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Abstract: In this paper, we report an interesting bubble melt electrospinning (e-spinning) to produce
polymer microfibers. Usually, melt e-spinning for fabricating ultrafine fibers needs “Taylor cone”,
which is formed on the tip of the spinneret. The spinneret is also the bottleneck for mass production
in melt e-spinning. In this work, a metal needle-free method was tried in the melt e-spinning process.
The “Taylor cone” was formed on the surface of the broken polymer melt bubble, which was produced
by an airflow. With the applied voltage ranging from 18 to 25 kV, the heating temperature was
about 210–250 ◦C, and polyurethane (TPU) and polylactic acid (PLA) microfibers were successfully
fabricated by this new melt e-spinning technique. During the melt e-spinning process, polymer melt
jets ejected from the burst bubbles could be observed with a high-speed camera. Then, polymer
microfibers could be obtained on the grounded collector. The fiber diameter ranged from 45 down to
5 µm. The results indicate that bubble melt e-spinning may be a promising method for needleless
production in melt e-spinning.
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1. Introduction

In the last 20 years, electrospinning (e-spinning) technology has become one of the main methods
for producing ultrafine fibers [1,2], and this technology also has a rapid development both in
fabricating functional fibers and potential applications. The electrospun (e-spun) fibers have been
applied in various fields, such as biomedicine, tissue engineering, filtration, textiles, and nanodevices,
because of their many excellent characteristics, such as large surface area to volume ratio, high porosity,
and microscale to nanoscale diameter [3–6]. As is well known, the needle is easily blocked sometimes
during solution e-spinning. Hence, many designs of needleless e-spinning have been proposed to
solve the problem. For instance, a two-layer system, with a ferromagnetic suspension at the bottom
and a polymer solution above it, can produce nanofibers [7]. A conical metal wire can be used for
producing nanofibers, and cylinder and disk nozzles can also replace the needle [8]. He et al. reported
a bubble solution e-spinning, where the output of fibers is higher than in traditional e-spinning.
The diameter of fibers fabricated by this method is usually below 100 nm. He et al. also produced
some different shapes, such as helix fibers and even nanoparticles [9–13]. Bubble solution e-spinning
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has its obvious advantages compared with traditional e-spinning, such as the spinning process with
no blockage, the throughput is high and producing fiber membrane of high porosity [14,15]. When the
e-spun fibers were used in biomedicine and tissue engineering, the shortcomings in traditional
e-spinning, such as toxic solvent and low productivity, obviously restrict further applications in
these fields [16–19]. Traditional solution e-spinning has its inherent defects which may hinder the
way to solve these problems, particularly those of toxic solvent, solvent evaporation, and residual
solvent [20–22]. Melt e-spinning, another branch of e-spinning, has attracted widespread attention
in recent years. Many researchers have paid much attention to melt e-spinning, particularly the
morphology adjustment and the potential application of microfibers. In 1981, Larrondo and Manley
published the first paper on melt e-spinning. However, the second study on melt e-spinning was
not published until 2001, by Reneker and Rangkupan [23,24]. Since the devices for melt e-spinning
experiments are more complicated, and the fiber diameter is larger than the conventional solution
e-spun fibers, the research work on melt e-spinning is relatively less than that on solution e-spinning,
although melt e-spinning is a technique without toxic and solvent evaporation [25–27]. Melt e-spinning
controls the fiber membrane more precisely than meltblown, but the needle is also frequently and easily
blocked, which is the main shortcoming for high productivity [28–31]. In order to increase productivity,
some progress has been made in the past several years, for example, Yang et al. used umbellate
spinneret for mass production of ultrafine fibers [32]. Fang et al. produced polypropylene (PP) fibers
by a rotary metal disc spinneret without needle block [33]. However, no research about bubble melt
electrospinning has been reported. Detailed research on this topic would provide a reference for mass
production using melt electrospinning.

Here, we propose a bubble melt e-spinning for fabricating polymer microfibers. Since the viscosity
of polymer melt is much larger than polymer solution, this is a challenge for the bubble melt e-spinning.
When compressed air was passed into polymer melt, many bubbles were formed on the surface of the
polymer melt. When these bubbles were exposed to the electrostatic field between the polymer melt
and the collector, the bubbles burst, and some jet flows were generated from the “Taylor cones” of
the burst bubbles. Then, polymer microfibers were deposited on the collector. The effects of different
parameters on the fiber morphologies were also investigated.

2. Experimental Section

2.1. Materials

Polylactic acid (PLA) with a molecular weight of ~20,000 and polyurethane (TPU) with a
molecular weight of ~100,000 were purchased from Dongguan Thriving Plastic Raw Materials Co., Ltd.
(Dongguan, China). All the chemicals were directly used without further processing.

2.2. Melt E-Spinning Setup

The bubble melt e-spinning device was assembled by ourselves, which consisted of a gas pump,
a DC high voltage generator (DW-P4-3-1ACCC, Tianjin, China), a thermostatic heating platform
(200 × 200 mm2, 0–400 ◦C, 800 W, Shenzhen, China), a metal container (150 × 150 mm2) and an
aluminum foil as collector. A metal conduit connected the air pump at one end, and the other end
was fixed at the bottom of the metal container, which was placed on the thermostatic heating platform.
The aluminum foil collector was over the top of the container, and the distance between collector
and container could be adjusted. The positive and negative electrodes connected with the collector
and the metal container, respectively. Figure 1 shows the schematic illustration of the bubble melt
e-spinning setup.
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Figure 1. Schematic drawing of the bubble melt e-spinning setup.

2.3. E-Spinning Process

The polymer (TPU or PLA) particles were put into the metal container which was placed on the
thermostatic heating platform. Then, turning on the heating platform, the heating process would
last for several minutes until the polymer particles became a melt. The air pump was turned on
gradually to create bubbles from the surface of polymer melt. Once the bubbles were generated on
the surface of polymer melt, the DC high voltage generator was turned on to form an electrostatic
field between the collector and the metal container. Through the high-speed camera, we could observe
directly that multiple jets were ejected from the burst bubble towards the collector during the melt
e-spinning process.

2.4. Characterization

The morphologies and structures of the melt e-spun polymer fibers were measured and
characterized by a scanning electron microscope (SEM, Hitachi TM-1000, Tokyo, Japan) and a
Fourier transform infrared (FTIR) spectrometer (Thermo Scientific Nicolet iN10, Shanghai, China).
These samples were coated with an evaporated Au thin film before SEM characterization. A rheometer
(MCR301, Anton Paar, Shanghai, China) was used to test the rheological properties of the polymer melt
at different temperatures. The melt e-spinning process was recorded by a high-speed camera (Photron,
UX50, Tokyo, Japan). X-ray diffraction (XRD) was tested using a Rigaku SmartLab X-ray diffractometer
using Cu-Kα radiation (λ = 1.54178 Å) with an acceleration voltage of 40 kV. Thermogravimetric
analysis (TGA) of the fiber membranes was performed from on a TGA2 (Mettler Toledo, Zurich,
Switzerland), from 25 to 500 ◦C.

3. Results and Discussion

When the bubble melt e-spinning started, several bubbles were generated on the polymer melt
surface (please see the video in the Supplementary Materials). In order to see the e-spinning process
more clearly, Figure 2 only shows a big bubble. In fact, there were many bubbles generated in the
spinning process. The bubbles gradually became a cone while the applied voltage was close to the
threshold value (Figure 2a). Then, increasing the gas pressure and the voltage to exceed the threshold
value, the bubbles became unstable and then burst with multiple jets ejected toward the collector.
In the process, several bubbles and conical tips which played the role of Taylor cone in the traditional
e-spinning process were uplifted after the bubble burst (Figure 2b–d). The number of bubbles and
jets mainly depends on the viscosity of polymer melts, gas pressure and the air flow rate, the applied
voltage, and the distance between the surface and collector. These parameters can be adjusted in the
e-spinning process to produce more bubbles and jets.
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Figure 2. The photos of the unstable bubble and the burst bubble formed fibers: (a) the bubble formed;
(b) the bubble burst; (c) the conical tip uplifted; and (d) the fibers formed.

Figure 3a,b shows some typical SEM images of the melt e-spun TPU microfibers, taken at different
positions of the collector. As shown in the picture, most of the fibers are disordered. Besides straight
fibers, some helical fibers, thick fibers (~45 µm) and thin fibers (~5 µm) also can be observed. Figure 3c,d
shows the diameter distribution maps. Most of the fibers have a diameter of about 20 µm. However,
we can see from the pictures that a few fibers are thinner than others. According to the experiment,
we analyzed that it was simply because the broken bubbles were different from each other both in
size, viscosity, and distance to the collector. Multiple jets generated from bubbles with a small size
and thinner bubble wall were more likely to form thinner fibers. In addition, the distance between
the bubble tip and the collector was also different for bubbles with different sizes. Hence, it is still a
challenge to produce stable uniform fibers. In this experiment, the difficulties are obvious compared
to the common solution e-spinning, because the viscosity of the polymer melt is larger. At the same
time, the bottom-up way for e-spinning needs to overcome the gravity. As a result, the diameter of
the fabricated fibers by this method is larger. However, throughput of the fibers produced by bubble
melt e-spinning is higher than the traditional melt e-spinning with a needle. Then, fibers fabricated by
bubble are more scattered than the traditional one; at the same time, the porosity is higher.

Figure 4 shows the infrared spectra of the TPU fibers that were e-spun at different heating times
during the experiment (heating temperature was 240 ◦C, heating time was 20, 40, and 60 min from
the start of the experiment). From the infrared test results, we could also see that the TPU was stable
in the melt e-spinning process. The peak at 3330 cm−1, which indicates the N–H group in urethane
(–NHCOO–), and the peaks at 2958 cm−1, which belongs to the asymmetric and symmetric vibration of
the –CH2 group, respectively, are the characteristic peaks of TPU [34,35]. However, in our experiment,
the color of the TPU melt gradually changed into light yellow with increasing heating time, which may
be the result of partial thermal degradation of the polymer [36,37].

Figure 5 shows the rheological properties of the TPU at different temperatures. The results also
exhibit the mechanism of this melt e-spinning experiment. At the same temperature, the viscosity
curve is stable. The shear viscosity decreases obviously with the temperature rising at the same
shear rate. Hence, at the beginning of the experiment, we need to heat the materials for a long time.
Otherwise, the viscosity is too high to prevent the formation of the bubbles. Therefore, keeping the
heating temperature at about 210 ◦C is necessary for the fibers’ formation. When the temperature is
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above 270 ◦C, the viscosity of the polymer melt is too low to obtain stable bubbles. We would see
many jets directly formed from the surface of the polymer at the same time. However, these jets are
not stable, and the resultant fibers are too thick. When these fibers are collected at the collector, it will
prevent the normal process of the e-spinning. Keeping a proper temperature during the experiment is
the key factor to the success of the experiment.
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Figure 5. Rheological properties of TPU at different temperatures.

Figure 6 shows the XRD patterns of TPU fibers fabricated by bubble melt electrospinning. From the
picture, we can see that the TPU had a clear crystalline peak after electrospinning. A broad amorphous
band peaked at around 2θ = 20◦. This indicates that the TPU remains stable after being spun into fibers.
This result also proves that the prepared TPU fibrous membrane has low crystallinity.
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Figure 6. XRD Patterns of TPU fibers.

Figure 7 shows the TGA test of the TPU fibers produced by bubble melt electrospinning. we can
see that the TPU fibers stay stable before temperature reaches 300 ◦C. Our experiment was usually
carried out between 200 and 300 ◦C, therefore, the properties of TPU are not changed.

PLA microfibers were also fabricated by this method, as shown in Figure 8a,b. The e-spun
PLA microfibers are fragile, which can be clearly seen from the broken fibers in the picture [38].
Figure 8c,d shows the diameter distribution maps. The average fiber diameter is about 30 µm.
Compared to the TPU fibers e-spun by this method, the average diameter of PLA fibers is larger.
However, PLA microfibers were also successfully produced by the bubble melt e-spinning, indicating
that it is an effective method to fabricate various polymer microfibers.
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Figure 9 shows the XRD test of the PLA fibers produced by bubble melt electrospinning.
The patterns show us that the electrospun PLA fibers had a clear crystalline peak. The broad amorphous
band peaked at around 2θ = 17◦ and matches the common PLA XRD patterns. The result means that
the properties of electrospun PLA fibers stay stable. The PLA did not change during the bubble melt
e-spinning process.
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Figure 9. XRD Patterns of PLA fibers.

Figure 10 shows the TGA test of the PLA fibers produced by bubble melt electrospinning. We can
see that the PLA fibers stay stable before the temperature reaches 280 ◦C. Our experiment was usually
carried out between 200 and 250 ◦C, indicating that our experiment can be carried out successfully.
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Figure 11 shows the infrared spectra of the PLA fibers that were melt e-spun at different
temperatures (230, 250, and 270 ◦C) with the heating time of about one hour. The peak at 1758 cm−1

indicates the exist of a carbonyl group, the peak at 1132 cm−1 is assigned to the C–O symmetric
telescopic vibration, and the bending vibration peak of CH3 is at 1455 cm−1. Here, it is noted that
during our experiment, the color of the PLA melt also gradually changed into light yellow over
time, just like the TPU melts. Hence, we want to know whether the color change of PLA melts has
some relationship with heating temperature. The results in Figure 11 clearly show that the PLA
melts remained stable at different temperatures (230, 250, and 270 ◦C). Namely, no obvious thermal
degradation of PLA melts was observed even at 270 ◦C for a heating time of one hour.
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