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As automobile manufacturers have begun to design, engineer, and test autonomous
driving systems of the future, brain imaging with functional near-infrared spectroscopy
(fNIRS) can provide unique insights about cognitive processes associated with evolving
levels of autonomy implemented in the automobile. Modern fNIRS devices provide a
portable, relatively affordable, and robust form of functional neuroimaging that allows
researchers to investigate brain function in real-world environments. The trend toward
“naturalistic neuroscience” is evident in the growing number of studies that leverage
the methodological flexibility of fNIRS, and in doing so, significantly expand the scope
of cognitive function that is accessible to observation via functional brain imaging (i.e.,
from the simulator to on-road scenarios). While more than a decade’s worth of study
in this field of fNIRS driving research has led to many interesting findings, the number
of studies applying fNIRS during autonomous modes of operation is limited. To support
future research that directly addresses this lack in autonomous driving research with
fNIRS, we argue that a cogent distillation of the methods used to date will help facilitate
and streamline this research of tomorrow. To that end, here we provide a methodological
review of the existing fNIRS driving research, with the overarching goal of highlighting
the current diversity in methodological approaches. We argue that standardization of
these approaches will facilitate greater overlap of methods by researchers from all
disciplines, which will, in-turn, allow for meta-analysis of future results. We conclude
by providing recommendations for advancing the use of such fNIRS technology in
furthering understanding the adoption of safe autonomous vehicle technology.

Keywords: fNIRS, functional near-infrared spectroscopy, autonomous driving, naturalistic brain imaging,
methodology

INTRODUCTION

The era of autonomous driving is upon us. While semi-autonomous cars or “SAE Level 2
Automation Systems” (SAE, 2018) have become visible on our roads (Martinho et al., 2021;
Tan et al., 2021), higher order automated systems (i.e., SAE Level 3–5 Automation Systems)
are being engineered and tested (see Figure 1). Among the many advantages automated
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FIGURE 1 | The future of automobile travel may remove control from the human driver all together, allowing drivers to become passengers who are able to engage in
other, driving-unrelated tasks. Results from fNIRS brain imaging studies (left) will provide vital insights that may be integral in the design of future automated systems
(right). Written informed consent was obtained from the individual for the publication of any potentially identifiable images included in this article.

vehicles could bring to our streets is an increase in safety
by outperforming the human through manipulation in driving
dynamics (Goh et al., 2020), an increase in consumption
efficiency (Phan et al., 2020), or a reduction of overall travel
time by stabilizing traffic flow (Wu et al., 2018). However, until
fully automated systems are engineered, approved, and legalized
for the transport of (fully) passive passengers (i.e., SAE Level
4–5), the human driver will still manually drive the car, for at
least segments of the drive, for many years to come. In fact, for
Level 2–3 Automation, “fallback drivers” are needed to ensure
that in the event the autonomous vehicle is unable to operate or
experiences a failure, the driver can safely take-over and navigate
the vehicle (SAE, 2018). The human operator must monitor
the autonomous vehicle operations and its surroundings and, if
possible, anticipate failures of the AV system, and respond quickly
for potential take-over events.

Critically, it has been noted that drivers’ supervisions of
automated vehicles are less than perfect fallbacks themselves.
The simultaneous failure of the vehicle automation systems and
the fallback driver can have disastrous consequences1. Research
indicates that with the resumption of manual driving from lower
levels of automation, drivers experience an increase in response
time (Rudin-Brown and Parker, 2004) and in secondary task
involvement (Winter et al., 2016). Further studies demonstrate
that during periods of automation, drivers experience increased
sleepy and drowsy behavior leading to decreases in driver
vigilance (Miller et al., 2015). Thus, as long as a human is a
necessary component of driving, a better understanding of the
biological correlates to safe driver take-over events is critical to
the development of SAE Level 2–3 autonomous vehicles.

There has been increased effort in assessing driver state such
as via physiological measurement tools (e.g., heart rate variability,
skin conductance, etc.) or image recognition via board camera
(e.g., drowsiness detection, emotion recognition, etc.) (Begum,
2013; Chowdhury et al., 2018). At the same time, there have
been research efforts to elucidate the neuro-cognitive processes
that underlie or precede these physiological or behavioral states
via brain imaging (Kim et al., 2020; Ware et al., 2020). One
brain imaging technique that has particularly gained traction in

1https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/
autonomous-vehicle-collision-reports/

the past decade is functional near-infrared spectroscopy (fNIRS).
In short, fNIRS is an optical brain imaging approach that uses
near-infrared light to measure changes in oxygen levels within
the cortex of the brain. As shown in Figure 2, a light source is
situated next to a light detector approximately 3 cm apart. The
emitted light travels in a banana shape path in all directions.
As light passes through blood in the cortex, much of the light
is absorbed by oxygen molecules attached to hemoglobin. The
remaining light is detected and is used to calculate relative
levels of oxygenated and deoxygenated hemoglobin within the
region of the cortex between source and detector optodes. As
previous research has shown, changes in cortical oxygenation
(e.g., blood oxygen level dependence) occur when regions of the
cortex become active (Strangman et al., 2002; Cui et al., 2011).
Thus, by making such measurements quickly over time (e.g.,
≥10 Hz), approximate real-time brain function may be observed
and mapped to coinciding behavior.

Compared to electroencephalography (EEG), a commonly
used functional neuroimaging approach that records electrical
stimulation within the brain, fNIRS provides greater spatial
resolution but slower sampling frequency (Scholkmann et al.,
2014). Compared to functional magnetic resonance imaging
(fMRI), the “gold standard” of functional brain imaging, fNIRS
provides a faster sampling frequency but lower spatial resolution
(Strangman et al., 2002; Cui et al., 2011). Thus, while maintaining
a high sampling frequency, fNIRS also provides adequate
spatial resolution needed to localize cortical brain function.
Furthermore, fNIRS also affords many other methodological
benefits, such as a tolerance to movement and methodological
flexibility (Strangman et al., 2002; Cui et al., 2011). As it relates to
the study of brain function and driving, fNIRS makes it possible
to observe the neural correlates of driving in a manner that may
not be feasible with other modalities (Tachtsidis and Scholkmann,
2016; Herold et al., 2017). In particular, recent advances in the
portability of fNIRS systems have afforded neuroscientists the
methodological flexibility to investigate neurocognitive behavior
in naturalistic settings outside the MRI scanner (Baker et al.,
2017; Yücel et al., 2021).

Though brain imaging research with fNIRS
has reached a new era of Real-Life Neuroscience
(Shamay-Tsoory and Mendelsohn, 2019; Holleman et al.,
2020), it is important to note that the age of real-life neuroscience
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FIGURE 2 | fNIRS’ methodological flexibility allows study of cortical activation during driving scenarios.

is still burgeoning, and that researchers are currently in the
exploration phase of testing tools and methods to further
strengthen our ability to study neurobiological signatures of
more complex behavior in naturalistic environments such as
driving. Furthermore, advances in technology and methodology
have made fNIRS also accessible to groups outside of traditional
neuroscience domains. For instance, engineers from diverse
backgrounds such as Human Factors and Ergonomics, Human–
Computer Interaction, and Engineering Design/Affective
Engineering, have begun to study the neural signatures of
drivers from their own research perspective (Solovey et al., 2009;
Canning and Scheutz, 2013; Balters et al., 2017; Bosworth et al.,
2019; Zhu et al., 2020). The transition between laboratory and
the real-world (e.g., on-road) combined with advances from
researchers outside of classical neuroscience (e.g., engineering)
has resulted in a wide array of interesting and differing fNIRS
methodologies. With respect to fNIRS driving research, “into the
wild” and “multi-disciplinary” approaches have led to an eclectic
mix of experimental designs, analytical techniques, and hardware
configurations as highlighted throughout our review below.
While such scientific diversity is expected in this early phase of
any research domain, it will be essential for future research to
minimize such methodological differences in a concerted effort
to advance the field.

We argue that the construction of safe autonomous driving
systems is an ongoing engineering challenge with high impact for
society, and that an understanding of human behavior as part
of this system is an important and open task. In complement
with other psycho-physiological and behavior measures, fNIRS
affords unique insights in understanding the underlying cognitive
functions related to autonomous driving scenarios. To inform
future autonomous driving studies, we therefore review the
current state of fNIRS methodology pertinent to driving research.
The overarching aim is to provide a methodological benchmark,
which we can use to identify existing limitations that hamper
fNIRS’s utilization in autonomous driving research. Specifically,
we provide a detailed methodological review of the fNIRS-based
studies of driving published prior to the year 2020. Throughout
our review, we focus on seven relevant methodological domains
that vary across studies: experimental environment; participant
selection and documentation; task familiarization, physiological
baseline; and inter-block/inter-trial intervals; task design and
analytical approach; control task design; hardware specs, optode
distance, and optode placement; and data processing and

statistical analysis. For each of these domains, we identify
potential best practices, summarize the approaches taken by
researchers to date, highlight remaining hurdles and provide
recommendations for future research. It is our hope that
this paper will serve as an anchor for future discussion
and collaboration within and between fNIRS researchers from
different disciplines.

METHODOLOGICAL REVIEW

We executed a Google Scholar and PubMed search and
considered all peer-reviewed manuscripts that were published
through December 31, 2019. Our search strategy included the
following keywords: “fNIRS car,” “fNIRS driver,” “fNIRS driving,”
“NIRS car,” “NIRS driver,” “NIRS driving.” For each search, we
inspected the first 250 entries for each keyword category and
included all articles that met the criteria of “adult subjects,”
“car driving,” and “simulator and/or on the road studies.”
We operationally defined “simulator” as any virtual interface
that included a physical steering wheel and pedals. As such,
this allowed for a wide variation in simulator complexity2.
Additionally, we checked the reference lists of the included
articles for any additional relevant articles. We only included
journal and conference publications in the English language. For
instances in which the same content was published in more
than one peer-reviewed publication (i.e., journal article and
conference proceedings; N = 6), we distilled a key publication
as representative in this review. From the initially identified 55
publications, a total of 48 publications met the above criteria. As
shown in Figure 3A, the first studies in the field emerged about
one decade ago, and about 5 years later fNIRS driving research
significantly intensified. By means of thematic analysis of the
identified publications we derived nine research topics of interest
(see Figure 3B)3. In Table 1, we provide a brief summary of each
paper including year of publication, author(s), research topics,
basic manipulation and studied brain regions of interest. For an
in-depth read on neural processes involved in driving, we refer
the interested reader to following reviews (Liu et al., 2016; Lohani
et al., 2019; Kim et al., 2020; Ware et al., 2020).

2We include one exception: the first study, conducted in 2007, comprised a
computer setup without steering wheel and pedals (Harada et al., 2007).
3The thematic analysis was conducted individually by SB and JB. The nine topics
in Figure 2B resulted from discussion and agreement based on these reviews.
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FIGURE 3 | Number of fNIRS driving studies conducted from 2007 to 2019 (A), and research topics (B).

Experimental Environment
As highlighted in Table 1, researchers have used a myriad
of approaches to study brain function under multiple driving
conditions. This includes studies employing low-scale driving
simulators (i.e., driving simulation conducted on desktop
computer with small visual field; N = 17 studies) as well
as a range of more immersive simulator environments (i.e.,
driver seated in a mock automobile with large visual field;
N = 22 studies) and on-road conditions (N = 9). Simulated
environments provide researchers with the ability to regulate
and control the drivers’ experience. For instance, researchers
may provide repeated instances of a specific driving task
(e.g., diversion from unexpected obstacle) that may not
occur frequently in real-world driving. Moreover, within
simulated environments researchers may observe drivers in
states (e.g., drowsiness) that would be too dangerous or
irresponsible to observe in real-world driving. While simulated
environments may require similar driver movements, many
other mediating factors that affect the fNIRS signal during
real driving are not present (Yamamoto et al., 2018). For
example, imperfections in road conditions combined with road
camber, centrifugal forces, wind, and unique characteristics of
the automobile also introduce sources of noise that may not
be easily captured in a driving simulator (Yamamoto et al.,
2018). Another consideration regarding the task environment
is the effect that the driving environment may have on
the data. For example, the physical movements needed to
operate low fidelity desktop-based simulated environments
may differ greatly from immersive in-car experiences. In-
car driving requires significant head and limb motions that
have been shown to induce artifacts due to motion-induced
optode shearing on the scalp (Huppert et al., 2009; Virtanen
et al., 2011; Brigadoi et al., 2014). To help overcome such
shearing, researchers may consider tightening the fit of the
optodes on the participant’s head. It is important to note,
however, that these measures will not completely remove
artifacts due to motion, may increase participant discomfort
over time, and may also introduce data artifacts of their

own (Baker et al., 2017). Finally, ambient light in real-
world driving is often much greater than in simulated
environments and thus can negatively affect fNIRS signal
compared to indoor lighting (Chenier and Sawan, 2007; Coyle
et al., 2007; Baker et al., 2017). While these factors increase
the difficulty of conducting fNIRS studies during on-road
driving, they are often essential factors in an experimenter’s
methodological design.

The majority of studies included here were conducted in
a simulator setting, with only nine occurring in an on-road
environment (Harada et al., 2007; Shimizu T. et al., 2011; Yoshino
et al., 2013a,b; Inoue et al., 2014; Orino et al., 2015, 2017; Liu et al.,
2017; Le et al., 2018). However, as described above, the quality of
the simulators (e.g., fidelity of the visual environment, amount
of visual field encompassed, realism of the simulator to a real
automobile) varied between low fidelity desktop computer setups
(Shang et al., 2007; Li et al., 2009, 2018; Tomioka et al., 2009; Liu,
2014; Khan and Hong, 2015; Pradhan et al., 2015; Unni et al.,
2015; Ahn et al., 2016; Horrey et al., 2017; Nguyen et al., 2017;
Xu G. et al., 2017; Xu L. et al., 2017; Hidalgo-Munoz et al., 2019;
Khan et al., 2019; Lin et al., 2019; Tanveer et al., 2019) and more
immersive simulated environments (Nakano et al., 2013; Oka
et al., 2015; FakhrHosseini et al., 2015; Foy et al., 2016; Foy and
Chapman, 2018; Huve et al., 2018, 2019; Sturman and Wiggins,
2019; Yamamoto et al., 2019) including large-scale simulators that
comprise a real car mock-up along with a wide field of vision
(Tsunashima and Yanagisawa, 2009; Shimizu et al., 2009; Orino
et al., 2015; Nosrati et al., 2016; Sibi et al., 2016, 2017; Balters
et al., 2017; Unni et al., 2017; Bruno et al., 2018; Chuang et al.,
2018; Ihme et al., 2018; Zhu et al., 2019). To minimize motion
artifacts, participants in eight studies were specifically instructed
to avoid head (and limb) movements (Li et al., 2009; Takahashi
et al., 2010; Liu, 2014; FakhrHosseini et al., 2015; Khan and Hong,
2015; Xu G. et al., 2017; Huve et al., 2018; Hidalgo-Munoz et al.,
2019), potentially leading to a reduction in naturalistic behavior.
Only two studies administered black coverage over the optodes
to counteract artifact due to (sun-) light during on-road driving
(Orino et al., 2015) and in the simulator (Sibi et al., 2016).
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TABLE 1 | Overview of driving research utilizing fNIRS.

References Topic Basic manipulation Environment N (of which N
are women)

fNIRS instrument Number of
channels

ROI Analysis
approach

Harada et al.,
2007*

II 7 km on-road driving around
campus (young vs. elderly
driver cohort).

On-road 28 (7) NIRO-300,
Hamamatsu
Photonics

2 PFC A

Shang et al.,
2007*

I Sim-driving without further
stimuli.

Low-scale sim 1 (0) Hitachi ETG-7100 66 PFC,
OC

A

Li et al., 2009* IV 3 h sim-driving vs. watching
video of sim-driving (control
group).

Low-scale sim 40 (NA) TSAH-100,
Tsinghua University

2 PFC A

Shimizu et al.,
2009*

I Sim-driving with stop and go,
narrow roads, and
car-following.

Immersive sim 12 (NA) OMM3000,
Shimadzu
Corporation

95 PFC,
OC

A

Tomioka et al.,
2009

VI Sim-driving of Alzheimer’s
Disease patients vs. healthy
control group.

Low-scale sim 26 (0) ETG-4000, Hitachi
Medical
Corporation

52 PFC A

Tsunashima
and
Yanagisawa,
2009

IX Sim-driving with and without
adaptive cruise control.

Immersive sim 4 (0) OMM3000,
Shimadzu
Corporation

42 PFC A

Shimizu S.
et al., 2011*

II On-road driving on narrow
roads in left and right hand
vehicles.

On-road 16 (0) Foire-3000 fNIRS,
Shimadzu
Corporation

32 PFC A

Nakano et al.,
2013*

VI Sim-driving with “point and
calling” when encountering
traffic signs.

Immersive sim 3 (0) Hitachi wearable
optical topography

22 PFC A

Yoshino et al.,
2013a

II On-road driving (day and night)
with speed manipulations.

On-road 12 (4) Foire-3000 fNIRS,
Shimadzu
Corporation

48 PFC,
MC, PC

A

Yoshino et al.,
2013b

II On-road driving (day and night)
with speed manipulations and
u-turns.

On-road 12 (4) Foire-3000 fNIRS,
Shimadzu
Corporation

48 PFC,
MC, PC

A

Inoue et al.,
2014*

III Sim and on-road driving with
turns at t-junctions.

Low-scale sim
and on-road

8 (0) Foire-3000 fNIRS,
Shimadzu
Corporation

24 PFC A

Liu, 2014 IV Sim-driving with and without
maintaining speed control.

Low-scale sim 31 (4) PocketNIRS,
DynaSense Inc.

2 PFC A

FakhrHosseini
et al., 2015*

VIII Detecting anger in participants
during sim-driving.

Immersive sim 10 (4) NIRO-200NX,
Hamamatsu

4 PFC FA

Khan and
Hong, 2015

IV 35 min sim-driving to detect
driver drowsiness.

Low-scale sim 13 (0) DYNOT, NIRx
Medical
Technologies

28 PFC LDA

Oka et al., 2015 I Driving curves in the sim vs.
watching video of curve driving
in sim.

Immersive sim 15 (7) Foire-3000 fNIRS,
Shimadzu
Corporation

48 PFC,
pMC,

MC, PC

A

Orino et al.,
2015*

II On-road driving on an express
way with a sag.

On-road 11 (3) Foire-3000 fNIRS,
Shimadzu
Corporation

48 PFC,
pMC,

MC, PC

A

Pradhan et al.,
2015*

V Sim-driving as single passenger
and with passenger.

Low-scale sim 12 (0) TechEn CW6 19 PFC A

Unni et al.,
2015*

VII Five levels of n-back tasks
while driving in the sim.

Low-scale sim 9 (NA) NA NA PFC,
PC

R

Ahn et al., 2016 IV Well-rested vs. sleep deprived
participants drive in the sim.

Low-scale sim 11 (1) Custom-built
system

8 PFC A

Foy et al., 2016 VI Sim-driving with overtaking
tasks (novice/experienced and
male/female).

Immersive sim 32 (NA) fNIR 100, BIOPAC
Systems Inc.

16 PFC A

Nosrati et al.,
2016

V Sim-driving in non-distracted
and distracted conditions.

Immersive sim 16 (11) Custom-built
system

2 PFC A

(Continued)
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TABLE 1 | Continued

References Topic Basic manipulation Environment N (of which N
are women)

fNIRS instrument Number of
channels

ROI Analysis
approach

Sibi et al.,
2016*

IX Autonomous sim-driving with
three secondary tasks (i.e.,
reading).

Immersive sim 14 (3) Device model
1100, Drexel
University

16 PFC A

Balters et al.,
2017*

IX Lane change in manual,
partially, and fully autonomous
sim-driving.

Immersive sim 28 (10) NIRSport, NIRx
Medical
Technologies LLC

20 PFC GLM

Horrey et al.,
2017*

V Sim-driving with boring and
interesting auditory stimuli.

Low-scale sim 31 (13) NIRO-300,
Hamamatsu
Photonics

2 PFC A

Liu et al., 2017 II On-road driving in simple
driving and car-following
conditions.

On-road 12 (0) NirSan Danyang
Huichuang Medical
Equipment Co

16 PFC,
MC,
OC

C

Nguyen et al.,
2017

IV Sim-driving until experimenter
detects signs of drowsiness.

Low-scale sim 11 (1) Custom-built
system

8 PFC A

Orino et al.,
2017*

II On-road driving with steering
and speed control.

On-road 6 (4) Foire-3000 fNIRS,
Shimadzu
Corporation

98 PFC,
MC,
OC

A

Sibi et al.,
2017*

IX Sim-driving in manual, partially,
and fully autonomous mode of
operation.

Immersive sim 28 (10) NIRSport, NIRx
Medical
Technologies LLC

20 PFC GLM

Unni et al.,
2017

VII Five levels of n-back tasks
while sim-driving.

Immersive sim 19 (2) NIRScout, NIRx
Medical
Technologies LLC

78 PFC,
OC, PC

R

Xu G. et al.,
2017

V Sim-driving with auditory
distraction and visual vigilance
tasks.

Low-scale sim 12 (5) NirScan, Danyang
Huichuang Medical
Equipment Co.

36 PFC,
MC,
OC

C

Xu L. et al.,
2017

IV Baseline sim-driving versus
solving arithmetic during
sim-driving.

Low-scale sim 14 (NA) NirScan, Danyang
Huichuang Medical
Equipment Co.

NA PFC,
MC,
OC

C

Bruno et al.,
2018

I Driving curves in the sim, with
correct and reversed steering.

Immersive sim 21 (10) NIRSport, NIRx
Medical
Technologies LLC

40 PFC,
PC

GLM

Chuang et al.,
2018

IV 1 h sim-driving with reoccurring
drifting events.

Immersive sim 16 (NA) NIRScout, NIRx
Medical
Technologies LLC

18 PFC,
MC, PC

FPA

Foy and
Chapman,
2018*

I Sim-driving on 4 different road
types.

Immersive sim 30 (13) fNIR 100, BIOPAC
Systems Inc.

16 PFC A

Huve et al.,
2018*

I Sim-driving in different weather
and road types conditions.

Immersive sim 1 (NA) WOT-220, Hitachi,
Ltd.

22 PFC ML

Ihme et al.,
2018

VIII Detecting driver frustration
during sim-driving.

Immersive sim 16 (0) NIRScout, NIRx
Medical
Technologies LLC

80 PFC R

Le et al., 2018 VII Sim-driving with auditory
n-back tasks.

On-road 5 (1) NIRS system
Astem Corp.

4 PFC R, ML

Li et al., 2018 IV 7 x 55 min sim-driving, followed
by 5 min attention task.

Low-scale sim 13 (5) Custom-built
system

8 PFC A

Yamamoto
et al., 2018*

III Encountering traffic signs in the
sim and on-road driving.

Immersive sim
and on-road

18 (10) Foire-3000 fNIRS,
Shimadzu
Corporation

48 PFC,
PC

A

Hidalgo-Munoz
et al., 2019

IX Sim-driving (manual and
autonomous mode) while
listening to radio.

Low-scale sim 12 (6) NIRScout, NIRx
Medical
Technologies LLC

41 PFC,
OC, PC

A

Huve et al.,
2019 *

IX 3 min sim-driving in manual and
autonomous mode of
operation.

Immersive sim 1 (NA) WOT–220, Hitachi,
Ltd

22 PFC ML

Khan and
Hong, 2015

IV 30 min sim-driving to detect
driver drowsiness.

Low-scale sim 5 (NA) DYNOT, NIRx
Medical
Technologies

8 PFC ML, LDA

(Continued)
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TABLE 1 | Continued

References Topic Basic manipulation Environment N (of which N
are women)

fNIRS
instrument

Number of
channels

ROI Analysis
approach

Lin et al., 2019 IV 1 h sim-driving with reoccurring
drifting events.

Low-scale sim 16 (4) NIRScout, NIRx
Medical
Technologies
LLC

26 OC, PC A

Scheunemann
et al., 2019

VII Sim-driving in and outside of
construction zones with n-back
tasks.

Immersive sim 19 (2) NIRScout, NIRx
Medical
Technologies
LLC

78 Entire
cortex

R

Sturman and
Wiggins, 2019*

V Sim-driving while being
exposed to environmental
cues/stimuli.

Immersive sim 62 (42) NA 1 PFC A

Tanveer et al.,
2019*

IV 35 min sim-driving to detect
driver drowsiness.

Low-scale sim 13 (0) DYNOT, NIRx
Medical
Technologies

28 PFC ML

Yamamoto
et al., 2019*

V Sim-driving and encountering
traffic signs.

Immersive sim 12 (5) Foire-3000
fNIRS,
Shimadzu
Corporation

48 PFC,
PC

A

Zhu et al.,
2019*

IX Detecting brake intention
during sim-driving.

Immersive sim 52 (10) NIRScout, NIRx
Medical
Technologies
LLC

41 PFC,
PC, OC

ML

See Figure 3 regarding the definition of research topics. Below, we differentiate between “sim-driving” (i.e., simulated driving) and “on-road driving” (i.e., studies that were
conducted on the road). The asterix symbol (*) marks research from the field of engineering. We utilize following abbreviations: region of interest (ROI), prefrontal cortex
(PFC), motor cortex (MC), occipital cortex (OC), parietal cortex (PC), pre-motor cortex (pMC), block average (A), connectivity (C), factor analysis (FA), frequency power
analysis (FPA), general linear model (GLM), linear discriminant analysis (LDA), linear or logistic regression (R), machine learning (ML), not applicable (NA).

Participant Selection and Documentation
Beyond assuring a sample size that is large enough for
statistical interpretations, many participant characteristics (e.g.,
age, driving experience, gender, personality traits, etc.) have been
shown to have a significant impact on driving behavior (Tao
et al., 2017; Fountas et al., 2019). Participant selection and the
reporting of participant characteristics, including but not limited
to sample size, age, driving experience, and gender are important,
as those factors may influence experimental design, analysis, and
interpretation of the results.

Participant selection and information provided within the
reviewed papers varied considerably. Across our reviewed papers,
the number of participants ranged from one (Shang et al., 2007;
Huve et al., 2018; Huve et al., 2019) to 62 (Sturman and Wiggins,
2019) participants with M = 16.81, SD = 12.37 across all studies.
Only 75% (36 studies) reported the range, mean, and standard
deviation of participant ages. Six studies reported solely a vague
age range (e.g., “in their 20s”) (Shimizu et al., 2009; Tsunashima
and Yanagisawa, 2009; Takahashi et al., 2010; Pradhan et al., 2015;
Nguyen et al., 2017; Chuang et al., 2018), and the remaining six
studies did not report participants’ ages at all (Nakano et al.,
2013; Oka et al., 2015; Unni et al., 2015; Huve et al., 2018,
2019; Yamamoto et al., 2019). Only 18 studies reported driver
statistics such as total number of years of driving and frequency
of driving (Harada et al., 2007; Tomioka et al., 2009; Yoshino
et al., 2013a,b; Oka et al., 2015; Orino et al., 2015, 2017; Pradhan
et al., 2015; Foy et al., 2016; Nosrati et al., 2016; Xu G. et al.,
2017; Bruno et al., 2018; Foy and Chapman, 2018; Li et al.,
2018; Le et al., 2018; Hidalgo-Munoz et al., 2019; Scheunemann
et al., 2019; Sturman and Wiggins, 2019). With respect to gender,

eight studies did not report participants’ gender distribution (Li
et al., 2009; Unni et al., 2015; Foy et al., 2016; Xu L. et al., 2017;
Chuang et al., 2018; Huve et al., 2018, 2019; Khan et al., 2019), 12
studies examined exclusively male participants (Shang et al., 2007;
Shimizu et al., 2009; Shimizu T. et al., 2011; Tomioka et al., 2009;
Tsunashima and Yanagisawa, 2009; Nakano et al., 2013; Inoue
et al., 2014; Khan and Hong, 2015; Pradhan et al., 2015;
Liu et al., 2017; Ihme et al., 2018; Tanveer et al., 2019),
and for the remaining 28 studies, the ratio of female to
male participants ranged from 10 to 69%, with an average
of M = 34.9% (SD = 17.6%). Notably, only three studies
balanced the gender distribution (±1 person difference per
gender group) across participants (Oka et al., 2015; Bruno et al.,
2018; Hidalgo-Munoz et al., 2019).

Task Familiarization, Physiological
Baseline, and Inter-Block/Inter-Trial
Intervals
Another study component is the activity used to familiarize
participants with the driving environment. Participants who
have not been familiarized with the driving environment may
experience confusion with the system controls or may otherwise
attend to factors outside of the task of interest. This, in turn, may
elicit unwanted cortical activation that would not be present in
the absence of such confusion. It is further advisable to establish
a physiological baseline at the beginning of each scan, prior to
the start of the experiment. This may be accomplished by simply
instructing the participant to sit quietly and without movement
for 30 s to 1 min. This can serve to stabilize the fNIRS signal,
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so that it is not artificially inflated or deflated due to excessive
movement. Finally, it is important that experimental designs
incorporate appropriately timed inter-trial and/or inter-block
intervals. These intervals act to separate hemodynamic responses
elicited during a task event or block prior to the start of the
next trial or block. Event-related designs require jittered inter-
trial intervals (i.e., randomized or pseudorandomized durations)
so that the onset of the successive trial/block is unknown to the
participant (Plichta et al., 2006, 2007).

Among the papers reviewed here, 23 did not report
information regarding the driving familiarization task used.
Participants were allowed to experience the driving environment
(simulated or on-road) within 18 studies (Li et al., 2009; Shimizu
et al., 2009; Liu, 2014; Khan and Hong, 2015; Pradhan et al.,
2015; Oka et al., 2015; Ahn et al., 2016; Foy et al., 2016; Sibi
et al., 2016; Horrey et al., 2017; Chuang et al., 2018; Ihme et al.,
2018; Yamamoto et al., 2018, 2019; Khan et al., 2019; Lin et al.,
2019; Sturman and Wiggins, 2019; Tanveer et al., 2019), and
seven studies allowed participants to familiarize themselves with
the driving environment and task-related stimuli (Tsunashima
and Yanagisawa, 2009; Yoshino et al., 2013a,b; Unni et al., 2015;
Balters et al., 2017; Sibi et al., 2017; Scheunemann et al., 2019).
Only four studies reported a physiological baseline task (i.e.,
task designed to allow participants’ cortical activity to settle
into a resting level), including sitting quietly with or without
eyes open for a period of 2 min (Zhu et al., 2019), 5 min
(Li et al., 2018), 10 min (Li et al., 2009), or 20 min (Xu G.
et al., 2017). Establishing a resting level of oxygenation is an
important component of fNIRS methodology, as it provides
a baseline of blood oxygenation from which hemodynamic
response magnitudes during the task are determined. Should
no baseline be established researchers run the risk of missing
true hemodynamic responses due to Type II (i.e., false negative)
error. That is, detecting a rise in cortical oxygenation due to task
demands (e.g., driving challenges) may be hampered if cortical
blood oxygenation levels were artificially high to begin with.
Generally, the recommended duration to establish a baseline is
at least 30 – 60 s in which the participant sits quietly. Seven
studies employed a block-design (Tsunashima and Yanagisawa,
2009; Nakano et al., 2013; Liu, 2014; Xu G. et al., 2017; Ihme
et al., 2018; Hidalgo-Munoz et al., 2019). The inter-block duration
ranged from roughly 30 s (Tsunashima and Yanagisawa, 2009;
Liu, 2014; Hidalgo-Munoz et al., 2019), to a maximum of 5 min
(Nakano et al., 2013; Xu G. et al., 2017; Ihme et al., 2018). In one
study, a full day of rest between two block-conditions (i.e., drowsy
vs. rested) was given (Ahn et al., 2016). Twelve studies used event-
related design with inter-trial intervals ranging between 10 s and
1 min (Shimizu et al., 2009; FakhrHosseini et al., 2015; Oka et al.,
2015; Unni et al., 2015, 2017; Nosrati et al., 2016; Balters et al.,
2017; Sibi et al., 2017; Bruno et al., 2018; Chuang et al., 2018; Lin
et al., 2019; Scheunemann et al., 2019).

Task Design and Analytical Approach
The analytical approach that a researcher intends to take with
their study is inherently related to methodological elements such
as trial number and number of experimental conditions (Plichta
et al., 2006, 2007). For instance, an adequate number of trials are

required for each condition to provide a normal distribution of
fNIRS samples, which is in turn required to identify a true effect
from background noise. If the number of repetitions is too low
the researcher will be more prone to both Type I (false positive)
and Type II (false negative) errors because outlying values have a
greater impact on smaller distributions. This means that single-
trial studies may not be suitable for trial-based study designs.
Researchers may obtain effect size estimates (e.g., Cohen’s d)
from published reports and use such information to estimate
the appropriate number of trials needed to obtain a desired
statistical effect. Moreover, researchers may rely on online tools
(e.g., Optseq) designed to aid in the methodological development
of neuroimaging studies with respect to statistical power. As
with other neuroimaging methods, fNIRS studies are typically
conducted as block or event-related designs.

Block design studies require participants to engage in a
task for at least a duration long enough to observe an entire
hemodynamic response to a given stimulus or experimental
condition. For example, a researcher interested in the effect of
talking on a cellphone while driving may require participants to
drive a pre-defined course 10 times while talking on the phone,
then again without talking for a total of 20 trial blocks. Assuming,
for the sake of our example, that talking on the phone did elicit
cortical activity that was captured by fNIRS, such activity may
be observed as a rise in oxygenation that occurs shortly after the
beginning of each talking block and lasting until talking ended.
The approximate duration required to observe a hemodynamic
response function (HRF) is at least 10 s (Strangman et al., 2002;
Cui et al., 2011), meaning that each task block must be at least
10 s in duration, although additional time is required to also
observe the decrease of the HRF as cortical activity returns to
resting levels. While an HRF may not be easily identifiable in a
single block of the task, averaging each talking block together may
reveal such a response. Several metrics [e.g., area under the curve
(AUC), max/min value, etc.] derived from the block-averaged
time series may then be calculated and used as the primary
dependent variable for group-level analyses. The AUC for talking
blocks may be expected to be greater than for non-talking blocks,
which may be tested using common inferential statistics (e.g.,
Student’s t-test). However, because a hemodynamic response may
vary for any number of reasons (e.g., attentional shift), the use of
block durations that are significantly longer than a single HRF
(e.g., 60 s or longer) may include unrelated cortical activity when
averaging. Thus, researchers should consider limiting their block
durations or parsing excessively long blocks into discrete sections
for block averaging.

One well established alternative to block design tasks is the
generalized linear modeling approach (GLM), which attempts
to model small portions of an expected hemodynamic response
through convolution onto the recorded fNIRS data. This is
done by time-locking the onset and duration of each task trial
to the fNIRS timeseries. If the onset of a trial induces an
expected hemodynamic response, the fit of the GLM will be
greater compared to conditions that do not elicit a hemodynamic
response. Because the entire HRF is not sought, researchers may
present multiple trials that are shorter in duration compared to
block averaging. Furthermore, trials from different conditions
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may be pseudo-randomized and jittered so that all conditions
are experienced evenly throughout the study, yet their onsets
may not be reliably determined. Ultimately, the GLM approach
will calculate standardized beta weights for each condition,
which quantify the degree to which each condition elicited an
increase (positive beta) or decrease (negative beta) in cortical
response. Task- and control-condition beta weights may then be
contrasted and used as a primary dependent outcome. Finally,
multiple advanced statistical approaches (e.g., machine learning,
functional connectivity, etc.) have been developed for fNIRS
data that may also provide greater methodological flexibility.
For instance, unconstrained machine learning analyses seek
to identify unique patterns of cortical responding that occur
during naturalistic driving. This approach may be best suited
for long durations of real-world driving that do not include
explicit trials. Similarly, while also amenable to trial- based
task structures, functional connectivity analyses may be used to
identify inter- or intra-brain communication that occurs during
naturalistic driving.

As may be expected, the analytic approach employed by the
studies reviewed here differed greatly. For instance, 60% (N = 29)
used an averaging approach in which the fNIRS time series was
averaged across a trial and/or event block. The average duration
ranged from short blocks (i.e., 10–32 s) (Shimizu et al., 2009;
Shimizu S. et al., 2011; Oka et al., 2015; Pradhan et al., 2015;
Nosrati et al., 2016) to longer blocks (i.e., 40 s – 8 min 30 s) (Shang
et al., 2007; Tomioka et al., 2009; Tsunashima and Yanagisawa,
2009; Nakano et al., 2013; Ahn et al., 2016; Foy et al., 2016;
Sibi et al., 2016; Horrey et al., 2017; Nguyen et al., 2017; Foy
and Chapman, 2018; Li et al., 2018; Hidalgo-Munoz et al., 2019;
Sturman and Wiggins, 2019). Two studies opted to bin a long
time series (i.e., 15 s to 60 min) into multiple “chunks” (Li et al.,
2009; Lin et al., 2019). The remainder of these studies provided
no information about the duration (Harada et al., 2007; Yoshino
et al., 2013a,b; Inoue et al., 2014; Liu, 2014; Orino et al., 2015,
2017; Yamamoto et al., 2018, 2019). Nineteen studies employed
analytical approaches that may be considered more complex than
block averaging including GLM (Balters et al., 2017; Sibi et al.,
2017; Bruno et al., 2018), functional connectivity (Liu et al., 2017;
Xu G. et al., 2017; Xu L. et al., 2017), linear regression (Unni et al.,
2015, 2017), logistic regression (Ihme et al., 2018; Scheunemann
et al., 2019), machine learning (Huve et al., 2018, 2019; Khan
et al., 2019; Tanveer et al., 2019), frequency power analysis
(Chuang et al., 2018), factor analysis (FakhrHosseini et al., 2015),
and linear discriminant analysis (Khan and Hong, 2015).

Control Task Design
The objective of a control task is to provide a condition
that is nearly identical to the primary task yet lacks the
component that is expected to elicit a cortical response of
interest. For instance, for a hypothetical study of the effect
of distraction on the neurobiological signatures of driving,
participants may find themselves actively driving the same course
in the “distraction” and “no distraction” conditions. However,
within the “distraction” condition an attentionally demanding
task is added to the driving experience. These conditions allow
the researcher to contrast cortical activation during distraction

with activation under identical conditions save for the distracting
component. The optimal control task will elicit activation from
the same brain regions (e.g., motor cortex), but not the primary
experimental region of interest. Thus, as opposed to contrasting
activation during a task that requires movement with rest, it
may be more appropriate to employ a control task that also
requires movement. In other words, if our paradigm is to study
distraction during manual driving, then the non-distraction
control condition should also include manual driving to account
for cortical activation related to the driving task itself (e.g.,
motor cortex, spatial processing, etc.). If, on the other hand, the
aim is to derive neurocognitive signatures of distraction during
autonomous driving, then the control task ought to include full
automation as well. When selecting a control task, it is helpful to
first evaluate brain regions that are expected to be active during
the task of interest, including regions such as motor cortex that
may not be of relevance to the primary experimental hypotheses
yet may show activity due to motion when responding. The same
concept applies to the design of the distraction task itself. Since
driving requires a variety of different cognitive functions (e.g.,
motor planning, spatial processing, temporal processing, etc.), it
is important for the distraction task to utilize similar cognitive
functions. From a “statistical power” perspective it is therefore
desirable to include a distraction task that predominantly utilizes
other cognitive functions (e.g., auditory stimuli). Other research
questions, however, might be tied to ecologically valid scenarios
that require similar cognitive functions to the baseline driving
task (e.g., use of visual GPS during driving). In these cases, an
increase in the number of trials might provide high enough
effect size. It is up to the clever experimenter and extensive
piloting to identify control tasks that remain ecologically valid
while satisfying statistical power criterion. In general, because the
cognitive and physiological state of a participant may be expected
to change over the course of an experiment, the presence of
control trials throughout the task are important.

Control tasks used in reviewed fNIRS driving studies varied
greatly from active driving tasks to passive resting states to
studies that did not include a control task in their study design.
While the majority (N = 37) employed an active control task
(e.g., “baseline” driving without an experimental stimuli); six
studies employed a passive control task ranging from resting
states (Shang et al., 2007; Tsunashima and Yanagisawa, 2009; Oka
et al., 2015; Huve et al., 2019; Zhu et al., 2019) to monitoring
autonomous driving in the simulator (Bruno et al., 2018). Five
studies did not include a control task in their study design
(Shimizu et al., 2009; Inoue et al., 2014; Khan and Hong, 2015;
Nguyen et al., 2017; Tanveer et al., 2019).

Hardware Specs, Optode Distance, and
Optode Placement
At the time this manuscript was prepared, we identified 28 fNIRS
devices that were being marketed for human subjects research4.
The specifications of these devices differ in many respects. For
example, the number of optodes available in a given system

4https://alivelearn.net/?p=2752
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will greatly affect the size and weight of the device. For lab-
based studies where obtaining the greatest amount of cortical
coverage possible is a priority, the issue of portability may not be
an issue. However, for real-world studies that attempt to make
use of a products’ portability, researchers must often sacrifice
cortical coverage in lieu of a smaller form factor. These issues
may also have an effect on aspects of fNIRS data quality due to
variations in source strength (e.g., LED vs. laser light sources) or
detector sensitivity (e.g., standard vs. avalanche photo diode), as
well as sampling frequency (e.g., time-locked vs. simultaneous).
Within the studies included here, 92% studies applied a total of
16 different commercially available devices of which only three
were not portable solutions, while the remaining four studies
(8%) reported use of devices that were built “in-house” (Ahn
et al., 2016; Nosrati et al., 2016; Nguyen et al., 2017; Li et al.,
2018). The mean number of channels available across all devices
was M = 30.9 (SD = 25.8), and ranged from one (Sturman and
Wiggins, 2019) and two channel solutions (Harada et al., 2007;
Li et al., 2009; Liu, 2014; Nosrati et al., 2016; Horrey et al., 2017)
to 98 channels (Orino et al., 2017). Two studies did not specify
the number of channels used (Unni et al., 2015; Xu L. et al.,
2017), and four studies reported the use of a “tandem” system
to increase the number of optodes available (Shimizu et al., 2009;
FakhrHosseini et al., 2015; Ihme et al., 2018; Unni et al., 2017).
As depicted in Figure 4, the most common placement of optodes
was over the prefrontal cortex (PFC), with 56% of all studies
reporting placement solely over the PFC (Harada et al., 2007; Li
et al., 2009; Tomioka et al., 2009; Tsunashima and Yanagisawa,
2009; Shimizu T. et al., 2011; Nakano et al., 2013; Inoue et al.,
2014; Liu, 2014; FakhrHosseini et al., 2015; Khan and Hong, 2015;
Pradhan et al., 2015; Ahn et al., 2016; Foy et al., 2016; Nosrati
et al., 2016; Sibi et al., 2016, 2017; Balters et al., 2017; Horrey
et al., 2017; Nguyen et al., 2017; Foy and Chapman, 2018; Huve
et al., 2018, 2019; Le et al., 2018; Li et al., 2018; Khan et al., 2019;
Sturman and Wiggins, 2019; Tanveer et al., 2019). Twenty-one
studies (44%) report placement over the PFC as well as the motor
(Yoshino et al., 2013a,b; Oka et al., 2015; Orino et al., 2015; Xu
G. et al., 2017; Xu L. et al., 2017; Chuang et al., 2018), occipital
(Shang et al., 2007; Shimizu et al., 2009; Unni et al., 2017; Xu G.
et al., 2017; Ihme et al., 2018; Hidalgo-Munoz et al., 2019; Zhu
et al., 2019), and parietal (Yoshino et al., 2013a,b; Oka et al., 2015;
Orino et al., 2015; Unni et al., 2015, 2017; Bruno et al., 2018;
Chuang et al., 2018; Ihme et al., 2018; Yamamoto et al., 2018, 2019;
Hidalgo-Munoz et al., 2019; Zhu et al., 2019) cortices. Only one
study included here did not report placement over the PFC (Lin
et al., 2019), while one other study reported coverage of “almost
the whole head” (Scheunemann et al., 2019).

Optode distance mediates the photon path depth that is
sampled at each measurement. The recommended specification
of 30–40 mm is thought to optimally sample hemodynamic
activity in the cortex while maintaining an acceptable signal to
noise ratio (Brigadoi and Cooper, 2015). However, because all
photons pass through scalp vasculature, fNIRS measurements
at the recommended optode distance are confounded by extra-
cortical hemodynamics. As a solution, many fNIRS vendors
now offer “short-channel” optode distances of approximately
5 mm. Since the photon path of a channel this “short” is

very shallow, thus sampling only extra-cortical blood flow,
much of this noise signal may be used during pre-processing
or through statistical procedures to reduce unwanted artifact.
Eighteen studies followed established guidelines of constant
30–40 mm distance between optodes (Harada et al., 2007;
Shang et al., 2007; Shimizu S. et al., 2011; Yoshino et al., 2013a,b;
Liu, 2014; Orino et al., 2015; Ahn et al., 2016; Nosrati et al., 2016;
Nguyen et al., 2017; Unni et al., 2017; Bruno et al., 2018; Li et al.,
2018; Hidalgo-Munoz et al., 2019; Khan et al., 2019; Lin et al.,
2019; Scheunemann et al., 2019). A total of 26 articles (55%)
did not, however, report optode distance, and four used varying
distances, e.g., 20–30 mm (Chuang et al., 2018), 20–40 mm (Ihme
et al., 2018), and 30–40 mm (Li et al., 2009). No studies included
here reported the use of short-channels.

In addition to optode distance, accurate optode placement is
required to target regions of interest. The use of a standardized
method to place optodes is necessary to ensure that the
regions of interest are appropriately covered consistently across
participants. Common methods such as the International 10/20
system have been shown to provide consistent coverage despite
changes in head size across participants (Okamoto et al., 2004).
Outside of the needs within a study, accurate reporting of optode
placement will assist in the future replication of studies. About
half (52%) of the research articles reviewed here do not specify
the optode placement strategy, while four studies used the 10/10
International System (Pradhan et al., 2015; Liu et al., 2017; Xu
G. et al., 2017; Xu L. et al., 2017), and nine other studies the
10/20 International System (Tomioka et al., 2009; Liu, 2014; Khan
and Hong, 2015; Nosrati et al., 2016; Unni et al., 2017; Bruno
et al., 2018; Chuang et al., 2018; Ihme et al., 2018; Hidalgo-Munoz
et al., 2019; Lin et al., 2019; Tanveer et al., 2019). Other studies
just specified placement such as 4 cm from mid-line and 2 cm
above supra-orbital ridge (Li et al., 2009; Shimizu T. et al., 2011;
Horrey et al., 2017). Five studies used a 3D neuroscan digitizer
(e.g., Polhemus5) to co-register the optode positions on the head
(Yoshino et al., 2013a,b; Oka et al., 2015; Orino et al., 2015;
Orino et al., 2017), and one study conducted a sensitivity profile
by projecting the fNIRS probe onto a digital brain atlas (Foy
et al., 2016). Only two studies report the use of optode placement
software (Unni et al., 2017; Ihme et al., 2018).

Data Processing and Statistical Analysis
Efforts have been made to develop and standardize fNIRS
data processing procedures and tools (Brigadoi et al., 2014;
Di Lorenzo et al., 2019). For example, the decision tree in
Figure 5 outlines a common fNIRS data processing pipeline.
We refer the reader to (Brigadoi et al., 2014) for a more
detailed overview of the most common fNIRS data processing
steps. While a full review of these methods is outside of the
scope of this paper, the reader will see the order at which
each step is generally taken, beginning with raw optical density.
The attempt to standardize data processing procedures (Cutini
and Brigadoi, 2014; Herold et al., 2017, 2018) has had a
positive impact on the fNIRS community. Such efforts are
also supported by the development and increasingly common

5https://polhemus.com/scanning-digitizing/digitizing-products/
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FIGURE 4 | The bar chart shows the number of studies reporting coverage of the regions of interest given along the x-axis. These distributions show that the
majority of studies sampled prefrontal cortical regions.

usage of fNIRS-specific data analysis packages (e.g., HOMER26,
HOMER37, NIRS SPM8, nirsLAB9, fNIRSOFT10, open-potato11,
PHEOBE12, etc.).

As noted above, the method a researcher uses for motion
correction is important (for review see Cooper et al., 2012;
Brigadoi et al., 2014; Di Lorenzo et al., 2019). Variation in
methods for motion correction is largely due to the flexibility in
experimental design made possible by fNIRS, which is especially
true in naturalistic research scenarios such as driving studies.
The methods reported by the studies included here varied greatly
including high pass filtering (Yoshino et al., 2013a,b; Unni
et al., 2015; Ahn et al., 2016), low-pass filtering (Shimizu T.
et al., 2011; Oka et al., 2015; Sibi et al., 2016), moving average
(Tomioka et al., 2009), least square smoothing (Huve et al.,
2019), Kalman filtering (Le et al., 2018), principle component
analysis (Nosrati et al., 2016; Unni et al., 2017), multi-resolution
analysis decomposition (Shimizu et al., 2009; Tsunashima and

6https://homer-fnirs.org/
7https://github.com/BUNPC/Homer3
8https://www.nitrc.org/projects/nirs_spm/
9https://nirx.net/nirslab-1
10https://www.biopac.com/product/fnirsoft-professional-edition/?attribute_pa_
size=fnir-software-professional-edition
11https://github.com/hkwgc/open-potato/blob/master/README_EN.md
12https://bitbucket.org/lpollonini/phoebe/wiki/Home

Yanagisawa, 2009), wavelet-based motion correction (Pradhan
et al., 2015; Foy et al., 2016; Balters et al., 2017; Sibi et al., 2017;
Bruno et al., 2018; Foy and Chapman, 2018; Huve et al., 2018),
and Gaussian filtering (Khan and Hong, 2015; Tanveer et al.,
2019). Sixteen studies did not report any filtering or artifact
correction (Harada et al., 2007; Shang et al., 2007; Li et al., 2009;
Nakano et al., 2013; Liu, 2014; Inoue et al., 2014; FakhrHosseini
et al., 2015; Orino et al., 2015; Horrey et al., 2017; Nguyen et al.,
2017; Orino et al., 2017; Yamamoto et al., 2018, 2019; Khan et al.,
2019; Sturman and Wiggins, 2019; Zhu et al., 2019).

There is an ongoing discussion in the fNIRS community
on which fNIRS metrics to use. Some researchers argue that it
suffices to report the change in oxygenated hemoglobin (HbO)
only, since HbO is assumed to be a more robust marker
of changes in regional cerebral blood flow than changes in
deoxygenated hemoglobin (e.g., Hoshi, 2007). Other researchers
highlight the importance to report both, HbO and HbR,
given that both report metrics together may provide a more
complete assessment of cortical activation (e.g., Tachtsidis and
Scholkmann, 2016; Herold et al., 2017). The metrics used by
authors to estimate cortical activity varied between the exclusive
use of HbO (Shang et al., 2007; Shimizu T. et al., 2011; Nakano
et al., 2013; Liu, 2014; FakhrHosseini et al., 2015; Pradhan
et al., 2015; Unni et al., 2015; Ahn et al., 2016; Balters et al.,
2017; Liu et al., 2017; Sibi et al., 2017; Xu G. et al., 2017;
Xu L. et al., 2017; Chuang et al., 2018; Khan et al., 2019;
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FIGURE 5 | The figure above represents a common fNIRS data processing
procedure.

Lin et al., 2019), exclusive use of HbR (Foy et al., 2016; Unni
et al., 2017; Scheunemann et al., 2019), or the combination of
the two (Harada et al., 2007; Li et al., 2009, 2018; Shimizu

et al., 2009; Tomioka et al., 2009; Tsunashima and Yanagisawa,
2009; Inoue et al., 2014; Khan and Hong, 2015; Nosrati et al.,
2016; Sibi et al., 2016; Horrey et al., 2017; Nguyen et al., 2017;
Bruno et al., 2018; Foy and Chapman, 2018; Ihme et al., 2018;
Hidalgo-Munoz et al., 2019; Huve et al., 2019; Tanveer et al.,
2019). Two studies did not report the metric used (Huve et al.,
2018; Le et al., 2018). Moreover, some groups have established
novel metrics such as cerebral oxygenation exchange (1COE) (Li
et al., 2009; Yoshino et al., 2013a,b; Oka et al., 2015; Orino et al.,
2015, 2017; Yamamoto et al., 2018, 2019). For the studies reviewed
here, many of the metrics used were inconsistent or not reported.

A similar variety of analysis approaches were noted for the
reviewed studies. For example, the majority of studies (N = 29)
averaged the hemodynamic activity recorded during all trials or
events to calculate the mean values, standard deviations, and/or
maximum values across. These values were commonly used to
conduct inferential group-level statistics, including t-tests and
ANOVA. The remaining approaches varied between connectivity
analyses (Liu et al., 2017; Xu G. et al., 2017; Xu L. et al.,
2017), GLM (Balters et al., 2017; Sibi et al., 2017; Bruno et al.,
2018), linear or logistic regression on subject-level time series
data (Unni et al., 2015, 2017; Ihme et al., 2018; Scheunemann
et al., 2019), machine learning (Le et al., 2018; Huve et al., 2018,
2019; Khan et al., 2019; Tanveer et al., 2019; Zhu et al., 2019),
factor analysis (FakhrHosseini et al., 2015), linear discriminant
analysis (Khan and Hong, 2015), and frequency power analysis
to conduct non-parametric test across mean change in power
(Chuang et al., 2018).

DISCUSSION AND CONCLUSION

The widespread adoption of fNIRS to study the brain’s response
to driving has led to many interesting research questions
and findings. This review highlighted how methodological
approaches, data processing steps, and analyses often vary
greatly across the studies. While such scientific diversity is
well expected in this early phase of “naturalistic neuroscience,”

FIGURE 6 | Number of fNIRS driving studies conducted from 2007 to 2019 (A), and research topics (B) for both disciplines. Data presented here are the data that
are presented in Figure 3 above, stratified across disciplines of origin.
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FIGURE 7 | Recommendations to advance fNIRS research for autonomous driving scenarios as identified by our methodological review.

it may also hamper the generalization of findings that allow
researchers to compare and confirm results moving forward. As
a consequence, systematic comparisons (i.e., meta-analysis) of
the findings to establish generalizable results are difficult if not
impossible. One striking outcome of our review, and one that
may help explain the high amount of methodological variance
across studies, is the distribution of experiments conducted
across the neuroscience and engineering disciplines. As shown
in Figure 6A, roughly half (N = 25) of the manuscripts
were published in engineering journals/conference-proceedings,
while the remaining manuscripts (N = 23) were published in
neuroscience journals/conference-proceedings. Both disciplines
have largely focused on the same sub-topics of driving research
(see Figure 6B). This similar distribution provides a naturally
occurring overlap in empirical focus across disciplines that
affords a unique opportunity to compare and contrast the
strengths and weaknesses of both disciplines.

Notably, seven studies (i.e., six in engineering and one in
neuroscience) applied fNIRS to assess cognitive function while
driving with automated features (i.e., adaptive cruise control)
(Tsunashima and Yanagisawa, 2009) or while engaging with
higher automated systems (SAE Level 2–3) (Sibi et al., 2016;
Balters et al., 2017; Sibi et al., 2017; Hidalgo-Munoz et al., 2019;
Huve et al., 2019; Zhu et al., 2019). While these studies provide
first valuable insights into brain function related to autonomous
driving scenarios, the applied methodologies differed in many
aspects such as analysis approach (i.e., GLM vs. block averaging
vs. machine learning), data processing steps, and metrics used
(i.e., HbO vs. HbO and HbR vs. tHb vs. 1THR), to name a
few. This diversity in experimental approaches highlights the
need for methodological standardization so that meta-analyses
of results may be conducted in the future. Moreover, all seven
autonomous driving studies were executed within a simulator
environment. While exclusive use of a simulator environment
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might be attributed to safety-critical considerations during the
experiment, the need to conduct on-road “ecologically valid”
studies is obvious. Multiple factors inherent to on-road driving
(e.g., motion induced artifacts due to driver movement or
road imperfections, sunlight, etc.) introduce noise into fNIRS
data that must be addressed to adequately analyze data from
future studies. Beyond repeatability of stimuli and safety that
a simulator provides, it is specifically artifacts – either induced
by environment (e.g., road vibrations and sunlight) or driver
(e.g., motion) that have to be mastered to advance valid driving
on-the-road research. In order to move toward standardization
and to “make fNIRS ready” for autonomous on-road driving,
we provide recommendations below (see Figure7). We argue
that an effort toward standardization and advancement within
three domains (i.e., immediate methodological advancements,
analysis, and hardware) may facilitate a more efficient and
meaningful progression of fNIRS research toward reliable on-
road measurements.

Immediate Methodological
Advancements
As described above, the field can clearly benefit from attention
to participant selection and more detailed documentation of the
participant cohort. Proper participant selection (e.g., sufficient
sampling size) as well as proper reporting of the participant
cohort will enhance research quality and generalizability, and
provide the reader with the information needed for making
consistent and valid inferences. Our methodological review
discussed the importance of including task-familiarization
procedures and the need for a physiological baseline, as well as
sufficient inter-block/inter-trial intervals in future studies. We
further highlighted the importance of determining task duration
and task repetition, depending on the underlying analytical
approach. We identified a trade-off in control task design,
often driven by the desire to maintain high levels of ecological
validity versus experimental control over cortical activations
within a region of interest. Similarly, our review revealed
considerable divergence in data processing steps across studies.
Many papers did not use or did not document data filtering
procedures, despite readily available processing software (e.g.,
Matlab-embedded HOMER 2) and step-by-step instructions
(e.g., Brigadoi et al., 2014; Di Lorenzo et al., 2019). We argue that
future interdisciplinary fNIRS driving research should consider
using these pre-existing analysis tools. At the same time, it
is vital that these open access tools are well maintained by
ongoing discussions within the community to avoid detrimental
biases and/or assumptions as well as stagnation in novel
algorithm development. In addition, it is important that future
research reports processing steps to enhance interpretation and
replication. Further, our review demonstrated high variation in
the hemodynamic signal used and reported. The majority of
papers reported using traditional metrics of brain function (i.e.,
HbO and HbR), though not consistently across studies. As others
have suggested (e.g., Herold et al., 2017), we propose that future
studies should utilize at least the two standard fNIRS metrics
(i.e., HbO and HbR). Finally, while analytical variations are

expected, and indeed often required, across studies, it should be
noted that differences in data processing and analysis approaches
can hamper our ability to compare obtained results (Cutini and
Brigadoi, 2014; Tak and Ye, 2014; Herold et al., 2017). Accurate
and detailed reporting of statistical output (e.g., effect size, sample
size, degrees of freedom, etc.) is essential for allowing meta-
analyses of study outcomes. Of the studies included in this review,
only 77% reported statistics sufficient for meta-analysis. All of the
above emphasizes that a detailed reporting of methods and results
is needed to enhance future research.

Analysis
Our methodological review highlighted many different
approaches with respect to the choice of data analyses, data
processing, and hemodynamic proxies (e.g., oxygenated and
deoxygenated) across studies. This diversity is, in part, attributed
to the wide range of research questions investigated. For instance,
studies focusing on single driving events (e.g., near-collision
events) employed different analytical approaches than those
that focused on driver fatigue over long durations. We argue
that future research should utilize experimental procedures that
allow for inclusion of results in future meta-analyses. Future
research should also prioritize experimental approaches that
are ecologically valid and analytic pipelines that can be widely
adopted across researchers in all disciplines. For example, the
community could agree and define standardized procedures
for documentation (e.g., optode placement, data processing
steps, metrics) that should be reported in publications. Journals
could provide checklists, to both authors and reviewers, to
ensure the reporting of necessary information. Our review
further highlighted the need for the development of analytics
that allow study of single events as well as over-time measures.
Multi-disciplinary teams of both automotive engineers and
neuroscientists could jointly tackle this challenge to acknowledge
both, analytical needs for ecologically valid scenarios and
neurophysiological feasibility. Further development and
maintenance (along with usage) of open-source software will
enhance cross-study comparability for future research. We
argue that more effort is needed to develop and disseminate
such analytical tools via peer-reviewed publication and
open-source file sharing.

Hardware
Further advances in fNIRS portability as well as reduction in
motion artifact effects (i.e., induced by both the human and the
moving environment) will undoubtedly enhance our ability to
execute high-quality fNIRS autonomous driving research on the
road. Reducing the effect of sunlight and/or artificial light will
further increase data usability. Including short-channels in the
standard set up of hardware systems will allow researchers to
robustly filter and/or account statistically for noise caused by
physiological signals (e.g., heart rate, mayer waves, breathing
rates). Higher density head coverage with increased optodes will
allow researchers to derive holistic brain models of the human
cortex. Improved fit and comfort of optodes on the scalp will
allow for longer study durations that may be better for long-
duration driving studies. Alternatively, single-channel solutions
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could be applied for long duration driver monitoring scenarios
once a critical brain region of interest is identified. Several
studies have demonstrated multi-modal sensor approaches, such
as the use of EEG-fNIRS hybrid systems, which will permit
the study of brain function with a high degree of temporal
and spatial resolution (Chuang et al., 2018; Lin et al., 2019).
The integration of multi-modal brain imaging, along with
concurrent physiological and behavioral measurements, will help
to generate a more holistic and accurate model of human
driving behavior. Notably, twelve of our reviewed studies already
included additional sensors to detect heart rate, heart rate
variability, breathing rate, as well as eye blinking and/or eye
closure rate (Shimizu T. et al., 2011; Khan and Hong, 2015;
Ahn et al., 2016; Horrey et al., 2017; Nguyen et al., 2017; Unni
et al., 2017; Bruno et al., 2018; Chuang et al., 2018; Foy and
Chapman, 2018; Lin et al., 2019; Sturman and Wiggins, 2019;
Tanveer et al., 2019). These are promising examples of such a
multi-modal approach.

Overall, we believe that a joint effort on the part of
neuroscience and engineering disciplines will continue to
advance our ability to measure and understand brain function
during autonomous driving scenarios in the simulator (e.g., safe
environment for critical testing) and ultimately within on-road
settings. Promoting the benefits of enhanced communication
and interaction between the two disciplines holds promise for
motivating new and productive interdisciplinary collaborations.
Potential opportunities include the convening of special interest

groups at conferences, the promotion of joint-disciplinary call-
for-papers and presentations, or the formation of a shared society.
The interdisciplinary effort across engineering and neuroscience
toward determining how the brain functions when we “operate”
a motor vehicle across all SAE levels of automation, will help to
design and engineer safe driving of the future.
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