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Emerging evidence suggests that gap formation and opening 
of the endothelial junctions during leukocyte extravasation is 
actively controlled to maintain the integrity of the vascular 
barrier. While the role for endothelial cells to this process has 
been well defined, it is not clear whether leukocytes are also 
actively contributing to endothelial barrier function. We have 
recently showed that extravasating leukocytes deposit mi-
croparticles on the subendothelium during the late stages of 
extravasation, which is LFA-1 dependent. Using multiphoton- 
intravital microscopy (MP-IVM) of mouse cremaster muscle 
vessels in the current work, we show that microparticle for-
mation and deposition maintains the integrity of the micro-
vascular barrier during leukocyte extravasation. Inhibition of 
neutrophil-derived microparticle formation resulted in dra-
matically increased vascular leakage. These findings suggest 
that deposition of microparticles during neutrophil extrava-
sation is essential for maintaining endothelial barrier function 
and may result in temporal difference between neutrophil ex-
travasation and an increase in vascular leakage.
[Immune Network 2013;13(3):102-106]

INTRODUCTION

Recent intravital imaging studies revealed that LFA-1 (CD11a/ 

CD18) and Mac-1 (CD11b/CD18) play distinct roles in leuko-

cyte adhesion and crawling (1-3). A study showed that, in 

neutrophils, endothelial adhesion was mediated by LFA-1 and 

that crawling was mediated by Mac-1 (1). However, in mono-

cytes and lymphocytes, crawling was shown to be LFA-1 de-

pendent (2,4). These data indicate that the transmigration of 

different leukocyte subsets through the endothelium may be 

distinctly regulated by LFA-1 and/or Mac-1. In the final stage 

of migration through the endothelial cells and basement 

membrane during leukocyte extravasation, the leukocytes 

must detach uropod from the basolateral side of the endothe-

lial layer and/or basement membrane. During uropod detach-

ment of the elongated leukocytes, microparticles are deposi-

ted at the subendothelium, and this represents the final step 

in leukocyte extravasation (5). Ligation of apical endothelial 

surface receptors, including ICAM-1 during the early stages 

of leukocyte transendothelial migration has been shown to 

trigger rearrangement of the interendothelial junctions and in-

creased vascular permeability (6). However, to avoid tissue 

edema, vascular barrier integrity must be maintained during 

active leukocyte transendothelial migration. This involves rap-

id resealing of the vascular endothelial layers upon detach-

ment of the extravasating leukocytes. Leukocytes migrating 

across endothelium during final detachment from the vascular 

wall were found to form and deposit microparticles on the 

basolateral endothelial surface. Thus we examined whether 

microparticle deposition affects the integrity of the vascular 
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barrier during leukocyte transendothelial migration. We used 

MP-IVM to investigate the role for microparticle deposition 

during leukocyte extravasation. We further specifically de-

pleted neutrophils and monocytes to determine the role for 

the specific circulating leukocyte subsets in this process. Our 

data suggest that the CD18
＋

 microparticles generated from 

the tip of neutrophil uropods during detachment contribute 

to the resealing of the vasculature, thus helping maintain en-

dothelial barrier integrity.

MATERIALS AND METHODS

Mice
CD18-mCFP knock-in mice were generated at the Gene Target-

ing and Transgenic Core facility at the University of Rochester 

(5). C57BL/6 and CCR2 knockout mice (7) were maintained in 

a specific pathogen-free environment at the University of Ro-

chester’s animal facility. The Institutional Review Board of the 

University of Rochester approved all animal experiments.

CD18＋ microparticle counting from the subendo-
thelium
The cremaster muscles of C57BL/6 mice were superfused 

with physiological salt solution alone or containing a cocktail 

of chemokines (30 nM CXCL2, 12.5 nM CXCL12, and 1 nM 

CCL2) in the presence of 500μg of CD11a blocking Ab 

(M17/4) or control IgG at 37
o
C for 2 h. Following euthanasia, 

the vascular wash-out was done with 10 ml of physiological 

salt solution buffer and then the cremaster muscle was re-

moved from mouse and minced. The minced tissue was treat-

ed with 3 ml of 0.5% Collagenase II (Invitrogen) in HBSS con-

taining 3 mM CaCl2 at 37oC for 1 h. Whole cells were collected 

by centrifugation at 4,000 g for 20 min and labeled with 

Alexa488-anti-mouse CD31 Ab at 4
o
C overnight. The super-

natant was subjected to ultracentrifugation to collect the mi-

croparticles and labeled with PE conjugated anti-mouse CD18 

Ab (M18/2) (8). Then, the ratio of CD18＋ microparticles to 

CD31
＋

 whole cells was calculated using flow cytometry.

Multiphoton-intravital microscopy (MP-IVM) 
Mouse cremaster venules were imaged with MP-IVM as de-

scribed (5). Texas Red dextran (70,000 Mw, Invitrogen) was i.v. 

injected (20 mg/kg) via femoral vein to label the blood vessels 

prior to imaging. During MP-IVM, the core body temperature 

of the mice was maintained using a warming pad set to 37
o
C. 

The blood vessels were stimulated by superfusion of chemokine 

(1 nM CXCL2) or bacterial chemoattractant (1μM fMLP). To in-

vestigate the extravascular blocking effect of LFA-1 on leukocyte 

extravasation and vascular leakage, 500μg of CD11a blocking 

Ab was superfused onto exteriorized mouse cremaster.

Leukocyte subsets depletion 
To investigate the contribution of leukocyte subsets to vas-

cular leakage, leukocyte subsets were depleted and then vas-

cular leakage was measured as described below. Intraperito-

neal injection (25μg/day for 3 days) of anti-Ly6C/Ly6G Ab 

(RB6-8C5, Gr1) was performed to deplete neutrophils and in-

flammatory monocytes, and anti-Ly6G Ab (1A8) was injected 

to deplete only neutrophils (9-11). Monocyte was depleted 

by i.v. injection of clodronate liposomes (48 h (200μl), 24 

h (200μl), and 6 h (100μl)) before MP-IVM (12,13). CCR2 

knockout mice were used to investigate the contribution of 

inflammatory monocytes to vascular leakage (10,14). Except 

CCR2 knockout mice, depletions of other leukocyte subsets 

were done in C57BL/7 mice. These protocols have been 

shown to deplete more than 90% of the targeted leukocyte 

subset in mice.

Vascular leakage measurement
Vascular leakage was measured from unstimulated and stimu-

lated cremaster venules. Briefly, Texas Red dextran was i.v. 

injected into mice. The images of Texas Red signals (dextran 

leakage) from the cremaster venules were acquired with 

MP-IVM. The fluorescence ratio (FR) of extravascular Texas 

Red (EX) to intravascular Texas Red (IN) was calculated by 

quantifying the mean fluorescence intensity in restricted ex-

travascular and intravascular regions. The mean EX was div-

ided by the mean IN for each time point (FREX/IN). FREX/IN was 

normalized to time 0 (FRt0) as (FREX/IN)/(FRt0) (15). (FREX/IN)/(FRt0) 

was integrated to measure the accumulated vascular leakage 

of dextran at each time point. Volocity software (PerkinElmer) 

was used to measure Texas Red intensity.

  






∆    

Statistics
We described the data with p＜0.05 as significantly different from 

Kruskal-Wallis test or the Student t test using GraphPad Prism.
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Figure 1. Microparticles derived from extravasating leukocytes regulate
vascular leakage in an LFA-1-dependent manner. (A) The numbers of 
CD18＋ microparticles and CD31＋ cells were determined in che-
mokines-stimulated cremaster superfused with either the IgG control 
or the CD11a blocking Ab and in unstimulated cremaster. The ratio 
of CD18＋ microparticles over CD31＋ cells was calculated. MP, mi-
croparticles. *p=0.0004. **p=0.0006. (B) Vascular leakage was mea-
sured and calculated using MP-IVM from CXCL2-stimulated venules in
the superfusion of control IgG or CD11a blocking Ab. Vascular leakage 
was averaged over five points measured outside of the venules every 
30 sec based on the initial Texas Red intensity. *p＜0.0001. a.u., 
Arbitrary unit. (C) A representative image of vascular leakage (Texas 
Red dextran intensity) after extravascular inhibition of LFA-1 showed 
significant increase in fluorescence compared to IgG. The still images
were taken at 30 min of treatment with CXCL2 and the superfusion
of the IgG or CD11a blocking Ab. CD18-mCFP mice were i.v. 
injected with Texas Red dextran, and the cremaster venules were 
imaged. Red: Texas Red dextran, Cyan: CD18＋ leukocytes. (D & E) 
The cremaster venules of CD18-mCFP mice were stimulated with 
CXCL2 (1 nM), and the adherent cells in the vasculature were then
counted before (pre-Ab: white) and 30 min after (post-Ab: black) 
superfusion with either the CD11a blocking Ab or control IgG (D). 
The extravasating leukocytes were counted in the interstitial regions 
surrounding stimulated venules with LFA-1 Ab or control IgG added 
to the superfusate (E). The number of extravasating cells was 
calculated per 100μm for 30 min.

Results and Discussion

We have recently showed that leukocytes become extremely 

elongated and deposit microparticles on the subendothelium 

during extravasation through inflamed vessels in an LFA-1-de-

pendent manner (5). Hereby, we hypothesized that leuko-

cyte-derived microparticles play a protective role, and prevent 

vascular leakage during leukocyte extravasation, by either 

forming a physical barrier on the subendothelium or inducing 

signaling to regulate vascular barrier function.

　To investigate this hypothesis, we first quantified the number 

of β2 integrin (CD18
＋

) containing microparticles formed per en-

dothelial cell of the vasculature in chemokines-stimulated tissue. 

The number of CD18
＋

 microparticles isolated from chemo-

kines-stimulated cremaster tissue was normalized to the total 

number of CD31＋ cells isolated from the same tissue. Superfu-

sion of LFA-1 blocking Ab over the extravascular regions of the 

cremaster muscle dramatically decreased microparticle for-

mation, compared to control IgG superfusion (Fig. 1A). The 

physical properties of microparticles derived from migrating 

leukocytes were determined to be ＜1μm using flow cy-

tometry (Fig. S1). Therefore, we further examined the effects 

of microparticle formation on vascular barrier during CXCL2- 

induced neutrophil migration across the vascular wall. We 

calculated the vascular leakage in exteriorized mouse cre-

master venules by measuring Texas Red fluorescence in-

tensity in the interstitial area adjacent to blood vessels of 

CD18-mCFP mice, which were i.v. injected with Texas Red 

dextran. Inhibition of the LFA-dependent microparticle for-

mation by superfusion of the LFA-1 blocking Ab significantly 

increased dextran leakage (∼4.2 fold), compared to the un-

stimulated condition (Fig. 1B and C). We confirmed that both 

intravascular leukocyte adhesion and transendothelial migra-

tion were not affected by extravascular inhibition of LFA-1 

function (Fig. 1D and E). These findings suggest that the ob-

served increase in dextran leakage under this condition was 

specifically due to decreased formation and deposition of mi-

croparticles on the subendothelium.

Neutrophil extravasation is often linked to vascular leakage 

(16-18) leading to tissue injury in inflammatory models (19,20). 

Therefore, we expanded our study to determine which subset 

of circulating leukocytes was primarily responsible for the 

protective effect on vascular barrier function through deposi-

tion of microparticles during extravasation. To examine this, 

vascular leakage during leukocyte extravasation (induced by 

fMLP) was further assessed after specific depletion of both/ei-
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Figure 2. Microparticles derived from extravasating neutrophils regula-
te vascular barrier function. Vascular leakage was measured using 
MP-IVM from fMLP-stimulated venules of the leukocyte subset deple-
ted mice after extravascular superfusion of either CD11a Ab or IgG 
control. Vascular leakage was averaged over 5 points measured out-
side of the venules every 30 sec based on the initial Texas Red 
intensity. *p＜0.05, **p＜0.005. The vascular leakage was then com-
pared under each condition 30 min after stimulation. a.u., Arbitrary
unit. Unstim., Unstimulated; No depl., No depletion; Neu. depl., Neu-
trophil depletion by i.v. injection of anti-Ly-6G Ab; Infl. Mo. depl., 
Inflammatory monocyte depletion in CCR2 KO mice; Neu./Infl. Mo. 
depl., Neutrophil and inflammatory monocyte depletion by i.v. injec-
tion of anti-Ly-6G/Ly-6C (Gr1) Ab; Mo. depl., Monocyte depletion by
i.v. injection of clodronate liposomes.

ther intravascular neutrophils and/or monocytes, with and 

without inhibition of LFA-1 (by extravascular superfusion of 

LFA-1 blocking Ab). Consistent with previous studies (21), 

Ab-mediated neutrophil depletion showed complete preserva-

tion of vascular barrier function independently of inhibition 

of LFA-1 mediated microparticle formation (Fig. 2). These re-

sults suggest that neutrophil extravasation is accompanied by 

increased vascular leakage and further imply that micro-

particle deposition by extravasating neutrophils affects vas-

cular leakage. In contrast, inhibition of microparticle for-

mation after depletion of intravascular inflammatory mono-

cytes failed to prevent vascular leakage in stimulated vessels 

(Fig. 2). Consistently, depletion of both neutrophils and in-

flammatory monocytes also prevented the increase in vascular 

leakage during leukocyte extravasation (Fig. 2). Therefore, 

during leukocyte extravasation in inflammation, neutrophil- 

derived microparticles play an important role in maintaining 

vascular barrier function. Interestingly, depletion of intra-

vascular monocytes using clodronate liposomes also pre-

vented vascular leakage regardless of extravascular inhibition 

of LFA-1 or not (Fig. 2). As monocytes have been shown to 

facilitate neutrophil trafficking (12,22), it is possible that the 

clodronate liposome-mediated depletion of monocytes may 

decrease vascular leakage by inhibiting transendothelial mi-

gration of neutrophils leading to reduced microparticle for-

mation by extravasating neutrophils. In conclusion, these 

findings provide new evidence for a functional role of neu-

trophil-derived microparticles in preserving endothelial barrier 

integrity during leukocyte extravasation.
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