions
(see below; Figure 1). When treated with dbcAMP, astrocytes
appeared to undergo complete stellation, with reduced cell body
area and elongated processes. The processes were thicker and

shorter when compared to astrocytes treated with both ROCK
inhibitors. Interestingly, the staining for AHNAK in astrocytes
treated with dbcAMP was relatively darker compared to control
(Figure 1). The effects of Y27632 treatment on astrocytes mim-
icked that of Fasudil. Cells demonstrated increased retraction
of cell bodies as well as elongated extensive processes. Labeling
patterns for AHNAK, a marker of enlargeosomes (Racchetti
et al., 2012), were similar to GFAP distribution, but more
widespread under control conditions and following experimental
treatments (Figure 1). Notably in all cases GFAP-positive pro-
cesses were well defined whereas AHNAK labeling of astrocytes
was more intense and its distribution through all parts of the
astrocytic arbor, including fine processes, made full resolution
difficult.

Effects of bioscaffolds on astrocytic morphology
Astrocytes displayed a different phenotype when cultured on
either random or aligned bioscaffolds with cells possess-
ing elongated cell bodies, ramified cell processes and con-
densed GFAP filaments (Figure 1). On random scaffolds, astro-
cytes formed tighter clusters, approximately 100–250 μm in
diameter, but use of aligned bioscaffolds produced astrocytes
with more extensive elongated processes (approximately 50–
250 μm) following fiber orientation that were distributed in
loose clumps. Under control conditions, the labeling pattern
for GFAP was found to partially co-localize with AHNAK,
although the latter was more widespread, in cultures on
both biomatrices, similar to those cultured on glass coverslips
(Figure 1).

FIGURE 1 | Effect of drug treatments on morphology and expression of

GFAP and AHNAK in astrocytes cultured on different substrates.

Astrocytes were treated for 72 h with vehicle (Control), dbcAMP (1 mM),

Fasudil (100 μM) or Y27632 (30 μM) on glass coverslips, random or aligned
bioscaffolds and immunostained to reveal GFAP (green) or AHNAK (red).
Paired images represent the same field. Scale bar = 50 μm.
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Effects of drug treatments on astrocytes cultured on different
substrates
Astrocytes treated with dbcAMP (1 mM, 72 h) appeared to form
clusters on both random (clusters approximately 100–200 μm
diameter) and aligned scaffolds (approximately 75–125 μm diam-
eter). In contrast to 2D cultured astrocytes, the processes
were extensive, and outgrowth of the processes was more
widespread. Processes infiltrated both type of scaffolds, as previ-
ously described (Lau et al., 2014) in random scaffolds (process
length approximately 75–150 μm), but there was more growth
along aligned fibers (approximately 100–300 μm) (Figure 1). As
was the case in astrocytes cultures on glass coverslips, immuno-
labeling of AHNAK was more widespread and more ubiqui-
tously expressed through the entire astrocytic arbor than GFAP
with which it was generally co-localized in major processes
(Figure 1).

When treated with Fasudil (100 μM, 72 h) astrocytes were
evenly distributed and infiltration into both biomatrices was
extensive. The processes appeared to be elongated approximately
50–250 μm on random scaffolds and 100–300 μm on aligned
scaffolds, with retracted cell bodies. The process outgrowth was
widespread on random bioscaffolds, but astrocytes on aligned
bioscaffolds appeared to grow in a similar orientation as those
on random scaffolds, and were evenly distributed forming less
tight clusters with approximate 200–350 μm in diameter on both
random and aligned scaffolds (Figure 1). Microscopic examina-
tion revealed that the labeling pattern for AHNAK was more
widespread through the whole arbor than that of GFAP, which
was restricted to major processes, on both biomatrices (Figure 1).

The effects of the other Rho Kinase inhibitor, Y27632, mim-
icked that of Fasudil. Astrocytes treated with Y27632 (30 μM,
72 h) also demonstrated extensive processes on both types of
scaffolds, however the processes appeared to be longer than in
astrocytes treated with Fasudil, with an approximate 150–300 μm
in astrocytes cultured on random and approximately 75–350 μm
length in astrocytes cultured on aligned biomatrices (Figure 1).
AHNAK immunolabeling revealed much more of the astrocytic
arbor and thus was partially co-localized to GFAP but more
widespread.

Effects of drug treatments on actin expression
Since the actin cytoskeleton plays a determinant role in regulating
cellular responses to the extracellular matrix, the effects of fibrillar
surfaces on actin dynamics were examined by staining astrocytes
for its two forms: F-actin (rhodamine-conjugated phalloidin) and
G-actin (Alexa Fluor 488-conjugated DNaseI) (Figure 2). Under
control conditions 2D astrocytes displayed well-organized F-actin
fibers with densely packed stress fibers and a diffuse expression of
globular G-actin. When treated with dbcAMP for 72 h, the inten-
sity of labeling for G-actin increased, while F-actin displayed a
prominent change from well-organized actin rings packed with
stress fibers to more elongated processes with reduced stress
fibers. A similar pattern of changes was found in astrocytes treated
with the Rho kinase inhibitors Fasudil and Y27632, where remod-
eling of the actin cytoskeleton was demonstrated by a shift from
F-actin to G-actin predominance. F-actin in astrocytes treated
with Y27632 exhibited the same morphology as control, display-
ing a well-organized ring shape without stress fibers. In contrast,

FIGURE 2 | Effect of drug treatments on expression of G-actin and

F-actin in astrocytes cultured on different substrates. Astrocytes were
treated for 72 h with vehicle (Control), dbcAMP (1 mM), Fasudil (100 μM) or

Y27632 (30 μM) on glass coverslips, random or aligned bioscaffolds and
labeled to reveal G-actin (green) or F-actin (red). Paired images represent the
same field. Scale bar = 50 μm.
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F-actin formed clusters and exhibit a more globular shape in
astrocytes treated with Fasudil.

When cultured on random bioscaffolds, F- and G-actin
appeared to clump in the absence or presence of drug treat-
ments. Astrocytes treated with dbcAMP and Fasudil displayed
wider clumping of both F- and G-actin in relative to control, while
cells treated with Y27632 appeared in tighter clusters (Figure 2).
On aligned scaffolds, astrocytes formed clumps in the absence
or presence of drug treatments. Additionally, under control con-
ditions or following treatment with Y27632, both F-/G-actin
clumps appeared to be more “rectangular” in shape, with some
increase in longer processes, presumably aligned with the fibers
(Figure 2). Astrocytes treated with either dbcAMP or Fasudil
formed F-/G-actin in tight small clusters, however F-/G-actin
in astrocytes treated with Fasudil displayed elongated processes
compared to cells treated with dbcAMP. There was maintenance
of overall G-actin labeling under all conditions, and notably
with Y27632, whereas all treatments decreased F-actin relative to
control (Figure 2).

Image analysis revealed a significant difference in integrated
optical density, reflecting a shift from F-actin to G-actin pre-
dominance when astrocytes were cultured in 2D or aligned fibers
(P < 0.05 for all treatments versus Control) after 72 h treat-
ment (Figure 3). A similar pattern of F-/G-actin ratio shift was
observed in astrocytes cultures on random scaffolds but this
change was not statistically significant.

Effects of drug treatments on cell viability
Biochemical analyses of astrocytes cultured on different sub-
strates were undertaken in the absence and presence of
drug treatments. Cell viability [3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide assay] and cell damage (lactate
dehydrogenase assay) revealed no significant detrimental effects
of treatments (Figure 4). Minor but significant increases in cell

FIGURE 3 | Image analysis of difference in integrated density for F-/G-

actin ratio. Astrocytes were treated for 72 h with vehicle (Control),
dbcAMP (1 mM), Fasudil (100 μM) or Y27632 (30 μM) on glass coverslips,
random bioscaffolds or aligned bioscaffolds. *Significantly different from
control on same substrate, p < 0.05. Comparisons were made using
Two-Way repeated measures ANOVA with Bonferroni’s post-hoc test. Data
represent mean ± S.E.M. n = 6 (duplicates from 3 individual experiments).

viability or decreases in cell damage were observed in some
combinations of substrate and drug treatment, but no obvious
patterns were apparent. In all cases where significant changes were
observed, drug treatments (Fasudil or Y27632) either increased
mitochondrial activity or decreased cell damage; detrimental
changes were not observed following drug treatments.

DISCUSSION
Given astrocytes are a plastic glial population existing in vari-
ous morphologies and displaying diverse biologies, major and
wide-ranging effects would be expected upon manipulation of
the ROCK/Rho system, a key determinant via actin of cellu-
lar survival, migration and proliferation (Riento and Ridley,
2003). Whilst our initial bioinformatic analyses of transcriptomic
changes induced by Fasudil were directed at major biological
processes regulating cytoskeletal reorganization, we also found
significant changes in expression of a diverse group of genes
associated with astrocyte function, and suggested that overall
ROCK inhibitors would produce “healthy and physiologically
beneficial responses in astrocyte biology” (Lau et al., 2012). We
thus postulated the existence of a pro-survival, cytotrophic phe-
notype wherein the essential criteria were a preponderance of
G-actin and elevated expression of EAAT2, BDNF and key anti-
oxidant genes. Reappraisal of our bioinformatic data revealed
diverse additional effects on the astrocyte transcriptome likely to
be beneficial in brain injury. Gene expression profiles of motor
and autophagic cellular cascades and inflammatory/angiogenic
responses were all inhibited favoring adoption of what might be
considered “healthy,” anti-migratory phenotype. These types of
changes generally have not been a focus in astrocytes, although
often documented in neurones, but there is the beginnings of
an new literature describing roles for Rho GTPases or actions of
ROCK inhibitors in the biological processes reported here (vide
supra). This concept of an anti-migratory phenotype (Cárdenas
et al., 2014) is an interesting one for in vitro ROCK inhibitors pro-
duced very rapid stellation of astrocytes (approximately 15 min
with most changes complete by 3–6 hr), a morphology which in
uninjured brain is considered to reflect non-migratory proper-
ties, and here may indicate Fasudil produces a normal cytotrophic
astrocyte. This state may resemble cytotrophic components of
minimal, self-resolving hypertrophy often stated to occur in
minor trauma/injury wherein there is re-establishment of a
healthy physiological phenotype (Balasingam and Yong, 1996;
Sofroniew, 2009; Burda and Sofroniew, 2014). Earlier work has
documented the ability of ROCK inhibitors to produce exten-
sion of GFAP-positive, presumed astrocytic processes in vitro and
in vivo models of nerve crush (Sagawa et al., 2007; Ichikawa
et al., 2008). Extensive process formation has also been noted
with ROCK inhibitors in wound healing models using astrocytes
(Holtje et al., 2005). Such morphological rearrangements as dis-
cussed here are underpinned by extensive remodeling of the actin
cytoskeleton, particularly lamellipodia and filopodia (Le Clainche
and Carlier, 2008; Mattila and Lappalainen, 2008).

Tissue engineering in combination with materials science
has been also been employed to manipulate astrocyte biology.
We have previously reported in an in vivo model of traumatic
brain injury (Nisbet et al., 2009) that, in the presence of PCL
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FIGURE 4 | Effect of drug treatments on cell viability and cell damage.

Astrocytes were treated for 72 h with vehicle (Control), dbcAMP (1 mM),
Fasudil (100 μM) or Y27632 (30 μM) on glass coverslips, random or aligned
bioscaffolds. Cell viability was determined by the 3-(4,5-dimethylthia
zol-2-yl)-2,5-diphenyltetrazolium bromide assay (A), while cell damage was

assessed using the lactate dehydrogenase assay (B). ∗Significantly different
from control on same substrate, p < 0.05. Comparisons were made using
Two-Way repeated-measures ANOVA with Bonferroni’s post-hoc test. Data
represent mean ± S.E.M. from 3 independent experiments with the average
value from each experiment being n = 1.

scaffolds, astrocytes provided signals encouraging neuritic infil-
tration of injured tissue, with findings favoring the existence of
early cytotoxic and late cytotrophic components of astrogliosis.
Others have reported variable data with astrocytes in tissue engi-
neering and the literature suggests that the type of engineering
approach employed greatly influences the nature of the outcome,
and specifically the temporal contributions of cytotrophic vs.
cytotoxic astrogliosis (Iannotti et al., 2003; Wong et al., 2007;
Nisbet et al., 2010). Nevertheless our success in vivo encour-
aged us to pursue mechanistic studies with tissue engineering
of astrocytes on PCL bioscaffolds where we found in 3D exten-
sive process formation, stellation and adoption of a cytotropic
phenotype resembling that found in 2D astrocytes treated with
ROCK inhibitors (vide supra). There have been remarkably few
successes where bioengineering strategies in vitro have led to the
establishment of viable astrocytes on bioscaffolds (Puschmann
et al., 2013; Zuidema et al., 2014), but our use of secondary
astrocytes allowed the long term maintenance of mature cells
on PCL bioscaffolds (Lau et al., 2014). Given there was a body
of evidence for beneficial effects of ROCK inhibitors in mod-
els of head and spinal trauma (Raad et al., 2012; Watzlawick
et al., 2014) we extended our study to explore whether the
inclusion of Fasudil and Y27632 would provide further bene-
fits in our 3D astrocyte model. Here we found that both ROCK
inhibitors produced additional GFAP-positive processes relative
to PCL scaffolds alone, and there seemed a bonus of a further
shift to an even greater preponderance of G-actin relative to F-
actin. AHNAK, a marker of enlargeosome activity and migration
(Racchetti et al., 2012), proved very suitable for immunostain-
ing of fine astrocytic processes, being partially co-localized with
GFAP, but revealing much more of the astrocyte arbor than GFAP,
an effect which was particularly obvious on aligned bioscaffolds.
Overall these data are consistent with ROCK inhibitors provid-
ing further beneficial effects over and above PCL scaffolds alone.
Preliminary evidence from Western immunoblotting suggested
ROCK inhibitors reduced GFAP expression relative to dbcAMP
(Supplementary Figure 1), whilst patterns of AHNAK expression

were generally consistent with immunocytochemistry. In ongoing
work examining Glu transporter activity, we confirmed our pre-
viously reported elevation of uptake in 2D astrocytes by Fasudil
and Y27632 (Lau et al., 2011), and found EAAT activity appeared
to be elevated 2–4 fold in astrocytes maintained on bioscaffolds
(data not shown). Whilst we need to undertake further experi-
ments to document fully the phenotype of the astrocytes found
here, it does seem that the phenotype may be shifted even fur-
ther toward the direction of cytotrophic astrogliosis. Our findings
here, demonstrating that Fasudil and Y27632 under certain con-
ditions either increased cell viability or decreased cell damage
compared with control conditions (Figure 4), provide further
evidence for the potential benefits of ROCK inhibitors via direct
effects on astrocytes, which may contribute to the beneficial out-
comes of these treatments in brain injury. Taken together there
would seem to be a case for combining Rho kinase inhibition with
tissue engineering in models of traumatic brain and spinal cord
injury.

ROCK inhibitors, and especially Fasudil, have been exam-
ined in various injury models where astrocytes may contribute
to the pathology, perhaps via cytotoxic inflammation, and/or by
compromising recovery from trauma/neurodegeneration. Glia,
including astrocytes, are known to contribute to the neuropathol-
ogy of MND through non-cell autonomous mechanisms (Vargas
and Johnson, 2010; Pirooznia et al., 2014). MND is a rapidly
advancing degenerative condition where suitable new therapeu-
tic strategies are badly needed (Turner and Talbot, 2008), so
the pro-survival response produced by Fasudil in the SOD1
mouse model of MND is an impressive advance (Takata et al.,
2013; Tonges et al., 2014) since the rapid progression of dis-
ease in this model generally does not respond to interventions
(Turner and Talbot, 2008). Attentuation of astroglial pathology
was noted early after Fasudil treatment whereas beneficial effects
were noted at most stages on microglial mediated inflammation
(Tonges et al., 2014). Rho kinase inhibitors may also be useful in
other neurodegenerative conditions where astrocytes contribute
to inflammation, perhaps by non-cell autonomous mechanisms.
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For example in Alzheimer’s disease, where astrocytic mechanisms
are linked to disease risk factors and where their contribu-
tion to synaptic signaling is compromised by amyloid-β peptide
(Talantova et al., 2013), Fasudil may have therapeutic poten-
tial as it suppressed the inflammation in rodent hippocampus
induced by amyloid-β peptide (Song et al., 2013). In experimen-
tal autoimmune encephalomyelitis, an animal model of multiple
sclerosis, Fasudil reduced inflammation and demyelination. Early
or late administration of Fasudil exerted beneficial effects pro-
ducing a shift in macrophage function from the cytotoxic M1
to the anti-inflammatory or reparative M2 phenotype in spinal
cord and spleen (Liu et al., 2013). Subsequently the same lab-
oratory suggested that at least part of this action of Fasudil
was via a diminution of cytotoxic astrogliosis and less infiltra-
tion of inflammatory cells across the blood brain barrier (Guo
et al., 2014). Interestingly, astrocyte phenotype is now recog-
nized to determine the outcome of CNS repair and myelination,
and components of astrocyte biology likely represent valid tar-
gets to enhance lesion repair in multiple sclerosis (Barnett and
Linington, 2013).

Given the seminal role astrocytes play in synaptic transmis-
sion and maintenance of brain function generally, their diverse
biology offers many options for potentially “druggable” targets—
beneficial shifts to cytotrophic phenotypes would improve their
overall health and ameliorate cytotoxic inflammation in brain
pathologies, and thus conceivably allow maintenance of appro-
priate synaptic function (Vargas and Johnson, 2010). Another
often not discussed aspect of astrocyte biology is their multiple
“morphological” interfaces, not only via the communication of
astrocytic tight junctions, but also with different cellular popula-
tions viz. neurones, oligodendrocytes, blood vessels, blood brain
barrier and microglia (Volterra and Meldolesi, 2005), including
via the quad-partite synapse (Schafer et al., 2013). Thus astrocytes
are seminally placed from an organizational perspective to orches-
trate the biology of these different CNS populations by integrating
synaptic and non-synaptic signaling. The recent work with ROCK
inhibitors showing cytotrophic changes in astrocyte function in
disease models of MND (Tonges et al., 2014) and multiple scle-
rosis (Guo et al., 2014) are particularly encouraging. Indeed, we
speculate that Fasudil-induced changes in astrocytic phentotype
exert beneficial effects which should be taken in a similar context
to the much popularized “healthy” shift in macrophage function
(now extended to microglia) from the cytotoxic M1 to the repar-
ative M2 phenotype—and which is produced by Fasudil in spinal
cord in experimental autoimmune encephalomyelitis (Liu et al.,
2013). Meta-analysis of data from experimental studies of spinal
cord injury evaluating Rho A/ROCK blockade found significant
overall improvement of locomotor function. Overall a possible
role in inflammatory events was noted and the strategy was con-
sidered a plausible one for management of human spinal cord
injury (Watzlawick et al., 2014). Certainly it is clear with advances
in the design of increasingly effective ROCK inhibitors (Guan
et al., 2013), and with new developments in tissue engineering
and drug delivery via nanoparticles that ROCK inhibitors alone
or in concert with these new technologies are likely to be widely
applicable to management of inflammation in neurodegenerative
conditions.
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