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The increasing application of single-cell RNA sequencing (scRNA-seq) technology in life science and
biomedical research has significantly increased our understanding of the cellular heterogeneities in
immunology, oncology and developmental biology. This review will summarize the development of var-
ious scRNA-seq technologies; primarily discussing the application of scRNA-seq on infectious diseases,
and exploring the current development, challenges, and potential applications of scRNA-seq technology
in the future.
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1. Introduction

Single-cell studies have greatly expanded our knowledge of cell
subsets diversity and individual cell heterogeneity in organisms.
The primary applications of these studies include single-cell anal-
ysis of transcriptome [1], DNA methylation [2], chromatin accessi-
bility [3], chromatin interactions [4], histone modifications [5],
histone marks [6], spatial transcriptome [7] and more. This review
mainly focuses on scRNA-seq characterizing single-cell
transcriptomes.

scRNA-seq technologies have greatly improved during the last
decade and are widely used in immunology, tumor biology, devel-
opmental biology and other fields. Commercial scRNA-seq plat-
forms, such as the 10X Genomics and BD Rhapsody, have
automated single cell lysis, RNA extraction, cDNA reverse tran-
scription and library construction [8–10]. These advancements in
simplifying the methodology and improving the cost-efficiency
have allowed scRNA-seq to become one of the most popular and
powerful life science and biomedical research tools available
[11,12].

2. The development of scRNA-seq technology

Tang et al. developed the first scRNA-seq method in 2009
[13,14]. In 2011, Islam et al. furthered the technology by applying
barcode labeling and developing single-cell tagged reverse tran-
scription sequencing (STRT-Seq) which made high-throughput
scRNA-seq possible [15]. Subsequently, with the continuous
improvement in cell separation and nucleic acid amplification pro-
cesses, novel scRNA-seq technologies surged (Fig. 1). These new
advances included plate-based linear amplification and sequencing
(CEL-seq) [16], combinatorial indexing-based single-cell combina-
torial indexing RNA sequencing (sci-RNA-seq) [17], microdroplets-
based inDrop [18], and Drop-seq [19].

Before the rise of high-throughput technologies, plate-based
methods were the mainstream scRNA-seq platforms, which
The blue boxes represent significant events in the history of scRNA-seq developm
presents microfluidics-based technology. The red boxes represent plate-based
nts nanowell-arrays-based technology. (For interpretation of the references to co
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includes CEL-seq, CEL-seq2, Massively parallel single-cell RNA
sequencing (MARS-seq) and MARS-seq2 [12,20]. The emergence
of unique molecular identifier (UMI) improved the quantification
of mRNA contents by using random code for labelling individual
mRNA strands [21]. Using UMI allows the investigator to distin-
guish the original template from the amplified sequence derived
from the cDNA or library amplification [11,21]. UMI counting has
been incorporated in many scRNA-seq methods, including CEL-
seq, CEL-seq2, MARS-seq, MARS-seq2, Drop-seq, inDrop, etc.
[11,22–25].

CEL-seq is based on linear amplification and uses a unique bar-
code primer to obtain reverse-transcription in a single tube, which
decreases sequencing errors [16]. CEL-seq2, the improved version
of CEL-seq, is based on microfluidic chips on Fluidigm’s C1 platform,
giving it higher sensitivity, lower costs and less labor [26]. MARS-
seq was previously the main large-scale method for scRNA-seq in
immune profiling [27]. It uses fluorescence-activated cell sorting
(FACS) of single cells into multi-well plates and subsequent auto-
mated processing, which leads to a significant increase in through-
put and reproducibility [28]. MARS-seq2 was developed for index
FACS sorting (recording the levels of surface marker for each sorted
single cell) and based on the MARS-seq approach. The combination
of FACS and scRNA-seq technology ensures MARS-seq2 can record
both single-cell surface markers and transcriptomes, which is par-
ticularly useful for characterizing rare cell populations [20].

Other revolutionary platforms have emerged since 2015, such
as Drop-seq and inDrop [18,19]. Drop-seq uses UMI and barcodes
to mark mRNA from individual cells, which then facilitates pooled
sequencing from multiple cells. However, this technique can only
detect a limited number of genes (5000 at best) per cell. Currently,
Drop-seq is more popular as it is a high-throughput platform for
discovering new cell types, construction of cell differentiation tra-
jectory, molecular mapping of differentiation process, embryonic
development and more. [29–32].

Another commonly used scRNA-seq methods is Smart-seq2
[11,22], which enables detecting higher number of genes, about
ent. The remaining color boxes are abbreviations of various technologies. The black
technology. Green boxes represent microdroplet-based technology. Yellow box
lor in this figure legend, the reader is referred to the web version of this article.)
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9000 per cell [11]. Although the number of cells assayed in each
experiment is fewer, it is useful when dealing with samples con-
taining limited cell numbers for traditional RNA sequencing, such
as circulating tumor cells, early embryonic cells and some labora-
tory unculturable microorganisms [33]. Smart-seq2 also avoids the
30 bias for most sequencing methods [11]. It uses MLV (Moloney
Murine Leukemia Virus) reverse transcriptase which prefers to
choose full-length cDNAs as substrates for its terminal transferase
activity [34]. Special primer design also ensure identical primers
for cDNA synthesis, which helps keep the PCR amplification effi-
ciency consistent [34]. The combination of attributes listed above
ensures the synthesis of full-length cDNA with the Smart-seq2.
All exons of each transcript can be detected by Smart-seq2, which
endues Smart-seq2 with the capability to detect alternative splic-
ing [34,35]. The Smart-seq3 has recently emerged as an upgraded
version of Smart-seq2 with 50 UMI for even more effective
sequencing [36].

Due to a significant reduction in sequencing costs, the number
of cells detected by scRNA-seq has increased from 102 to 106 per
assay, and continues to grow. Downstream bioinformatic analyti-
cal tools have also been rapidly developing such as dimensional-
ity reduction and its visualization techniques. These include t-SNE
(t-Distributed stochastic neighbor embedding) and UMAP (uni-
form manifold approximation and projection) [37]. Personalized
analysis tools included pseudotime, gene ontology (GO) analysis
and STRING database network analysis and others. With the
improvement of scRNA-seq technology and cost-efficiency at such
a rapid pace, the ability to assess the cellular heterogeneity in life
science and biomedical research by scRNA-seq will only increase
with time. In the next section, the application of scRNA-seq in
infectious disease studies will be discussed, using examples of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV2),
human immunodeficiency virus (HIV), influenza A virus (IAV),
cytomegalovirus, dengue virus (DENV), flavivirus, Mycobacterium
tuberculosis, Trypanosoma brucei, Salmonella, Toxoplasma gondii
and helminth.
Fig. 2. Immune atlas study. (A) Identifying novel immune cell subtypes; (B) Detecting
responses; (D) Identifying immune signaling pathways for differentially expressed gene
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3. Applications of scRNA-seq in infectious disease

3.1. Immune atlas study

3.1.1. Identifying novel immune cell subtypes
When facing various infectious pathogens, heterogeneous

immune cells are involved in various important biological pro-
cesses, such as pathogen recognition, killing and antigen-
presentation. For example, macrophages can be divided into vari-
ous tissue-resident subtypes whose transcriptomes are signifi-
cantly different. The identification of novel immune cell
subgroups and understanding of their molecular characteristics,
kinetics and functions during the infection process will greatly
facilitate our understanding of both infectious disease mechanisms
and the development of subsequent treatment strategies. To illus-
trate our point, based on bulk transcriptome analysis, it was deter-
mined that helminth infection induced Trpm5+ tuft cells expressed
both neuronal and inflammation-related genes [38]. However, tuft
cells could be subdivided into two subsets, tuft-1 and tuft-2, by
scRNA-seq. Tuft-1 cells were mainly related to neuronal develop-
ment, while tuft-2 cells primarily express thymic stromal lym-
phopoietin (TSLP) and other inflammation-related genes [39]
(Fig. 2A). Using scRNA-seq and T cell receptor (TCR) clonal analysis,
Waickman et al. report that clonal expanded T cells have unique
transcriptional characteristics. A group of memory-precursor
CD8+ T cells expressing CD38 molecules was defined in this study
[40]. Similarly, it was demonstrated that CD4+ T cells latently
infected with HIV could differentiate into two very different cell
subtypes. The transcriptional level of HIV virus and the number
of genes transcribed in type 1 cells were lower than those in type
2 cells, and type 1 cells were more difficult to be activated [41].
Macrophage subtypes have been identified in TB patients via
scRNA-seq [42]. By utilizing the high-throughput and low-cost
scRNA-seq technique called Seq-Well, Gierahn et al. identified
three pulmonary macrophage subsets from TB patients. All these
macrophages preserved the feature of TLR7/8 pathway activation,
immune cell landscape during infection; (C) Detecting changes of inflammatory
s during infection.
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which is involved in the intracellular recognition of M.tb. However,
the levels of genes related to cell growth, cell metabolism and
hypoxia varied in the different subtypes. The varying immunolog-
ical status of pulmonary macrophages suggests that they have
either distinct origins or adapted to different microenvironment
in TB patients [42]. Notably, caution should be taken to interpret
the reports of novel cell subtypes, considering the possible false
positive, such as doublets. The examples described above clearly
demonstrate that scRNA-seq can greatly facilitate the identifica-
tion of novel immune cell subtypes during infection.

3.1.2. Profiling immune cell landscape during infection
The immune cells initiate host defenses against pathogenic

infection. Profiling immune cell landscape characterize the overall
immune cell compositions between physiological and infection
conditions, which provides key information for understanding
the pathogenic mechanism of infectious diseases. For instance,
scRNA-seq analysis has divided the peripheral blood mononuclear
cells (PBMCs) from HIV-1 envelope vaccinated neonatal and adult
monkeys into 4 groups: B, T, NK, and monocyte [43]. It further
demonstrated that each of the 4 cell clusters showed different pat-
terns between neonatal and adult monkeys (Fig. 2B) [43]. A signif-
icant increase in the ratio of activated B cells was found in neonatal
monkeys, indicating that the neonatal immune system produces a
stronger protective response than that of adult monkeys during
HIV infection [43]. This result also suggest that the expansion of
activated B cells may play a vital role in controlling HIV infection
[43]. Similarly, Park et al. reported that NK cells transformed into
innate lymphoid cell 1 (ILC1)-like cells after Toxoplasma gondii
infection via scRNA-seq analysis. The gene expression profile of
ILC1-like cells differs from that of ILC1 cells. It maintains the ability
of the ILC1 cells to produce IFN-c but not TNF-a. Considering the
fact that ILC1-like cells exist in vivo during and after infection, it
is speculated that they play a protective role even after the parasite
clearance [44]. Likewise, immune landscape profiling after mouse
cytomegalovirus (MCMV) infection by scRNA-seq illustrated the
differentiation trajectory of plasmacytoid dendritic cells (pDCs)
during MCMV infection [45]. Zhang’s group developed the Single
T-cell Analysis by RNA-seq and TCR Tracking (STARTRAC) method
to reveal the dynamic population changes of 20 T-cell subtypes,
each with different functions, in colorectal cancer [46]. scRNA-
seq has also been applied to monitor the peripheral immune cell
landscape changes in corona virus disease 2019 (COVID-19)
patients [47,48]. It was discovered that a series of changes occurred
in peripheral immune cell landscape of COVID-19 patients, which
included lymphopenia, T cell exhaustion and expanded myeloid
compartment and plasmablasts [47]. Similarly, another study
reported expanded cytotoxic effector T cell, including CD8+

effector-GNLY (granulysin), CD4 + effector-GNLY and NKT CD160,
in convalescent patients [48]. Thus, scRNA-seq can identify
changes in immune cell landscape during infection and reveal
the unique role of these populations, shedding lights on the mech-
anisms of pathogenesis.

3.1.3. Detecting changes of inflammatory responses
Inflammatory factors are mainly secreted by stimulated

immune cells, and have various biological functions, including reg-
ulating innate and adaptive immune response, recruitment of
immune cell, etc. Monitoring changes of inflammatory responses
and identifying the key inflammatory factors following an infection
are imperative for understanding the disease pathogenesis as well
as developing novel treatment strategies. Using scRNA-seq analy-
sis, Zhang et al. found varying production of various inflammatory
factors in the lungs of mice infected with IAV (Fig. 2C). The first
3 days-post-infection (dpi), pro-inflammatory factors such as Tnf-
a and Ccl3, were primarily produced by a special subset of PD-
2965
L1 + neutrophils. By 7 dpi, the virus is almost entirely cleared
and chemokines including Ccl5 are primarily secreted by
Pf4 + macrophages [49]. In COVID-19 assessed by scRNA-seq,
SARS-CoV-2 infection induced IL-1b and TNF-a production may
promote mucin secretion from club cells, likely contributing to
acute respiratory distress syndrome (ARDS) [50]. These studies
showed that application of scRNA-seq technology can facilitate
the studying of changes in inflammatory factors secretions over
the course of infection, revealing important cellular and molecular
pathogenic mechanism.

3.1.4. Identifying immune signaling pathways for differentially
expressed genes during infection

scRNA-seq can not only identify the transcriptomic differences,
but also map the cellular interacting networks. For instance, in one
study aiming to understand B cell immunity against an influenza
vaccine using scRNA-seq, it has been shown that a fraction of
peripheral memory B cells were activated the vaccination, while
other memory B cells remained inactive [51]. Expression differ-
ences in 172 genes have been found between activated and inacti-
vate memory B cells, revealing the signaling pathways relevant to
the host defense against influenza virus [51]. In another COVID-19
study, Wang’s group recently found the disease was associated
with expression of multiple cytokines and the activation of
inflammation-related signaling pathways in various activated cell
subsets via scRNA-seq [52]. e.g., NK cells from healthy controls
express genes related to antioxidant damage signaling pathways,
while NK cells from COVID-19 patients show high expression of
inflammation-related signaling pathways (Fig. 2) [52]. Similarly,
using GO analysis of divergent genes, Zhang et al. showed that a
subset of infected neutrophils was associated with pro-
inflammatory response and neutrophil chemotaxis [49]. Thus,
scRNA-seq enables the identification of immunological pathways
that correspond to the differences in host gene expression
throughout the course of an infection. This will deepen our under-
standing of the immunological processes occurring throughout the
course of infection and assist the development of therapeutics for
patients in different stages of infection.

3.2. Study the host-pathogen interaction

3.2.1. Identifying susceptible cell types
For a specific pathogen, the identification of susceptible cells is

crucial for understanding the pathogenic mechanism. For example,
using scRNA-seq and cluster analysis, Steuerman et al. identified 5
types of immune cells and 4 types of non-immune cells in sorted
CD45+ and CD45- cells isolated from the lungs of both wild type
and Irf7 knockout mice infected with influenza virus. Further anal-
ysis revealed that the content of viral mRNA in epithelial cells was
significantly higher than that of other cell types (Fig. 3A) [53]. The
higher viral load presented a greater possibility of the virus colo-
nizing and spreading between epithelial cells. Angiotensin-
converting enzyme 2 (ACE2) has been demonstrated to be the cru-
cial receptor for SARS-CoV-2, and cells expressing high levels of
ACE2 are more susceptible for SARS-CoV-2 [54,55]. By scRNA-seq,
Zhang’s group recently reported that the SARS-CoV-2 receptor
ACE-2 is primarily expressed in 8 cell types including lung alveolar
type II cells, which has potential viral tropism [56]. Similarly, ACE2
mRNA has been found throughout the airway and shown to be
highly expressed in proximal segments. In addition, ACE2 mRNA
expression is much higher in the constricted airways of smokers
[57]. Except ACE2, TMPRSS2 is another factor for cell entry and
spread of SARS-CoV-2 [58,59]. The SARS-CoV-2 could not transmit
vertically during pregnancy, likely due to negligible co-expression
of ACE2 and TMPRSS2 in placenta cells [60]. These results, revealed
by scRNA-seq, both clarified key factors for viral entry and identi-



Fig. 3. Study the host-pathogen interaction. (A) Identifying susceptible cell types; (B) Studying infection dynamics. Each curve represents the expression of viral genes
contained in cells at varying levels of MOI.
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fied susceptible cell types. In another example, Ben-Moshe et al.
developed a new algorithm based on scRNA-seq to find the specific
cell types associated with different microbial infections, demon-
strating the capability to predict infectious disease risk and conse-
quences [61]. Salmonella infected patients have fewer NKT cells
than healthy controls, indicating that NKT cells have a protective
effect [61]. In addition, Bost et al. developed a new tool called
Viral-Track, which aims to map viral RNA directly from scRNA-
seq data. Viral-Track maps scRNA-seq data to a large database of
known viral genomes, providing precise annotations of cell types
associated with viral infection [62]. They report that SARS-CoV-2
infection has a greater impact on the immune system of severely
infected patients, inducing an altered cytotoxic response in CD8+

T cells. They also show that the virus primarily infects epithelial
and macrophage subsets [62]. scRNA-seq can provide crucial infor-
mation about cell types susceptible to infection which will help the
development of strategies for intervention.
3.2.2. Studying infection dynamics
It is important to understand infection dynamics, which focus

on how pathogen proliferate and disseminate in vivo and how
these link to pathogenesis. These studies may facilitate the devel-
opment of personalized therapies for patients at different courses
of infection, which will enable hierarchical diagnosis/treatment
and shortening treatment time. However, some of the obstacles
in these studies are the heterogeneity issues, manifested in both
host cells and microbial populations, which determines how the
host and pathogen interact [63]. The dissemination of bacteria
between different immune cells, pathogen recognition by those
immune cells, and pathogen mediated immune cell death could
be clarified using scRNA-seq. For example, Romas et al. analyzed
the dynamics of the interaction between IAV and respiratory
epithelial cells at the single cell resolution in the early stage of
infection and found that the multiplicity of infection (MOI) of
viruses infecting host cells had a great impact on host innate
immunity [64]. High MOI leads to increase intracellular viral mRNA
(Fig. 3B) and stronger antagonistic effects on innate immune
responses, such as the suppression of IFN production [64]. It was
also found that the early innate immune response caused by low
dose virus infection had a protective effect on bystander cells,
which could block the further spreading of the virus [64]. Similarly,
Zanini et al. studied the dynamics of the interaction between fla-
vivirus and host cells by virus-inclusive single cell RNA-seq, and
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identified several host factors specifically related to flavivirus
infection, including proteins involved in endoplasmic tranlocon,
signal peptide processing and membrane trafficking [65]. The
dynamics of SARS-CoV-2 infection have also been addressed by
scRNA-seq. Compared with patients with moderate and severe dis-
eases, studies reveals great differences in the immune cell compo-
sition at early and late convalescent stages [52]. Therefore, scRNA-
seq can discern the systematic effects of the interaction between
pathogens and host cells, revealing varying effects caused by vary-
ing viral loads and stages of the host’s immune response.
3.3. Studying immune repertoire

Immune repertoire refers to all B cells and T cells with distinct
antigen specificity at any given time. It has important applications
in identifying potent neutralizing antibodies and testing the effi-
cacy of vaccinations. B cell receptors (BCR) on the surface of B cells
recognize and bind antigen. The BCR consists of two heavy chains
(H chain) and two light chains (L chain). The H chain is composed
of four parts: the variable region (V region), the diversity region (D
region), the joining region (J region) and the constant region (C
region). The L chain is composed of three parts: V, J and C region.
Similarly, TCR on the surface of T cells is composed of TCR a and
b chains with V, J and C region as well [66–68]. The diversity of
the V region, along with different VDJ rearrangement, and the dele-
tion or insertion of nucleotides at the junctions of different gene
fragments create BCR and TCR diversity. The structure of the corre-
sponding BCR gene, TCR, and coding gene are shown in Fig. 4. The
immune repertoire analysis includes CDR3 sequence analysis, sin-
gle cell VDJ statistics, TCR or BCR diversity analysis, and TCR or BCR
sharing analysis between samples (Fig. 4E). scRNA-seq can acceler-
ate the identification of neutralizing antibodies with potent thera-
peutic and prophylactic effects, which are vital for the prevention
of the emerging or pandemic infectious diseases. For example, Xie’s
group sequenced the antigen-enriched B cells from the plasma of
convalescent patients with COVID-19 using scRNA-seq and BCR
sequencing, and recovered 14 highly active virus neutralizing anti-
bodies [69]. In vivo studies confirmed that one neutralizing anti-
bodies, BD368-2, showed strong potential as a therapeutic [69].
scRNA-seq can also be applied to monitor the T cell responses after
infection or test the efficacy of vaccination. Liao et al. recently per-
formed the scRNA-seq and single cell TCR-seq on the bronchoalve-
olar lavage fluid from COVID-19 patients. They reported a greater



Fig. 4. TCR and BCR sequencing. (A) Antibody Structure; (B) BCR gene structure, including IGLV, IGLJ, IGLC, IGHV, IGHD, IGHJ, IGHC (IG-, Immune Globulin-, immunoglobulin,
LV / LJ / LC / HV / HD / HJ / HC indicates the light chain variable region / light chain binding region / light chain constant region / heavy chain variable region / heavy chain
multivariable region / heavy chain binding region / heavy chain constant region respectively). Colors reflect structural regions shown in A and B; (C) Structure of the TCR; (D)
TCR gene structure. Colors reflect structural regions shown in A and B; (E) Standard procedure for BCR / TCR sequencing; (F) Changes in TCR composition before and after
infection.
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increase of clonally expanded CD8+ T cells in mildly infected
patients than that of severely infected patients [70]. In another
study, TAK-003 (a potential recombination tetravalent DENV vac-
cine) was found by scRNA-seq analysis of PBMC from patients post
immunization and proven to be an excellent candidate eliciting the
potent and durable T cell response [40]. Another group used single-
cell BCR & TCR sequencing, revealing different types of T cell clonal
expansion (Fig. 4F) and a unique composition of BCR immunoglob-
ulin in convalescent COVID-19 patients [52]. Moreover, unique
combinations of BCR genes is associated with specific pathogen
infection. For instance, VDJ in severe COVID-19 patients had a dif-
ferent pattern when compared with health controls, indicating
specific BCR-VDJ rearrangement in severe COVID-19 [48]. Thus,
scRNA-seq, combined with BCR /TCR sequencing, could provide
important insights into the adaptive immune responses against
infection, and accelerate the development of neutralizing antibod-
ies and specific vaccines. This is vital for the prevention of emerg-
ing or pandemic infectious diseases.
3.4. Biomarker discovery for infectious diseases

A biomarker refers to robust biochemical or cellular changes
during certain biological process and has been widely applied in
diseases diagnose and biomedical research [71]. Currently, con-
crete biomarkers for infectious diseases are limited, and further
exploration is still required. scRNA-seq greatly facilitates the iden-
tification disease-related biomarkers. For example, Zanini et al.
performed scRNA-seq on PBMCs from patients with dengue dis-
ease and found that the expression of MX2 in naive B cells and
the expression of CD163 and IFIT1 in CD14+CD16+ monocytes were
significantly up-regulated before severe dengue disease developed
[72]. These upregulated genes may be used as biomarkers to pre-
dict the progress of dengue disease in the future [72]. Similarly,
by comparing single cell transcriptomes of PBMCs between sepsis
patients and healthy controls, Reyes et al. found that placenta-
associated 8 (PLAC8) and clusterin (CLU) mRNA expression level
in a monocyte subgroup called MS1 (monocyte states 1) were sig-
nificantly higher in sepsis patients [73]. Another study refers to the
discovery of biomarker for active TB. Cai et al. collected the PBMCs
from healthy people, latent TB patients and active TB patients for
scRNA-seq. They found that NK cell (CD3-CD7+ GZMB+) subsets
were depleted in active TB patients, and this cell population recov-
ered in cured TB patients, suggesting that this NK subset could be a
marker to identify active TB patients and monitor treatment
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response [74]. These results were consistent with a multi-cohort
research performed during tuberculosis infection [75], which
reported that NK cell levels decreased in progression from latent
infection to active TB, while NK cell number significantly increased
at the end of treatment [75]. Hence, NK cell could be a novel bio-
marker for active TB. These studies indicate scRNA-seq can be
applied to monitor gene expression patterns related to specific
infections, which can reveal candidate biomarkers for disease diag-
nosis and prognosis.
4. Perspective

4.1. The developmental trend of scRNA-seq

Since most of the information acquired by bulk RNA-seq can
also be acquired by scRNA-seq, scRNA-seq shows great advantage
in solving complex biological and clinical problems from a system-
atic approach. With the emergence of several commercial plat-
forms, scRNA-seq is being increasingly utilized. The average cost
of scRNA-seq has fallen to below $1 per cell [11,23], including
the cost for library construction and sequencing, continuous
improvement in cost-efficiency will encourage more application
of scRNA-seq in developmental biology [76,77], oncology [78,79],
neuroscience [31], etc. The combination of live cell sorting with
scRNA-seq greatly improves sample viability, eliminating concern
for most clinical tissue samples. Technical requirements for
scRNA-seq data analysis are also decreasing, as the number of R
language packages for scRNA-seq, such as Seurat and Monocle,
and commercial data analysis platforms are growing rapidly.
Researchers from Theis lab have summarized current mature prac-
tices for each step in scRNA-seq analysis [80], including linked
inference of genomics experimental relationships (LIGER) (a tool
to approximate the original data and to share factors across various
datasets) [81] and Multi-omics factor analysis (MOFA) (a tool for
analyzing matched data) [82]. Online servers could make the anal-
ysis of scRNA-seq data simpler and more comprehensive, such as
alona and scQuery [83,84]. All these developments may gradually
push the replacement of traditional bulk RNA-seq by scRNA-seq.
However, in some special cases, bulk RNA-seq still has irreplace-
able advantages. For instance, certain types of cells are fragile dur-
ing sample preparation, preventing them from being sequenced,
whereas the bulk RNA-seq could handle it accurately. In addition,
requirement of single-cell suspension plus high cell viability also
prevent the application of scRNA-seq for most plant or special ani-



Fig. 5. Several emerging single-cell sequencing methods. (A) Including ATAC-seq,
whole transcriptome analysis, immune repertoire study, CRISPR-I and methylation
sequencing; (B) Schematic diagram of a spatial transcriptome sequencing chips.
There are four chips for capturing single-cell mRNA on a slice. Each spot in the chip
contains an oligonucleotide sequence, which includes poly (dT), UMI, spatial
barcode and partial read 1. Partial read 1 includes 22nt for Illumina sequencing,
spatial barcode includes 16nt 10X barcode, and UMI includes 12nt unique
molecular identifier.
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mal tissue samples. With recent development, bulk RNA-seq data
can now be utilized to infer scRNA-seq data, such as SCRABBLE
algorithm [61,85–87]. Similar to bulk RNA-seq, microarray can
detect the differential expression of RNA, but it depends on a
hybridization generated signal. Although the sensitivity of gene
expression score detected by microarray is reduced compared with
bulk RNA-seq and scRNA-seq, microarray are still very popular in
clinical research because of its simple use and fast results [88].

At present, mainstream commercial platforms for scRNA-seq
include 10X Genomics and BD Rhapsody. The sample processing
time of both platforms is within 30 min; and the entire process
is integrated, including library construction, sequencing and data
analysis (optional). In addition, the ratio of captured doublets by
these two platforms is relatively low. While both are widely used
in research fields such as immunology, oncology and neurology,
there are still some minor differences between these two plat-
forms. The sequencing throughput of 10X Genomics is higher than
that of BD Rhapsody, and 10X Genomics has a unique technology
that can complete spatial transcriptome sequencing [8,89]. More
importantly, it’s easier to operate than the BD Rhapsody. On the
other hand, the plate-based BD rhapsody requires fairly low con-
centrations of cell suspensions, while a higher concentration is
necessary for microdroplet-based systems, like the 10X Genomics
[10]. In addition, BD Rhapsody provides quality control of the sam-
ples via direct visual inspection of cartridge contents and each
microwell [10,90]. Regarding cost efficiency, BD Rhapsody beads
can be retained for a longer period, which enables the construction
of multiple sequencing libraries from subsample beads. For now
this cannot be achieved by 10X Genomics [10]. Researchers should
consider the various scope of applications, cost efficiency and com-
plexity of work flow between these two platforms, when determin-
ing which to be applied according to specific purposes.

4.2. Emerging methods based on scRNA-seq

Based on scRNA-seq, several novel single-cell multi-omics tech-
nologies have emerged. For example, performing scRNA-seq with
oligo-nucleotides labeled antigens or antibodies, have allowed
simultaneous detection of gene expression, VDJ, antigen specificity,
and cell surface markers [91,92]. These novel immune profiling
techniques have been combined to characterize the gene expres-
sion and TCR repertoire in breast cancer and paracancerous tissues,
blood and lymph nodes. Detailed immune cell maps of multiple
immunophenotypes in tumor microenvironment have been drawn
via this joint sequencing method, which has deepened our under-
standing of tumor cell heterogeneity [93].

The newest spatial transcriptomic technology can trace the
gene expression information of cells to the original spatial location
within the tissue (Fig. 5A). Spatial transcriptome techniques have
already been used in cancer related studies. Moncada et al. utilized
spatial transcriptome and scRNA-seq to analyze the spatial distri-
bution of immune and non-immune cells in sections of pancreatic
cancer, the result of which indicated inflammatory fibroblasts were
enriched near tumor cells with high expression of stress response
genes [94]. Recently, online analysis platforms for spatial tran-
scription data have been established [95]. With those emerging
tools, the visual interpretation of spatial data and annotations for
spatially differentially expressed genes and enrichment analysis
can be achieved [95]. Besides these advantages, some limitations
still need to be addressed. Since spatial transcriptomic technology
is built on the chip, the size of measured tissue section is deter-
mined by the chip size, and the transcripts diffusion on the chip
is inevitable [94]. Additionally, each single measuring spot on the
chip actually captures more than a single cell, which will affect
the subsequent clustering analysis [7]. Currently, several spatial
transcriptomic techniques are developed, including Slide-seq
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[96], MERFISH (multiplexed, error robust fluorescent in situ
hybridization) [97] and seqFISH (sequential fluorescent in situ
hybridization) [98]. Those emerging technologies will promote
the discovery of medical biology to a new level.

In eukaryotes, DNA is combined with histones to form nucleo-
somes, which are further folded and compressed to form chro-
matin. Both DNA replication and transcription require opening
the tight chromatin structure to allow regulatory factors to bind
to the DNA. This property is called chromatin accessibility. Assay
for Transposase-Accessible Chromatin using sequencing (ATAC-
seq) is a integrative epigenomic analysis method that based on
in vitro relocation of sequencing adaptors into native chromatin
(Fig. 5A) [99]. ATAC-seq could find target genes regulated by tran-
scription factors, or identify regulatory elements required during
gene expression. In addition, Chromosome Conformation Capture
(3C) technology and its derivatives, such as Hi-C, ChIA-PET, enables
high-throughput quantitative sequencing to analyze the three-
dimensional structure of the nucleus with superior resolution
[100–102].

DNA methylation is an important epigenetic marker (Fig. 5A). It
is closely related to gene imprinting, stem cell differentiation, and
tumor occurrence / development. Obtaining the single-cell methy-
lome is highly significant in the study of epigenetic spatio-
temporal specificity. Currently, detection of DNA methylation at
single-cell resolution is possible, although it cannot completely
cover all CpG positions [103,104]. Angermueller et al. recently
developed a calculation method DeepCpG, which is based on a
deep neural network strategy and can fill gaps left by previous
methods [105].

Recently, another interesting development called ‘‘direct-
capture perturb-seq” was reported. This combines clustered regu-
larly interspaced short palindromic repeats (CRISPR) screening
with scRNA-seq (Fig. 5A). By using this technique, gene expression
changes caused by individual sgRNA and the sgRNA itself can be
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measured with single cell precision. This study revealed epistatic
interactions between cholesterol biogenesis and DNA repair were
revealed [106]. This method combines two important technologies
and enables alternative ways to probe the relationship between
genes and signal pathways. Therefore, multi-omics analysis meth-
ods examine individual cell by various dimensions, and enable
comprehensive exploration of cellular characteristics and func-
tions. [107,108].

4.3. Challenges in scRNA-seq

Some challenges still exist for scRNA-seq. Since bacterial mRNA
and some viral mRNA do not have a 30 poly-A tail, their mRNA can-
not be studied using current scRNA-seq techniques. In addition,
doublets identification remains problematic during data analysis
[109]. Since doublets have the mixed transcriptome from two cells,
it may cause false positive discovery of novel cell subtypes. How-
ever, analyzing the doublets may also reveal the authentic cell-
to-cell interaction information. Indeed, there is higher percentage
of doublets in the blood of patients with tuberculosis and dengue
disease [110]. These doublets often consist of T cells and mono-
cytes adhering to each other [110]. Some bioinformatic tools have
been created, such as SOLO (a semi-supervised deep neural net-
work model to identify doublets) [111], Scrublet [112] and Dou-
blettFinder [113]. To avoid losing crucial information relevant to
the disease, careful consideration should be taken when deciding
whether doublets should be excluded from the sequencing
analysis.

The results of multi-omics sequencing involve the integration of
heterogeneous data from multiple source. For example, when dif-
ferent data from scRNA-seq and ATAC-seq are integrated for anal-
ysis, the inconsistency of data characteristics cannot be dealt
properly. It is necessary to use algorithms to integrate data from
various data source, such as Specific Representation Learning (an
analysis strategy that integrates scRNA-seq data sets based on
common mutation sources to identify shared populations across
data sets and perform downstream comparative analysis)
[114,115], MOFA (a computational method that discovers the
cooperation between methylation sites and transcriptome) [82],
and Manifold Alignment to CHaracterize Experimental Relation-
ships (MATCHER) (a method that utilizes multiple alignments to
infer single-cell multi-omics profiles between transcriptome and
epigenetic data achieved on various cells of the same type)
[107,116,117]. Among these methods, machine learning is the
leading choice with the help of computer sciences [107]. Research-
ers could use computer programming methods to simplify the
complexity between different data sources. By using these pro-
grams, these data can be integrated according to the key character-
istics. At the same time, the high-speed computing capabilities
could capture and predict data that cannot be manually identified.
In short, integration of multi-omics could allow researchers to
understand how several realms interact. Through high-
throughput sequencing of various omics and data integration
research, it is possible to comprehensively and systematically
understand the interrelationship of multiple substances in the
fields of basic research, clinical diagnosis, and drug development.
The discovery of valuable immunological information from
scRNA-seq results need the collaborative effort of not only compre-
hensive immunological knowledge, but also intensive data analysis
abilities.

Missing values caused by the failure of RNA amplification in
cells is a significant problem that exists in scRNA-seq, making it
technically impossible to judge whether the gene was missing or
not expressed. Imputation is an appropriate method to address
the problem [118,119]. For instance, by taking advantage of
scRNA-seq, Ben-Moshe et al. exploited a deconvolution algorithm
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to infer cell-type specific infection responses from bulk RNA-seq
data, and this algorithm could provide a predictive power for TB
progression [61]. Currently, some tools have been developed to
accurately impute dropouts in scRNA-seq data, such as single-cell
analysis via expression recovery (SAVER) [118], scImpute [87]
and Markov affinity-based graph imputation of cells (MAGIC)
[120].

Besides Smart-seq, the sequencing depth of most scRNA-seq
technologies is about 1 million reads, this leaves much room for
improvement in future [11]. scRNA-seq for lncRNA is currently
possible, and sequencing methods for other non-coding RNA are
under development [121].

scRNA-seq has greatly improved our understanding about the
heterogeneity in various biological process, and has been involved
in many breakthroughs throughout immunology, oncology, and
developmental biology. With the combination of scRNA-seq and
multi-omics analysis, the pathogenic mechanism of various infec-
tious diseases could be quickly and systematically elucidated, sig-
nificantly propelling vaccine development in the near future.
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