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A series of novel menthone derivatives bearing pyrimidine and urea moieties was designed
and synthesized to explore more potent natural product-derived antitumor agents. The
structures of the target compounds were confirmed by FTIR, NMR, and HRMS. The in vitro
antitumor activity was tested by standard methyl thiazolytetrazolium assay and showed
that 4i, 4g, 4s, and 4m are the best compounds with IC50 values of 6.04 ± 0.62µM, 3.21 ±
0.67µM, 19.09 ± 0.49µM, and 18.68 ± 1.53µM, against Hela, MGC-803, MCF-7, and
A549, respectively. The results of the preliminary action mechanism studies showed that
compound 4i, the representative compound, could induce cell apoptosis in Hela cells in a
dose-dependent manner and might arrest the cell cycle in the G2/M phase. Furthermore,
the results of network pharmacology prediction and Western blot experiments indicated
that compound 4i might inhibit Hela cells through inhibit PI3K/Akt/mTOR signaling
pathway. The binding modes and the binding sites interactions between compound 4i
and the target proteins were predicted preliminarily by the molecular docking method.
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INTRODUCTION

Cancer is a life-threatening disease with a high mortality rate and a major public health problem
worldwide (Siegel et al., 2018). Although many new significant therapeutic methods were developed
during the past decades, chemotherapy remains the main method for cancer treatment (Bukowski
et al., 2020). However, the drug resistance of tumors restricted the applications of many
chemotherapeutic drugs in treatments (Kumar et al., 2015; Gao et al., 2019). The tumors could
be resistant to some chemotherapeutic drugs intrinsically, and show acquired drug resistance after
chemotherapy, which makes the tumors become insensitive to similar drugs later. Therefore, the
development of new drugs to overcome the resistance is still an important mission for medicinal
chemists.

PI3K/Akt/mTOR pathway has been reported as an important cell growth signaling pathway. This
pathway is excessively activated inmany tumor cells and facilitates the cancer cells resistance to chemotherapy
(Chen et al., 2010; Zhang and Yang, 2020). In addition, there is evidence that the sensitivity of tumor cells to
therapeutic drugs could be restored by inhibiting PI3K/Akt/mTOR pathway, which also prompts the
apoptosis of tumor cells (Papadimitrakopoulo, 2012). Thus, many small molecule inhibitors against PI3K/
Akt/mTOR signaling pathway have been studied for antitumor use (Alzahrani, 2019).
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Natural product is a prolific source with diverse structures and
biological properties (Seca and Pinto 2018). Many plants have been
used as traditional medicine and the leading compounds for the
development of antitumor agents (Agarwal et al., 2019). L-menthone
is a naturally occurring monocyclic monoterpenone found in many
essential oils (Tahghighi et al., 2019; Kikowska et al., 2020;
Montenegro et al., 2020), especially in peppermint essential oil. It
can also be conveniently prepared by oxidation of L-menthol, which
is the dominant component of peppermint essential oil. L-menthone
and its derivatives have been reported to have a wide range of
biological activities, such as antiviral (He et al., 2013), anti-
inflammatory (Sun et al., 2014), antidepressant (Xue et al., 2015),
antifungal (Boni et al., 2016), and anticancer activities (Bhalla et al.,
2013; Chen et al., 2014;Mosbah et al., 2018; Qi et al., 2018). Herein, L-
menthone has received growing interest frommedicinal chemists due
to their wide range of biological activities.

Many pyrimidine derivatives showed various biological
activities such as antibacterial (Xiong et al., 2012), antifungal
(Zhang et al., 2019), and anti-inflammatory (Horishny et al.,
2021) activities. Especially, pyrimidine derivatives have been
reported to show antitumor effect against different human
cancers with various mechanisms (Chen N.-Y. et al., 2020;
Wang et al., 2020). Meanwhile, many substituted pyrimidines
displayed enzymes inhibitory activity (Heffron et al., 2010; Ni
et al., 2011), such as PI3K inhibitor (Han et al., 2015), Akt inhibitor
(Liu et al., 2017), PI3K andmTOR dual inhibitor (Han et al., 2017),
and others. These reports inspire the development of novel
pyrimidine-containing antitumor compounds.

On the other hand, urea derivatives are widely applied in
medicinal synthesis due to their various biological activities, such
as anti-inflammatory (Drexel et al., 2019), antitumor activities (Kang
et al., 2019; Kilic-Kurta et al., 2020), and antimicrobial (Lafzi et al.,
2021). Recent reports showed that urea derivatives could inhibit cell
signaling transduction, such as RAS-RAFMEK-ERK signaling
pathway and PI3K/Akt/mTOR pathway (Li et al., 2019), and
inhibit protein activity, such as mTORC1 and mTORC2 (Gao
et al., 2018). Thus, to design new compounds with urea moiety to
explore chemotherapy agents is a feasible strategy.

In addition, it is an effective strategy in drug development to
integrate various pharmacophores to obtain novel molecules with

synergistic effect. In continuation of our interest in natural
product-based antitumor compounds (Li et al., 2017; Wang
et al., 2018; Chen Y. et al., 2020; Li et al., 2020; Zhu et al.,
2020; Wang et al., 2021), a series of novel menthone-derived
compounds containing pyrimidine and urea moieties were
designed and synthesized according to the strategy, which was
shown in Figure 1. The in vitro antitumor activities of the
menthone derivatives against the four tumor cell lines were
evaluated. The action mechanisms of the target compounds
against tumor cell line were studied using a representative
compound against Hela cell line by the tests of cell cycle and
cell apoptosis, and further predicted by network pharmacology
method and molecular docking. Western blot experiments were
chosen to confirm the predicted result of the key signaling
pathway regulated by this representative compound.

MATERIALS AND METHODS

General
The melting points were recorded on an MP420 automatic
melting point apparatus (Hanon Instruments Co., Ltd., Jinan,
China) without calibration. Optical rotations were recorded at
20°C on precision scientific WZZ-1 digital automatic polarimeter
(Shanghai Precision Technology Instrument Co., Ltd., Shanghai,
China). FT-IR spectra were carried out using a Nicolet iS50 FT-IR
spectrometer (Thermo Scientific Co., Ltd., United States) by KBr
pellet method. NMR spectra were recorded on Bruker Avance III
HD 500MHz/600MHz spectrometer (Bruker Co., Ltd.,
Switzerland) with TMS (tetramethylsilane) as an internal
standard in CDCl3. High resolution mass spectrometry was
determined on ESQUIRE HCT (Bruker Daltonics Co., Ltd.,
United States) equipped with a TOF/TOF/Ultimate 3000 Nano
HPLC. GC analysis was conducted on an Agilent 6890GC
(Agilent Technologies Inc., United States) equipped with
column HP-1 (30m, 0.530 mm, 0.88μm) and FID. HPLC
analysis was conducted on Waters 1525 HPLC instrument
(Waters Corp., United States) equipped with Waters 2998
PDA detector and column C18 5μm (4.6mm × 150mm). L-
Menthone (GC purity 98%) was provided by Shanghai
Macklin Biochemical Co., Ltd., China. Routine thin-layer
chromatography (TLC) was performed on silica gel plates
(silica gel GF254 from Qingdao Haiyang Chemical Co., Ltd.,
Qingdao, China). Preparative flash column chromatography was
performed on the 200–300 mesh silica gel (Qingdao Haiyang
Chemical Co. Ltd.). Other reagents were purchased from
commercial suppliers and used as received.

General Procedure for Compound 2
L-Menthone (3.50ml, 20mmol), KOH (1.40g, 25mmol), and
anhydrous DMSO (15ml) were mixed and stirred at 20°C for
30min. Then, the mixed solution of benzaldehyde
(2.50g, 22mmol) and anhydrous DMSO (10ml) was added
dropwise to the reaction system, and the reaction temperature
was controlled not to exceed 20°C. After continuous stirring for
4h, the reaction solution was poured into 250ml 4% acetic acid
ice-water mixture and then extracted by EtOAc three times. The

FIGURE 1 | The design strategy of the title compounds.
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extracts were combined and washed with saturated sodium
chloride and deionized water three times, respectively. Then,
the resulting solution was dried with anhydrous Na2SO4 and
concentrated in vacuum. The crude product was purified by silica
gel column chromatography (EtOAc-petroleum ether = 1:60, v/v)
to obtain L-menthone-derived α,β-unsaturated ketone, (3R,6S)-
2-((E)-benzylidene)-6-isopropyl-3-methylcyclohexan-1-one,
compound 2, as a pale yellow liquid in the yield of 93% andHPLC
purity of 98.8%. [α]D20 = - 68.8°(c = 0.20, CH2Cl2);

1H NMR
(600MHz, CDCl3) δ (ppm): 7.38 (d, J = 7.2 Hz, 4H), 7.32 (t, J = 6.8
Hz, 1H), 7.13 (s, 1H), 3.43 (dt, J = 10.8, 6.9 Hz, 1H), 2.58 (m, 1H),
2.26 (ddd, J = 11.5, 7.2, 3.5 Hz, 1H), 1.90 (td, J = 13.2, 7.6 Hz, 3H),
1.80 (m, 1H), 1.21 (d, J = 7.2 Hz, 3H), 0.99 (d, J = 7.1 Hz, 3H), 0.93
(d, J = 6.8 Hz, 3H); 13C NMR (151MHz, CDCl3) δ (ppm): 205.18,
145.00, 136.07, 132.66, 129.61, 128.55, 128.21, 56.07, 31.79, 30.66,
26.74, 20.54, 19.98, 18.85, 17.97; IR (KBr) v: 3438, 3199, 2959,
2939, 1691, 1614, 1488, 1458cm−1.

General Procedure for Compound 3
The mixed solution of compound 2 (1.20 g, 5mmol), guanidine
hydrochloride (0.95g, 10mmol), K2CO3 (4.15g, 30mmol), distilled
water (1.20g), and ethanol (30ml) were stirred and refluxed for 9h.
After the reaction was completed, the reaction solution was diluted
with water and then extracted by EtOAc three times. The extracts
were combined and washed with saturated brine to neutrality. The
resulting solution was dried over Na2SO4 and concentrated in
vacuum. The crude product was purified by silica gel column
chromatography (EtOAc-petroleum ether = 1:6, v/v) to obtain L-
menthone-derived pyrimidine, (5R,8S)-8-isopropyl-5-methyl-4-
phenyl-5,6,7,8-tetrahydroquinazolin-2-amine, compound 3, as a
white solid in the yield of 28.6% and HPLC purity of 98.2%;
[α]D20 = + 31.3°(c = 0.20, CH2Cl2); m.p. 144.5–145.6°C; 1H NMR
(500MHz, CDCl3) δ (ppm): 7.47–7.38 (m, 5H), 4.87 (s, 2H), 3.04 (td,
J= 7.0, 3.9Hz, 1H), 2.92 (m, 1H), 2.70 (td, J= 8.8, 3.9Hz, 1H), 1.76 (d,
J= 8.0Hz, 2H), 1.70–1.65 (m, 2H), 1.08 (d, J= 7.1Hz, 3H), 0.85 (d, J=
7.0 Hz, 3H), 0.75 (d, J = 6.8 Hz, 3H); 13C NMR (126MHz, CDCl3) δ
(ppm): 170.04, 167.30, 160.58, 139.35, 128.36, 128.30, 127.99, 123.97,
46.41, 29.59, 28.96, 27.56, 21.45, 20.78, 16.71, 16.44; IR (KBr) v: 3438,
3199, 2959, 2939, 1691, 1614, 1488, 1458cm−1; HRMSm/z: Calcd for
C18H23N3 [M+H]+: 282.1965, found: 282.1954.

General Procedure for the Title Compounds
4a-4s
The mixture of compound 3 (0.28 g, 1mmol), substituted
phenyl isocyanate (1.3mmol), and toluene (10ml) were
stirred at room temperature for 8–12h. After compound 3
was fully reacted, the precipitate was filtered, and dissolved in
EtOAc. The resulting solution was concentrated in vacuum.
The crude product was purified by silica gel column
chromatography (EtOAc-petroleum ether = 1:10, v/v) to
afford L-menthone-derived pyrimidine-urea, compounds
4a-4s, as a white solid.

1-(29-Methylphenyl)-3-((5R,8S)-8-isopropyl-5-methyl-4-
phenyl-5,6,7,8-tetrahydroquinazolin-2-yl)urea (4a). White
solid, Yield: 80%; HPLC purity: 95.3%; [α]D20 = + 10.2°(c =
0.11, CHCl3); m.p. 191.2–193.3°C; 1H NMR (500MHz, CDCl3) δ

(ppm): 11.08 (s, 1H), 8.08 (d, J = 7.9 Hz, 1H), 7.57–7.46 (m, 4H),
7.45–7.40 (m, 2H), 7.21 (t, J = 7.8 Hz, 1H), 7.07 (d, J = 7.5 Hz, 1H),
6.99 (t, J = 7.4 Hz, 1H), 3.12 (m, 1H), 2.93 (ddd, J = 13.9, 8.9, 5.4
Hz, 1H), 2.83 (tt, J = 6.0, 3.2 Hz, 1H), 1.89 (s, 1H), 1.84–1.80 (m,
3H), 1.77 (s, 1H), 1.77–1.73 (m, 1H), 1.68 (d, J = 8.5 Hz, 1H), 1.10
(d, J = 7.1 Hz, 3H), 0.92 (d, J = 7.0 Hz, 3H), 0.77 (d, J = 6.8 Hz,
3H); 13C NMR (126MHz, CDCl3) δ (ppm): 155.06, 152.21,
138.18, 136.92, 131.04, 130.18, 128.97, 128.89, 128.62, 128.46,
128.25, 128.04, 127.77, 126.63, 123.70, 46.62, 29.84, 28.66, 27.80,
21.30, 20.67, 18.03, 16.80, 16.33; IR (KBr) v: 3203, 3122, 3045,
2960, 2941, 2866, 1692, 1614, 1590, 1561, 1543, 1489, 1458,
1376cm−1; HRMS m/z: Calcd for C26H30N4O [M+H]+:
415.2492, found: 415.2492.

1-(39-Methylphenyl)-3-((5R,8S)-8-isopropyl-5-methyl-4-
phenyl-5,6,7,8-tetrahydroquinazolin-2-yl)urea (4b). White solid,
Yield: 83%; HPLC purity: 97.2%; [α]D20 = + 11.0°(c = 0.10,
CHCl3); m.p. 170.8–173.7°C; 1H NMR (500MHz, CDCl3) δ
(ppm): 11.52 (s, 1H), 7.48 (d, J = 3.5Hz, 5H), 7.37–7.28 (m, 3H),
7.19 (t, J = 7.8Hz, 1H), 6.88 (d, J = 7.5Hz, 1H), 3.25 (m, 1H), 2.99 (tt,
J = 10.6, 5.4Hz, 1H), 2.85 (s, 1H), 2.33 (s, 3H), 1.90–1.80 (m, 3H),
1.79–1.75 (m, 1H), 1.15 (d, J = 7.0Hz, 3H), 0.89 (d, J = 7.0Hz, 3H),
0.80 (d, J = 6.8Hz, 3H); 13CNMR (126MHz, CDCl3) δ (ppm): 154.98,
151.94, 138.91, 138.57, 138.31, 129.15, 128.97, 128.59, 128.12, 127.76,
124.22, 120.39, 116.68, 46.82, 29.85, 28.66, 27.69, 21.69, 21.46, 20.75,
16.73, 16.24; IR (KBr) v: 3203, 3116, 3054, 2958, 2923, 2869, 1687,
1614, 1566, 1543, 1486, 1379cm−1; HRMSm/z: Calcd for C26H30N4O
[M+H]+: 415.2492, found: 415.2487.

1-(49-Methylphenyl)-3-((5R,8S)-8-isopropyl-5-methyl-4-
phenyl-5,6,7,8-tetrahydroquinazolin-2-yl)urea (4c). White
solid, Yield: 88%; HPLC purity: 96.8%; [α]D20 = + 12.6°(c =
0.11, CHCl3); m.p. 179.8–181.2°C; 1H NMR (500MHz, CDCl3) δ
(ppm): 11.47 (s, 1H), 7.50 (d, J = 3.9Hz, 5H), 7.41 (d, J = 8.4Hz,
3H), 7.13 (d, J = 8.0Hz, 2H), 3.27 (q, J = 6.3, 5.5Hz, 1H), 3.04–2.94
(m, 1H), 2.86 (td, J = 8.6, 8.0, 4.0Hz, 1H), 2.33 (s, 3H), 1.92–1.81
(m, 3H), 1.28 (s, 1H), 1.16 (d, J = 7.0Hz, 3H), 0.91 (d, J = 7.0Hz,
3H), 0.81 (d, J = 6.9Hz, 3H); 13C NMR (126MHz, CDCl3) δ
(ppm): 155.00, 152.01, 138.32, 136.04, 132.93, 129.61, 129.11,
128.58, 128.09, 127.68, 119.75, 46.78, 29.83, 28.65, 27.68, 21.45,
20.93, 20.75, 16.73, 16.27; IR (KBr) v: 3197, 3119, 3033, 2956,
2921, 1694, 1610, 1562, 1544, 1514, 1499, 1371cm−1; HRMS m/z:
Calcd for C26H30N4O [M+H]+: 415.2492, found: 415.2485.

1-(49-Fluorophenyl)-3-((5R,8S)-8-isopropyl-5-methyl-4-
phenyl-5,6,7,8-tetrahydroquinazolin-2-yl)urea (4d). White
solid, Yield: 86%; HPLC purity: 98.0%; [α]D20 = + 5.7°(c =
0.11, CHCl3); m.p. 191.5–192.9°C; 1H NMR (500MHz, CDCl3)
δ (ppm): 11.56 (s, 1H), 7.54–7.43 (m, 8H), 7.01 (t, J = 8.5Hz, 2H),
3.27 (m, 1H), 2.96 (m, 1H), 2.86 (td, J = 8.5, 7.5, 4.1Hz, 1H), 1.85
(td, J = 12.8, 11.7, 3.8Hz, 3H), 1.80 (s, 1H), 1.16 (d, J = 7.0Hz, 3H),
0.90 (d, J = 7.0Hz, 3H), 0.81 (d, J = 6.8Hz, 3H); 13C NMR
(126MHz, CDCl3) δ (ppm): 159.94, 158.02, 154.91, 152.12,
138.27, 134.68, 129.19, 128.62, 128.07, 127.85, 121.23, 121.17,
115.77, 115.59, 46.80, 29.85, 28.63, 27.68, 21.44, 20.76, 16.76,
16.28; IR (KBr) v): 3197, 3116, 3042, 2960, 2929, 2870, 1689, 1614,
1565, 1542, 1510, 1376cm−1; HRMS m/z: Calcd for C25H27FN4O
[M+H]+: 419.2242, found: 419.2235.

1-(29-Chlorophenyl)-3-((5R,8S)-8-isopropyl-5-methyl-4-
phenyl-5,6,7,8-tetrahydroquinazolin-2-yl)urea (4e). White
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solid, Yield: 78%; HPLC purity: 95.6%; [α]D20 = + 50.2°(c = 0.11,
CHCl3); m.p. 177.5–180.5°C; 1H NMR (500MHz, CDCl3) δ
(ppm): 11.66 (s, 1H), 8.39 (d, J = 8.2Hz, 1H), 7.56–7.46 (m,
4H), 7.43 (dd, J = 6.8, 2.9Hz, 2H), 7.29–7.23 (m, 2H), 6.98 (t, J =
7.6Hz, 1H), 3.13 (m, 1H), 2.98 (m, 1H), 2.87 (dt, J = 9.4, 4.7Hz,
1H), 1.81 (t, J = 9.2Hz, 3H), 1.77–1.72 (m, 1H), 1.10 (d, J = 7.0Hz,
3H), 0.93 (d, J = 7.0Hz, 3H), 0.75 (d, J = 6.8Hz, 3H); 13C NMR
(126MHz, CDCl3) δ (ppm): 154.78, 152.01, 138.03, 136.01,
129.12, 128.87, 128.39, 128.18, 128.15, 127.44, 123.85, 123.49,
122.14, 46.48, 30.00, 28.63, 27.84, 21.20, 20.70, 16.76, 16.33; IR
(KBr) v: 3203, 3140, 3036, 2958, 2876, 1689, 1592, 1557, 1538,
1498, 1442, 1381cm−1; HRMS m/z: Calcd for C25H27ClN4O
[M+H]+: 435.1946, found: 435.1945.

1-(39-Chlorophenyl)-3-((5R,8S)-8-isopropyl-5-methyl-4-
phenyl-5,6,7,8-tetrahydroquinazolin-2-yl)urea (4f). White
solid, Yield: 80%; HPLC purity: 98.2%; [α]D20 = + 25.2°(c =
0.12, CHCl3); m.p. 170.8–173.7°C; 1H NMR (500MHz, CDCl3) δ
(ppm): 11.74 (s, 1H), 7.61 (s, 1H), 7.51 (q, J = 8.1, 7.0Hz, 6H),
7.43–7.31 (m, 1H), 7.22 (t, J = 8.0Hz, 1H), 7.04 (d, J = 7.9Hz, 1H),
3.33–3.24 (m, 1H), 2.98 (m, 1H), 2.88 (dd, J = 9.9, 4.4Hz, 1H),
1.92–1.82 (m, 3H), 1.79 (dd, J = 12.2, 4.1Hz, 1H), 1.18 (d, J =
7.1Hz, 3H), 0.91 (d, J = 7.0Hz, 3H), 0.82 (d, J = 6.8Hz, 3H); 13C
NMR (126MHz, CDCl3) δ (ppm): 154.80, 151.85, 139.91, 138.20,
134.71, 130.08, 129.26, 128.65, 128.08, 128.01, 123.34, 119.68,
117.45, 46.83, 29.91, 28.62, 27.69, 21.45, 20.72, 16.74, 16.24; IR
(KBr) v: 3215, 3134, 3057, 2959, 2870, 1694, 1595, 1560, 1541,
1480, 1421, 1379cm−1; HRMS m/z: Calcd for C25H27ClN4O
[M+H]+: 435.1946, found: 435.1942.

1-(49-Chlorophenyl)-3-((5R,8S)-8-isopropyl-5-methyl-4-
phenyl-5,6,7,8-tetrahydroquinazolin-2-yl)urea (4g). White
solid, Yield: 70%; HPLC purity: 96.1%; [α]D20 = + 18.8°(c =
0.11, CHCl3); m.p. 183.6–185.5°C; 1H NMR (500MHz, CDCl3) δ
(ppm): 11.67 (s, 1H), 7.61 (s, 1H), 7.54–7.44 (m, 7H), 7.27 (d, J =
8.5Hz, 2H), 3.28 (q, J = 6.3, 5.7Hz, 1H), 3.00–2.92 (m, 1H), 2.87
(m, 1H), 1.85 (td, J = 12.9, 12.0, 3.9Hz, 3H), 1.75 (dd, J = 14.0,
6.6Hz, 1H), 1.16 (d, J = 7.0Hz, 3H), 0.91 (d, J = 7.0Hz, 3H), 0.81
(d, J = 6.8Hz, 3H); 13C NMR (126MHz, CDCl3) δ (ppm): 154.84,
151.99, 138.23, 137.30, 129.21, 129.06, 128.60, 128.24, 128.19,
128.06, 127.92, 120.77, 46.77, 29.87, 28.60, 27.66, 21.42, 20.74,
16.75, 16.26; IR (KBr) v: 3203, 3108, 3030, 2957, 2932, 2864, 1697,
1611, 1602, 1583, 1560, 1542, 1493, 1371cm−1; HRMSm/z: Calcd
for C25H27ClN4O [M+H]+: 435.1946, found: 435.1940.

1-(29-Bromophenyl)-3-((5R,8S)-8-isopropyl-5-methyl-4-
phenyl-5,6,7,8-tetrahydroquinazolin-2-yl)urea (4h). White
solid, Yield: 76%; HPLC purity: 96.7%; [α]D20 = + 19.2°(c =
0.11, CHCl3); m.p. 184.2–187.1°C; 1H NMR (500MHz, CDCl3) δ
(ppm): 11.50 (s, 1H), 8.32 (d, J = 8.2Hz, 1H), 7.52 (s, 1H),
7.50–7.44 (m, 4H), 7.42 (dd, J = 6.7, 3.1Hz, 2H), 7.30 (d, J = 8.0Hz,
1H), 6.92 (q, J = 7.3Hz, 1H), 3.15–3.06 (m, 1H), 2.98 (m, 1H), 2.87
(dt, J = 9.6, 4.6Hz, 1H), 1.82–1.73 (m, 3H), 1.65 (s, 1H), 1.10 (d,
J = 7.1Hz, 3H), 0.93 (d, J = 7.0Hz, 3H), 0.75 (d, J = 6.8Hz, 3H); 13C
NMR (126MHz, CDCl3) δ (ppm): 154.74, 152.09, 138.07, 137.24,
132.69, 132.46, 128.86, 128.56, 128.39, 128.26, 128.18, 127.97,
124.51, 122.91, 46.46, 29.99, 28.64, 27.85, 21.22, 20.68, 16.74,
16.30; IR (KBr) v: 3212, 3137, 3033, 2960, 2923, 2870, 1690, 1581,
1569, 1556, 1536, 1498, 1438, 1421, 1380cm−1; HRMSm/z: Calcd
for C25H27BrN4O [M+H]+: 479.1441, found: 479.1462.

1-(49-Bromophenyl)-3-((5R,8S)-8-isopropyl-5-methyl-4-
phenyl-5,6,7,8-tetrahydroquinazolin-2-yl)urea (4i). White
solid, Yield: 82%; HPLC purity: 95.8%; [α]D20 = + 20.2°(c =
0.11, CHCl3); m.p. 188.8–190.1°C; 1H NMR (500MHz, CDCl3) δ
(ppm): 11.66 (s, 1H), 7.53 (s, 1H), 7.52–7.47 (m, 4H), 7.42 (d, J =
9.5 Hz, 5H), 3.32–3.23 (m, 1H), 2.96 (m, 1H), 2.86 (m, 1H),
1.86–1.78 (m, 3H), 1.67–1.61 (m, 1H), 1.16 (d, J = 7.0Hz, 3H),
0.90 (d, J = 7.0Hz, 3H), 0.81 (d, J = 6.8Hz, 3H); 13C NMR
(126MHz, CDCl3) δ (ppm): 154.81, 151.90, 138.22, 137.80,
132.04, 129.24, 128.64, 128.07, 127.98, 121.16, 115.85, 46.82,
29.89, 28.62, 27.69, 21.44, 20.75, 16.76, 16.27; IR (KBr) v:
3209, 3114, 3030, 2958, 2926, 2870, 1696, 1607, 1591, 1583,
1559, 1542, 1488, 1371cm−1; HRMS m/z: Calcd for
C25H27BrN4O [M+H]+: 479.1441, found: 479.1446.

1-(29-(Trifluoromethyl)phenyl)-3-((5R,8S)-8-isopropyl-5-
methyl-4-phenyl-5,6,7,8-tetrahydroquinazolin-2-yl)urea (4j).
White solid, Yield: 80%; HPLC purity: 95.2%; [α]D20 = +
54.7°(c = 0.14, CHCl3); m.p. 171.2–174.2°C; 1H NMR (500
MHz, CDCl3) δ (ppm): 11.29 (s, 1H), 8.04 (d, J = 8.2Hz, 1H),
7.57 (h, J = 9.6, 8.7Hz, 3H), 7.47 (dd, J = 5.3, 1.9Hz, 3H), 7.41 (dd,
J = 6.8, 2.9Hz, 2H), 7.22 (t, J = 7.7Hz, 1H), 3.13 (m, 1H), 2.96–2.75
(m, 2H), 1.81–1.72 (m, 3H), 1.69–1.61 (m, 1H), 1.07 (d, J = 6.8Hz,
3H), 0.91 (d, J = 7.0Hz, 3H), 0.74 (d, J = 6.7 Hz, 3H); 13C NMR
(126MHz, CDCl3) δ (ppm): 154.81, 152.58, 137.94, 135.65,
132.49, 128.81, 128.34, 128.26, 128.05, 126.77, 126.09, 126.04,
126.00, 124.40, 122.45, 46.26, 30.03, 28.60, 27.82, 21.14, 20.63,
16.76, 16.32; IR (KBr) v: 3197, 3143, 3066, 3042, 2961, 2938, 2876,
1684, 1620, 1588, 1566, 1535, 1481, 1455, 1371cm−1; HRMS m/z:
Calcd for C26H27F3N4O [M+H]+: 469.2210, found: 469.2211.

1-(39-(Trifluoromethyl)phenyl)-3-((5R,8S)-8-isopropyl-5-
methyl-4-phenyl-5,6,7,8-tetrahydroquinazolin-2-yl)urea (4k).
White solid, Yield: 76%; HPLC purity: 97.4%; [α]D20 = + 16.7°(c =
0.11, CHCl3); m.p. 175.4–176.3°C; 1H NMR (500MHz, CDCl3) δ
(ppm): 11.92 (s, 1H), 7.87 (s, 1H), 7.66 (s, 1H), 7.52 (d, J= 6.8Hz, 5H),
7.43 (dd, J= 9.8, 6.3Hz, 2H), 7.32 (d, J= 7.8Hz, 1H), 3.30 (d, J= 8.4Hz,
1H), 2.99 (m, 1H), 2.88 (q, J = 7.2, 4.9Hz, 1H), 1.85 (td, J = 13.3,
9.6Hz, 3H), 1.66–1.59 (m, 1H), 1.18 (d, J = 7.1Hz, 3H), 0.92 (d, J =
7.0Hz, 3H), 0.83 (d, J = 6.8Hz, 3H); 13C NMR (126MHz, CDCl3) δ
(ppm): 154.78, 151.92, 139.29, 138.18, 131.28, 129.76, 129.31, 128.84,
128.68, 128.12, 128.07, 125.18, 123.01, 122.49, 119.83, 116.11, 116.08,
46.88, 29.85, 28.62, 27.70, 21.48, 20.64, 16.69, 16.21; IR (KBr) v: 3206,
3120, 3063, 2963, 2926, 2876, 1696, 1614, 1566, 1541, 1486,
1373cm−1; HRMS m/z: Calcd for C26H27F3N4O [M+H]+:
469.2210, found: 469.2211.

1-(49-(Trifluoromethyl)phenyl)-3-((5R,8S)-8-isopropyl-5-
methyl-4-phenyl-5,6,7,8-tetrahydroquinazolin-2-yl)urea (4l).
White solid, Yield: 70%; HPLC purity: 98.3%; [α]D20 = +
11.2°(c = 0.10, CHCl3); m.p. 204.7–206.2°C; 1H NMR
(500MHz, CDCl3) δ (ppm): 11.89 (s, 1H), 7.64–7.43 (m, 10H),
3.33–3.22 (m, 1H), 2.97 (m, 1H), 2.87 (s, 1H), 1.87–1.80 (m, 3H),
1.61 (d, J = 3.2Hz, 1H), 1.17 (d, J = 7.0Hz, 3H), 0.91 (d, J = 7.0Hz,
3H), 0.81 (d, J = 6.9Hz, 3H); 13C NMR (126MHz, CDCl3) δ
(ppm): 154.74, 151.89, 141.85, 138.18, 129.32, 128.68, 128.18,
128.07, 126.40, 123.33, 119.14, 46.86, 29.85, 28.61, 27.71, 21.44,
20.76, 16.77, 16.27; IR (KBr) v: 3206, 3137, 3111, 3039, 2960,
2929, 2870, 1697, 1603, 1564, 1541, 1504, 1488, 1376cm−1; HRMS
m/z: Calcd for C26H27F3N4O [M+H]+: 469.2210, found: 469.2202.
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1-(39,59-Dimethylphenyl)-3-((5R,8S)-8-isopropyl-5-methyl-
4-phenyl-5,6,7,8-tetrahydroquinazolin-2-yl)urea (4m). White
solid, Yield: 80%; HPLC purity: 95.9%; [α]D20 = + 17.2°(c =
0.11, CHCl3); m.p. 166.9–169.1°C; 1H NMR (500MHz, CDCl3) δ
(ppm): 11.54 (s, 1H), 7.51 (s, 5H), 7.36 (s, 1H), 7.18 (s, 2H), 6.74
(s, 1H), 3.28 (d, J = 7.3Hz, 1H), 3.03 (m, 1H), 2.87 (q, J = 7.3,
5.1Hz, 1H), 2.31 (s, 6H), 1.91–1.82 (m, 3H), 1.69 (s, 1H), 1.18 (d,
J = 7.1Hz, 3H), 0.91 (d, J = 7.0Hz, 3H), 0.83 (d, J = 6.8Hz, 3H); 13C
NMR (126MHz, CDCl3) δ (ppm): 154.99, 151.89, 138.73, 138.49,
138.32, 129.12, 128.96, 128.56, 128.13, 127.70, 125.10, 117.38,
46.80, 29.84, 28.66, 27.67, 21.57, 21.46, 20.72, 16.71, 16.19; IR
(KBr) v: 3206, 3131, 3021, 2957, 2920, 2867, 1692, 1617, 1566,
1548, 1485, 1388cm−1; HRMS m/z: Calcd for C27H32N4O
[M+H]+: 429.2649, found: 429.2647.

1-(29,49-Difluorophenyl)-3-((5R,8S)-8-isopropyl-5-methyl-
4-phenyl-5,6,7,8-tetrahydroquinazolin-2-yl)urea (4n). White
solid, Yield 75%; Purity 97.0%; [α]D20 = + 25.2°(c = 0.11,
CHCl3); m.p. 179.7–182.2°C; 1H NMR (500MHz, CDCl3) δ
(ppm): 11.61 (s, 1H), 8.31 (td, J = 9.0, 5.9 Hz, 1H), 7.54–7.45
(m, 6H), 6.86 (td, J = 13.3, 11.2, 7.1Hz, 2H), 3.23 (m, 1H),
3.00–2.92 (m, 1H), 2.88 (dt, J = 8.9, 4.4Hz, 1H), 1.86–1.80 (m,
3H), 1.68–1.64 (m, 1H), 1.12 (d, J = 7.0Hz, 3H), 0.91 (d, J = 7.0Hz,
3H), 0.77 (d, J = 6.9Hz, 3H); 13C NMR (126MHz, CDCl3) δ
(ppm): 159.10 (d, J = 11.1Hz), 157.15 (d, J = 11.3Hz), 154.81,
153.79 (d, J = 11.7Hz), 151.99, 138.04, 129.05, 128.51, 128.12,
123.44 (dd, J = 10.8, 4.0Hz), 122.70 (d, J = 9.2Hz), 111.37–110.73
(m), 104.02–102.92 (m), 46.59, 29.86 (d, J = 5.0Hz), 28.58, 27.75,
21.23, 20.75, 16.77, 16.34; IR (KBr) v: 3209, 3152, 3117, 3027,
2960, 2926, 2870, 1694, 1611, 1565, 1542, 1503, 1371cm−1; HRMS
m/z: Calcd for C25H26F2N4O [M+H]+: 437.2147, found: 437.2149.

1-(39,49-Dichlorophenyl)-3-((5R,8S)-8-isopropyl-5-methyl-
4-phenyl-5,6,7,8-tetrahydroquinazolin-2-yl)urea (4o). White
solid, Yield: 72%; HPLC purity: 95%; [α]D20 = + 10.2°(c =
0.12, CHCl3); m.p. 178.7–180.8°C; 1H NMR (500MHz, CDCl3)
δ (ppm): 11.81 (s, 1H), 7.71 (s, 1H), 7.55–7.43 (m, 6H), 7.35 (d, J =
6.6 Hz, 2H), 3.29 (dq, J = 10.1, 6.0 Hz, 1H), 2.95 (m, 1H), 2.87 (m,
1H), 1.84 (dt, J = 15.8, 6.3Hz, 3H), 1.64–1.61 (m, 1H), 1.17 (d, J =
7.1Hz, 3H), 0.91 (d, J = 7.0Hz, 3H), 0.81 (d, J = 6.8Hz, 3H); 13C
NMR (126MHz, CDCl3) δ (ppm): 154.69, 151.78, 138.29, 138.16,
132.78, 130.61, 129.34, 128.69, 128.17, 128.06, 126.36, 121.17,
118.68, 46.86, 29.92, 28.60, 27.69, 21.46, 20.72, 16.75, 16.24; IR
(KBr) v: 3215, 3146, 3030, 2959, 2932, 2870, 1694, 1592, 1566,
1538, 1476, 1371cm−1; HRMS m/z: Calcd for C25H26Cl2N4O
[M+H]+: 469.1556, found: 469.1556.

1-(39,59-Bis(trifluoromethyl)phenyl)-3-((5R,8S)-8-
isopropyl-5-methyl-4-phenyl-5,6,7,8-tetrahydroquinazolin-2-
yl)urea (4p).White solid, Yield: 80%; HPLC purity: 96.5%; [α]D20
= + 26.2°(c = 0.10, CHCl3); m.p. 160.5–162.0°C; 1H NMR
(500MHz, CDCl3): δ (ppm) 12.30 (s, 1H), 8.02 (s, 2H),
7.58–7.49 (m, 7H), 3.33 (s, 1H), 3.04–2.95 (m, 1H), 2.91 (d,
J = 10.8Hz, 1H), 1.86 (dt, J = 14.0, 6.0Hz, 3H), 1.62 (d, J = 3.4Hz,
1H), 1.19 (d, J = 7.1Hz, 3H), 0.93 (d, J = 7.0Hz, 3H), 0.83 (d, J =
6.8Hz, 3H); 13C NMR (126MHz, CDCl3) δ (ppm): 154.58, 151.81,
140.28, 138.06, 132.57, 132.30, 132.03, 129.47, 128.75, 128.46,
128.03, 126.61, 124.44, 122.27, 120.10, 118.97, 116.47, 46.93,
30.05, 28.58, 27.71, 21.50, 20.57, 16.67, 16.15; IR (KBr) v:
3224, 3164, 3108, 2962, 2873, 1706, 1625, 1583, 1565, 1545,

1473, 1450, 1389cm−1; HRMS m/z: Calcd for C27H26F6N4O
[M+H]+: 537.2085, found: 537.2084.

1-(49-Chloro-39-(trifluoromethyl)phenyl)-3-((5R,8S)-8-
isopropyl-5-methyl-4-phenyl-5,6,7,8-tetrahydroquinazolin-2-
yl)urea (4q).White solid, Yield: 76%; HPLC purity: 95.2%; [α]D20
= + 19.2°(c = 0.11, CHCl3); m.p. 192.1–193.5°C; 1H NMR
(500MHz, CDCl3) δ (ppm): 12.00 (s, 1H), 7.92 (s, 1H), 7.63
(s, 1H), 7.55–7.47 (m, 6H), 7.44 (d, J = 8.8Hz, 1H), 3.31 (d, J =
7.2Hz, 1H), 2.97 (m, 1H), 2.88 (m, 1H), 1.84 (dt, J = 13.3, 6.1Hz,
3H), 1.65 (s, 1H), 1.17 (d, J = 7.0Hz, 3H), 0.92 (d, J = 7.0Hz, 3H),
0.82 (d, J = 6.8Hz, 3H); 13C NMR (126MHz, CDCl3) δ (ppm):
154.66, 151.89, 138.11, 137.71, 132.20, 129.36, 128.83, 128.71,
128.58, 128.26, 128.02, 125.61, 123.85, 123.31, 121.68, 119.51,
118.21 (d, J = 5.5Hz), 46.87, 29.99, 28.59, 27.70, 21.47, 20.63,
16.68, 16.20; IR (KBr) v: 3206, 3137, 3102, 3042, 2961, 2935, 2873,
1695, 1603, 1560, 1540, 1482, 1371cm−1; HRMS m/z: Calcd for
C26H26ClF3N4O [M+H]+: 503.1820, found: 503.1824.

1-(49-Cyanophenyl)-3-((5R,8S)-8-isopropyl-5-methyl-4-
phenyl-5,6,7,8-tetrahydroquinazolin-2-yl)urea (4r). White
solid, Yield: 80%; HPLC purity: 95.5%; [α]D20 = + 16.2°(c =
0.11, CHCl3); m.p. 216.4–218.4°C; 1H NMR (500MHz, CDCl3) δ
(ppm): 12.03 (s, 1H), 7.60 (d, J = 15.8Hz, 5H), 7.55–7.48 (m, 5H),
3.28 (t, J = 8.1 Hz, 1H), 3.01–2.92 (m, 1H), 2.87 (t, J = 6.8 Hz, 1H),
1.89–1.81 (m, 3H), 1.70–1.63 (m, 1H), 1.16 (d, J = 7.0Hz, 3H),
0.91 (d, J = 7.1Hz, 3H), 0.81 (d, J = 6.7Hz, 3H); 13C NMR
(126MHz, CDCl3) δ (ppm): 154.60, 151.79, 142.90, 138.09,
133.39, 129.38, 128.69, 128.34, 128.03, 119.37, 119.25, 106.11,
46.84, 29.83, 28.55, 27.69, 21.41, 20.74, 16.78, 16.26; IR (KBr) v:
3209, 3155, 3036, 2960, 2929, 2873, 2227, 1698, 1593, 1568, 1538,
1510, 1500, 1489, 1372cm−1; HRMS m/z: Calcd for
C26H26ClF3N4O [M+H]+: 426.2288, found: 426.2288.

1-(49-Nitrophenyl)-3-((5R,8S)-8-isopropyl-5-methyl-4-phenyl-
5,6,7,8-tetrahydroquinazolin-2-yl)urea (4s). White solid, Yield:
82%; HPLC purity: 97.3%; [α]D20 = + 19.2°(c = 0.10, CHCl3);
m.p. 221.4–224.0°C; 1H NMR (500MHz, CDCl3) δ (ppm): 12.20
(s, 1H), 8.19 (d, J= 8.6Hz, 2H), 7.64 (d, J= 12.8Hz, 3H), 7.56–7.46 (m,
5H), 3.30 (m, 1H), 2.97 (m, 1H), 2.92–2.82 (m, 1H), 1.92–1.83 (m,
3H, C3-H), 1.82–1.77 (m, 1H), 1.17 (d, J = 7.0Hz, 3H), 0.92 (d, J =
7.0Hz, 3H), 0.81 (d, J = 6.8Hz, 3H); 13C NMR (126MHz, CDCl3) δ
(ppm): 154.55, 151.75, 144.83, 142.96, 138.06, 129.44, 128.73, 128.47,
128.17, 128.04, 125.28, 118.79, 46.87, 29.98, 28.55, 27.71, 21.41, 20.75,
16.80, 16.26; IR (KBr) v: 3206, 3120, 3039, 2958, 2923, 2870, 1701,
1614, 1600, 1561, 1543, 1506, 1371cm−1; HRMS m/z: Calcd for
C26H26ClF3N4O [M+H]+: 446.2187, found: 446.2188.

Cytotoxicity Assay
The antitumor activity of the target compounds and the positive
control, 5-FU, were evaluated against the human cancer cell lines
A549, Hela, MCF-7, and MGC-803 by MTT assay. The cell lines
were grown on 96-well micro-plates at a density of 5 × 103 cells
per well in DMEM (Dulbecco’s modified eagle medium) with
10% FBS (fetal bovine serum). The plates were incubated and
maintained at 37°C with 5% CO2. The cells were then exposed to
different concentrations of the synthesized compounds and 5-FU
and incubated for another 48h. Control wells were formed by
culture media with the maximum concentration of DMSO used
in each assay (1‰) (Ruvinsky and Meyuhas, 2006). A total of
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20µL of MTT was added and incubated for about 4h. The
medium was thrown away and replaced by 150ml DMSO. The
absorbance (OD) value was measured at 490nm using an enzyme
labeling instrument. Each experiment was repeated at least three
times to obtain the mean values (Hafez and EL-Gazzar, 2017).

Cell Cycle Analysis
The Hela cell line was treated with different concentrations of
compound 4i. After incubation for 48h, the treated cells were
washed twice with ice-cold phosphate buffer saline (PBS), fixed, and
permeabilized with ice-cold 70% ethanol (−20°C) overnight. The cells
were treated with 100µg/ml rnase A at 37°C for 30min, then washed
with ice-cold PBS, and finally stained with 1mg/ml propidium iodide
(PI) (BD, Pharmingen) in the dark at 4°C for 30min. The data were
analyzed by the system software (Cell Quest; BD Biosciences, Becton
Dickinson FACSAriaIII, New York, United States).

Apoptosis Analysis
Hela cells were seeded at a concentration of 2 × 106 cells/mL of the
DMEMmedium with 10% FBS on 6-well plates to the final volume
of 2ml, and then treated with compound 4i at different
concentrations for 48h. After 48h, the cells were collected and
washed twice with PBS, then resuspended in 100µL 1 × binding
buffer. The cells were subjected to 5µL of FITC Annexin V and 5µL
propidium iodide (PI) staining using an annexin-V FITC apoptosis
kit (BD, Pharmingen) and incubated for 30min at RT (25°C) in the
dark. Then, 100µL 1× binding buffer was added. The apoptosis ratio
was quantified by system software (Cell Quest; BD Biosciences,
Becton Dickinson FACSAriaIII, New York, United States).

Network Pharmacology Analysis
Targets Prediction of 4i
The structure of 4i was imported into the database of
PharmMapper Server (http://www.lilab-ecust.cn/pharmmapper/) for
prediction (Yi et al., 2017). The results, whose scores of Norm Fit were
greater than zero, were chosen as the predicted targets of 4i. The
targets, including the gene names and gene ID, were further extracted
using UniProtKB (http://www.uniprot.org) (Wang et al., 2017).

Collection of Potential Targets for Cervical Cancer
Hela Cell Line
“Hela human cervical cancer Hela cell line” were used as
keywords to retrieve cervical cancer Hela cell line associated
targets in Online Mendelian Inheritance in Man database
(OMIM, https://omim.org) (Bateman et al., 2021) and
Genecards database (https://www.genecards.org) (Hamosh
et al., 2005). On mapping cervical cancer Hela cell line
associated targets and predicted targets of 4i, the potential
targets of 4i for treatment of cervical cancer Hela cell line
were finally obtained.

Construction and Analysis of Protein-Protein
Interaction Network
The potential targets gene list was imported into the STRING
database (https://string-db.org) (Stelzer et al., 2016), with the
species as ‘‘Homo sapiens” and a confidence score greater than 0.
4, to obtain the data of PPI and the visualized PPI network. The

topological parameters of the PPI network were analyzed with the
Network Analyzer tool of Cytoscape. The targets whose degrees were
greater than 1.9 times median were selected as the core targets.

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Enrichment Analysis
The biological functions of the target genes were assessed through
gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways enrichment analysis. The R
package, “DOSE”, “clusterProfiler”, “enrichplot”, and
“org.Hs.eg.db”, were used to perform the enrichment analyses.
The bar graphs of results were drawn by the R package “ggplot2”.

Molecular Docking Analysis
Molecular docking was performed using AutoDock 4.2.6 software
(ADT) according to the report (Szklarczyk et al., 2019). The structures
of the key targets were downloaded from RCSB PDB database (http://
www.rcsb.org/). All the PDB files of the targets were cleaned by
removing small molecules, ions, and native ligand in the crystal using
PyMOL software. The resulting PDB files were prepared by ADT to
adding hydrogen atoms, calculating and adding Gasteigar charges,
merging non-polar hydrogen atoms, and setting rotatable torsion
bonds to afford protein files for docking. The structure of 4i was
drawn and minimized energy using Chem3D 19.1. The torsional
bonds of 4i were automatically set by the AUTOTORS module in
ADT. The docked sites of the proteinwere set in the place of the native
ligand. The binding energy between 4i and the targets was calculated
using the AutoGrid program with a grid spacing of 0.375Å by the
Lamarckian genetic algorithm as a searching method. The interaction
between 4i and the amino acid residues of the targets was found by
LigPlot+ 2.1 and visualized by PyMOL software. The reliability of the
docking method was confirmed when the RMSD value, which is
obtained from the docking result between native ligand and the target,
is less than 2Å. The accessible surface area (ASA) was calculated from
Accessible Surface Area and Accessibility Calculation for Protein (ver.
1.2) (http://cib.cf.ocha.ac.jp/bitool/ASA/). The loss in ASA (ΔASA)
was calculated as follows: ΔASA =ASAUnbound protein-ASA Protein−ligand

complex. If the ΔASA loses more than 10Å2, the residue is involved in
binding (Miao et al., 2019).

Western Blot Analysis of PI3K/Akt Signaling
Pathway Inhibitory Activity of 4i
Hela cells were seeded at a density of 3 × 106 cells per dish and
attached for 8h, and then treated with compounds in concentrations
of 0, 5, 10, and 20μM for 24h. After that, cells were collected, washed
with cold PBS, and lysed with lysis buffer (100mM Tris-HCl, pH 6.8,
4% SDS, 20% glycerol) on ice for 30min. Protein concentrations were
detected using the bicinchoninc acid procedure (BCA) method
(Beyotime Institute of Biotechnology, Haimen, China). Proteins
were electrophoresed using sodium dodecyl sulfate/polyacrylamide
gel electrophoresis (SDS-PAGE Bio-Rad, California, United States)
and transferred electrophoretically to membranes. The membranes
were blocked with 5% non-fat milk at room temperature for 1h and
were incubatedwith primary antibodies overnight at 4°C. The next day,
membranes were washed and incubated with the appropriate
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fluorescence-conjugated secondary antibodies at room temperature for
1h. Finally, membranes were washed and developed by the addition of
enhanced chemiluminescence (ECL) substrate (Thermo Fisher
Scientific, Rockford, United States). Proteins were visualized using
the intelligent gel imaging system IBright FL1000 (Thermofisher,
Rockford, United States). Primary antibodies were as follows: anti-
phospho-4EBP1, anti-4EBP1, anti-mTOR, anti-phospho-mTOR, anti-
Akt, anti-phospho-Akt, anti-PI3K(p85), anti-phospho-PI3K(p85), and
anti-α-tubulin, which were purchased from Cell Signaling Technology
(Cell Signaling Technology, Boston, MA, United States).

Statistical Analyses
Statistical analysis was conducted on SPSS 22.0 (SPSS, Chicago, IL,
United States), with a data-processing method of independent-
sample t test. Comparisons between groups were statistically
analyzed, and p < 0.05 was considered to be statistically significant.

RESULTS AND DISCUSSION

Chemistry
The synthetic approaches adopted to afford the target compounds are
outlined in Scheme 1, L-menthone-derived α, β-unsaturated ketone 2
was prepared by Claisen-Schmidt condensation reaction of L-
menthone 1 with benzaldehyde. Then, L-menthone-derived
pyrimidine 3 was prepared by cyclization of compound 2 with
guanidine hydrochloride in the presence of K2CO3 in ethanol.
Finally, a series of L-menthone-derived pyrimidine-urea
compounds 4a-4s were synthesized by nucleophilic addition
reaction of compound 3 with substituted phenyl isocyanates.

The structures of all the target compounds were characterized by
FT-IR, 1HNMR, 13C NMR, and HRMS. The spectra can be found in

the Supplementary Material. In the FT-IR spectra of the target
compounds, the absorption bands at about 3200cm−1 were attributed
to the stretching vibrations of N-H. The characteristic absorption
bands at about 1690cm−1 were assigned to the stretching vibrations of
C=O. The characteristic absorption bands at about 1581–1620cm−1

were assigned to C=N in the pyrimidine moiety. In the 1H-NMR
spectra, the protons of a benzene ring showed signals at
6.88–8.19ppm. The N–H protons exhibited signals at
11.08–12.30ppm and 7.51–8.13ppm, respectively. The protons of
thementhonemoiety displayed signals in the range of 0.77–3.12ppm.
The 13C NMR spectra of the target compounds showed peaks for the
carbon atom of C=O at about 155.00 ppm, carbon atoms of the
benzene ring, and the unsaturated carbons at 102.92–158.02ppm.
The other saturated carbons of menthone displayed signals in the
region of 16.15–46.93ppm. Their molecular weights were confirmed
by HRMS.

Cytotoxicity Measurement
The in vitro antitumor activity of L-menthone-derived
pyrimidine-urea compounds 4a-4s against four human cancer
cell lines (A549 human lung adenocarcinoma cell, Hela human
cervical cancer cell line, MCF-7 human breast cancer cell line,
andMGC-803 human gastric cancer cell line) was evaluated by
MTT (methyl thiazolytetrazolium) assay and compared with the
positive control 5-fluorouracil (5-FU) in each panel. The results
are shown in Table 1.

It was found that 7, 16, 14, and 9 compounds exhibited better
antitumor activity than the positive control, 5-FU, against A549,
Hela, MCF-7, and MGC-803, respectively, while the target
compounds showed more effective inhibitory activity against
MGC-803 than other tested cell lines, which were inhibited by
the target compounds in a similar level. Compounds 4m, 4i, 4s,

SCHEME 1 | Synthesis of menthone-derived pyrimidine-urea compounds 4a-4s.
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TABLE 1 | Anti-proliferative activities of the target compounds 4a-4s against cancer cell lines.

Compounds IC50 (μM)

A549 Hela MCF-7 MGC-803

4a (R = o-CH3) 26.56 ± 0.14 24.57 ± 0.50 28.27 ± 1.44 21.98 ± 0.49
4b (R = m-CH3) 35.84 ± 0.76 28.29 ± 0.83 41.11 ± 4.09 20.19 ± 0.16
4c (R = p-CH3) 35.62 ± 1.63 13.54 ± 1.05 33.85 ± 1.73 6.37 ± 0.57
4d (R = p-F) 44.82 ± 0.79 18.74 ± 0.23 22.11 ± 1.46 7.86 ± 0.31
4e (R = o-Cl) 49.6 ± 0.42 70.17 ± 3.26 59.98 ± 2.72 21.92 ± 1.58
l4f (R = m-Cl) 38.03 ± 1.29 21.41 ± 0.42 54.42 ± 0.91 7.91 ± 0.72
l4g (R = p-Cl) 39.40 ± 3.09 7.95 ± 1.02 47.54 ± 3.19 3.21 ± 0.67
4h (R = o-Br) >100 38.87 ± 0.69 >100 32.28 ± 3.18
4i (R = p-Br) 38.17 ± 0.93 6.04 ± 0.62 35.71 ± 0.28 3.99 ± 0.78
4j (R = o-CF3) 57.95 ± 1.39 55.53 ± 0.34 40.36 ± 0.87 20.61 ± 0.82
4k (R = m-CF3) 91.58 ± 3.95 13.66 ± 0.01 >100 >100
4l (R = p-CF3) 22.86 ± 0.52 38.04 ± 0.54 32.86 ± 1.90 17.74 ± 0.21
4m (R = m,m-CH3) 18.68 ± 1.53 33.80 ± 0.21 49.98 ± 5.88 15.88 ± 2.15
4n (R = m, p-F) 26.74 ± 0.15 10.91 ± 0.03 20.18 ± 2.38 6.08 ± 1.14
4o (R = m, p-Cl) 27.46 ± 0.55 22.29 ± 0.20 27.82 ± 0.76 18.12 ± 0.05
4p (R = m,m-CF3) 36.91 ± 0.95 61.46 ± 4.24 42.12 ± 1.72 16.02 ± 3.22
4q (R = p-Cl-m-CF3) 21.42 ± 2.35 42.13 ± 0.70 66.15 ± 0.50 9.36 ± 0.33
4r (R = p-CN) 21.69 ± 0.95 40.32 ± 2.78 24.86 ± 1.97 14.44 ± 0.04
4s (R = p-NO2) 95.63 ± 0.04 26.37 ± 0.10 19.09 ± 0.49 14.2 ± 1.07
5-FU 31.41 ± 0.41 >50 >50 14.55 ± 1.24

IC50 values are expressed as the mean ± SD (standard deviation) from three independent experiments.

FIGURE 2 | Effect of compound 4i (0°μM (A), 5°μM (B), and 10°μM (C)) on the cell cycle of human cervical cancer Hela cell. The graph (D) presents cells in the G0/
G1, S, and G2/M phases in the Hela cell line using PI staining after exposure to compound 4i at (0°μM, 5°μM, and 10°μM) for 48 h. Data are expressed as the mean and
SD from three independent experiments; *p < 0.05.
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and 4g showed the best IC50 values of 18.68 ± 1.53µM, 6.04 ±
0.62µM, 19.09 ± 0.49µM, and 3.21 ± 0.67µM against A549, Hela,
MCF-7, and MGC-803, respectively. Compounds 4i and 4g
showed good dual antitumor activity against Hela and MGC-803.

In addition, the compounds with para substituent showed
good activity in the greater probability, especially the halogen
substituted compounds. It is indicated that the lone electron pair
on the para substituent might act as an important role in tumor
inhibition. For the further action mechanism study, compound 4i
was employed as a representative.

Cell Cycle Analysis
To study the possible role of compound 4i in the tumor growth
inhibition, different concentrations of compound 4iwere treatedwith
Hela cells for 48h. The cell cycle distribution was investigated by flow
cytometric analysis following the staining of DNA with propidium
iodide (PI). It was observed that the G0/G1 phase cells were gradually
decreased from72.46% (0μM) to 67.05% (10μM, p= 0.043), and the S
phase cells changed unobviously, while the G2/M phase cells
gradually increased from 18.45% (0μM) to 22.83% (10μM)

(Figure 2). Thus, these results suggested that the target compound
4i might arrest the Hela cells in the G2/M phase.

Compound 4i Induces Apoptosis in Hela
Cells
To investigate whether compound 4i could induce cell apoptosis,
Hela cells were treated with compound 4i in different concentrations
for 48h. The Annexin V-FITC/PI dual staining assay was carried out
by flow cytometry. The results are illustrated in Figure 3. The
percentage of all apoptotic cells (early and late apoptotic cells,
lower right quadrant and upper right quadrant, AV+/PI,
respectively) significantly increased from 0.07% (0μM, early,
0.00%; later, 0.07%) to 26.22% (5μM, early, 16.57%, p = 0.003;
later 9.65%, p = 0.007) and 53.78% (10μM, early, 37.81%, p =
0.004; later 15.97%, p = 0.001), while the increase in the 10µM
treatment group was much greater than that in the 5µM treatment
group (early, p = 0.015; later, p = 0.024). These results clearly
confirmed that compound 4i effectively induced apoptosis in Hela
cells in a dose-dependent manner.

FIGURE 3 | Apoptosis ratio detection of compound 4i (0°μM (A), 5°μM (B), and 10 (C) μM) by flow cytometry. The graph (D) presents cell apoptosis in an early
stage and a later stage in the Hela cell line using PI staining after exposure to compound 4i at (0°μM, 5°μM, and 10°μM) for 48 h. Data are expressed as the mean and SD
from three independents experiments; *P < 0.05, **P < 0.01.
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Preliminary Exploration of the Mechanism
of Compound 4i Against Hela Cells Based
on Network Pharmacology and Molecular
Docking Technology
Potential Targets of 4i Against Hela Cell Line
A total of 293 targets of compound 4i (Supplementary Table S1)
were obtained by PharmMapper Server. A total of 834 Hela cell
line associated targets (Supplementary Table S2) were collected
by OMIM database and Genecards database after eliminating

duplicates. Finally, 59 potential targets were obtained by
overlapping the two sets (Supplementary Table S3).

Construction and Analysis of Protein-Protein
Interaction Network
A total of 59 targets was imported into the STRING database
to obtain the data of PPI and the visualized PPI network. As
shown in Figure 4, the nodes in the network represent the
potential targets, and the edges represent the interaction
between the targets. The network was comprised of 59
nodes and 708 edges, and the average node degree was
24.4. The targets with the degree greater than 1.9 times
median, EGFR, HRAS, and MAPK1, were selected as the
core targets (Table 2).

Results of GO and KEGG Pathway Enrichment
Analysis
GO and KEGG pathway enrichment analysis were performed
using the 59 potential targets in R packages, and the GO terms
and KEGG pathways with p-value < 0.05 were significantly
enriched (Supplementary Tables S4 and S5). The top 20 GO

FIGURE 4 | Network of potential targets of 4i in the Hela cell line
analyzed by STRING.

TABLE 2 | The predicted core targets of 4i in the Hela cell line.

No. Gene symbol Protein name Degree
in PPI network

1 EGFR Epidermal growth factor receptor (EGFR) 50
2 HRAS HRas proto-oncogene, gtpase(HRAS) 47
3 MAPK1 Mitogen-activated protein kinase 1 (MAPK1) 47

FIGURE 5 | GO enrichment of 4i targets. (A) Biological process. (B) Molecular function. (C) Cellular components.

FIGURE 6 | KEGG pathway enrichment of 4i targets.
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terms of biological process, molecular function, and cellular
components were shown in Figure 5. The KEGG pathway
enrichment analysis indicated that 54 of the 59 targets
(91.52%) were enriched in 141 pathways. The top 20 pathways
were shown in Figure 6. There are 6 cancer pathways, 5 signal
transduction pathways, 3 endocrine system pathways, 2
antineoplastic drug resistance pathways, 2 viral infectious
pathways, 1 endocrine and metabolic disease pathway, and 1
cardiovascular disease pathway (Supplementary Table S6). This
result indicated that compound 4i against cancer may through
regulating these pathways.

Furthermore, there are 12 proteins involved in the top 20
pathways more than 15 times, includingMAP2K1(19), KDR (19),
IGF1R (19), HRAS (19), IGF1 (19), FGFR1 (19), Akt2 (19), ESR1
(19), ERBB4(19), EGFR (19), CASP3(19), and MAPK1(16),
suggesting that these targets may be the key proteins in the
enriched pathways.

Molecular Docking Analysis
Proteins, EGFR, HRAS, and MAPK1, are the overlapping targets
of the core targets in PPI network analysis and the key proteins in
the top 20 pathways. Activated EGFR, HRAS, and MAPK1 can
stimulate the activation of PI3K/Akt signaling pathway. Akt2 is a
member protein in the pathway of PI3K-Akt signaling pathway
which is the first pathway in the KEGG pathway enrichment.
Thus, these four proteins, EGFR, HRAS, MAPK1, and Akt2, were

studied in molecular docking. All the RMSD value in the docking
resulted in less than 2Å, which is considered a good prediction for
computed ligand-protein conformation and indicated the
docking method is believable (García-Godoy et al., 2016).

Many reports show that the overexpression or the mutational
activation of these four targets was found in cancer cells and
provides strong growth and survival signals to cancer cells
(Vajdos et al., 2001; Yun et al., 2007; Zhu et al., 2011;
Rampias et al., 2014; Sharma et al., 2019; Jiang et al., 2021).
For regulating the expression of the targets, some small molecules
which could bind with the specific region at the target proteins
were found as inhibitors for cancer therapy (Roskoski, 2018;
Alzahrani, 2019). Thus, in this work, the ATP-binding sites,
which contain the native ligand as inhibitor of the targets,
were chosen as docking sites.

In the results, the predicted minimum binding energies of
compound 4i with the target proteins are less than or equal to
−7.48kcal/mol. Particularly, the minimum binding energy of
compound 4i with MAPK1 is lower than that of the native
ligand. These low binding energies indicated that compound
4i may form stable binding with the docking sites and might
act as a well inhibitor against EGFR, HRAS, MAPK1, and Akt2,
respectively (Table 3).

The possible interaction mode between the residues of EGFR
and compound 4i were shown in Figure 7. Five of 12 residues
(41.67%) are overlapping with the interacting residues of the

TABLE 3 | The basic information of the protein and the minimum binding energy predicted by docking.

Name of proteins PDB ID RMSD value (in Å)a Minimum binding energy (kcal/mol)

Native ligandb 4i

EGFR 2j6m 0.94 −9.92 −7.48
HRAS 1wq1 0.37 −12.57 −8.91
MAPK1 2oji 0.81 −8.32 −8.8
AKT2 2uw9 0.43 −10.39 −9.41

aNote: The RMSD value is obtained from the docking result between the native ligand and the target.
bNote: The native ligand in the PDB, files. #The ID and the formula of the native ligand in the corresponding PDB files.

FIGURE 7 | The conformation of 4i docked in EGFR. Note (A) 3D docking conformation; (B) 2D docking conformation; (C) 2D conformation of native ligand and
residues, the same as below.
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FIGURE 8 | The conformation of 4i docked in HRAS.

FIGURE 9 | The conformation of 4i docked in MAPK1.

FIGURE 10 | The conformation of 4i docked in Akt2.
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native ligand, including an overlapping residue, Asp855,
forming a hydrogen bond with urea moiety at N atom,
which is also forming a hydrogen bond with binding site
residue Asp855. Arg841 with the maximum ΔASA
(48.158Å2) is seen as the key interacting residue
(Supplementary Table S7).

The possible interaction mode between the residues of HRAS and
compound 4i were shown in Figure 8. Ten of 18 residues (55.56%)
are overlapping with the interacting residues of the native ligand,
including an overlapping residue, Lys117, forming a hydrogen bond
with urea moiety at O atom, which is also forming a hydrogen bond
with binding site residue Asn85. Lys117 with the maximum ΔASA
(48.206Å2) is seen as the key interacting residue.

The possible interaction mode between the residues of
MAPK1 and compound 4i were shown in Figure 9. Ten of 13
residues (76.92%) are overlapping with the interacting residues of
the native ligand, including an overlapping residue, Asp109,
forming two hydrogen bonds with the 2N atoms of urea
moiety. Ile29 with the maximum ΔASA (46.449Å2) is seen as
the key interacting residue.

The possible interaction mode between the residues of Akt2
and compound 4i were shown in Figure 10. Eleven of 20 residues
(55.00%) are overlapping with the interacting residues of the
native ligand. The binding site residue Asp440 formed a hydrogen
bond with the Br atom. Asp293 with the maximum ΔASA
(48.293Å2) is seen as the key interacting residue.

The interaction mode study showed that the higher
overlapping ratio of compound 4i to the native ligand
interacting residues and the higher average ΔASA of
compound 4i might relate to low minimum binding energy. A
hydrogen bond is also a positive factor for ligand-protein
accommodation. In the docking results, the hydrogen bonds’
interaction almost associates to urea moiety, indicating that
introduction of urea moiety is favorable to form new
compounds with good protein-binding ability. In addition, the
Br atom of compound 4i could form a hydrogen bond with the
Akt2 binding site residue that might be a factor of the para
halogen substituted compounds showing good antitumor
activity.

PI3K/Akt/mTOR Signaling Pathway
Inhibitory Activity of 4i
The inhibitory activity of compound 4i against PI3K/Akt/mTOR
signaling pathway, the first pathway in the KEGG pathway
enrichment analysis and its downstream protein, was
investigated. The proteins’ expressions of PI3K(p85),
p-PI3K(p85), AKT, p-AKT, mTOR, p-mTOR, 4EBP1, p-4EBP1,
and α-tubulin in Hela cells were detected byWestern blot method.
The result is shown in Figure 11. In the Hela cells treated by
compound 4i, the total PI3K(p85), AKT, mTOR, 4EBP1, and α-
tubulin were almost not affected by the treatments, while the

FIGURE 11 | Inhibitory effects of compound 4i in the Hela cell line according to Western blot analysis. (A) The expression levels of the PI3K,p-PI3K, mTOP,
p-mTOR, AKT, p-AKT, 4EBPE, and p-4EBPE in the HeLa cell which were treated with (0°μM, 5°μM, 10°μM, and 20°μMof 4i) for 24 h,were examined byWestern Blot (B).
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expression of the phosphorylated proteins, p-PI3K(p85), p-AKT,
p-mTOR, and p-4EBP1 suffered significant decrease.

In PI3K/Akt/mTOR signaling pathway, the phosphorylated
PI3K (p-PI3K), some of which were constructed by a catalytic
subunit (p110) and a regulatory subunit (p85), could
phosphorylate PIP2 to convert it into PIP3. PIP3 could
activate Akt through phosphorylation, and further activate the
mTOR as phosphorylated mTOR. The activated mTOR could
deactivate its downstream effectors 4EBP1, which could bind with
eIF4E to inhibit the cells’ proliferation, growth, and protein
synthesis, through phosphorylation (Condon and Sabatini,
2019; Rehan and Bajouh, 2019; Sun et al., 2019). Thus, the
decreased expression of the phosphorylated PI3K, Akt, mTOR,
and downstream effectors 4EBP1 indicated that compound 4i
could inhibit PI3K/Akt/mTOR signaling pathways significantly.

CONCLUSION

In summary, a series of novel menthone derivatives bearing
pyrimidine and urea moieties were synthesized and identified by
FTIR, NMR, and HRMS. All the synthesized compounds were
evaluated for their cytotoxic effects against A549, Hela, MCF-7,
and MGC-803 cell lines by standard MTT assay. The results
revealed that most of the target compounds exhibited better
antitumor activity than the positive control, 5-FU. Compounds
4m, 4i, 4s, and 4g showed the best IC50 values against A549,
Hela, MCF-7, and MGC-803, respectively. In particular,
compounds 4i and 4g showed good dual antitumor activity
against Hela and MGC-803. The action mechanistic studies,
using compound 4i as a representative, revealed that compound
4i could markedly induce Hela cell apoptosis in a dose-
dependent manner and arrested them in the G2/M phase.
Network pharmacology prediction showed that compound 4i
might against Hela cells through regulating the expression and
activation of the core targets, EGFR, HRAS, MAPK1, and Akt2.
In KEGG pathway enrichment, PI3K/Akt signaling pathway
was evaluated as the first pathway for compound 4i against Hela
cells. TheWestern blot assay confirmed that compound 4i could
inhibit PI3K/Akt signaling pathway, including the downstream

protein mTOR and downstream effectors 4EBP1, significantly.
Molecular docking shows that compound 4i was able to interact
efficiently with the ATP-binding site of EGFR, HRAS, MAPK1,
and Akt2. The urea moiety and para substituent halogen acted
as important roles for ligand-protein stabling. These results
indicated that the synthetic strategy in this study is feasible. The
compound 4i might serve as a leading compound for potent
antitumor agents such as PI3K/Akt/mTOR signaling pathway
inhibitor.
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