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Abstract

Motivation: Precise time calibrations needed to estimate ages of species divergence are not always available due to
fossil records’ incompleteness. Consequently, clock calibrations available for Bayesian dating analyses can be few and
diffused, i.e. phylogenies are calibration-poor, impeding reliable inference of the timetree of life. We examined the role
of speciation birth–death (BD) tree prior on Bayesian node age estimates in calibration-poor phylogenies and tested the
usefulness of an informative, data-driven tree prior to enhancing the accuracy and precision of estimated times.

Results: We present a simple method to estimate parameters of the BD tree prior from the molecular phylogeny for
use in Bayesian dating analyses. The use of a data-driven birth–death (ddBD) tree prior leads to improvement in
Bayesian node age estimates for calibration-poor phylogenies. We show that the ddBD tree prior, along with only a
few well-constrained calibrations, can produce excellent node ages and credibility intervals, whereas the use of an
uninformative, uniform (flat) tree prior may require more calibrations. Relaxed clock dating with ddBD tree prior also
produced better results than a flat tree prior when using diffused node calibrations. We also suggest using ddBD
tree priors to improve the detection of outliers and influential calibrations in cross-validation analyses.
These results have practical applications because the ddBD tree prior reduces the number of well-constrained cali-
brations necessary to obtain reliable node age estimates. This would help address key impediments in building the
grand timetree of life, revealing the process of speciation and elucidating the dynamics of biological diversification.

Availability and implementation: An R module for computing the ddBD tree prior, simulated datasets and empirical
datasets are available at https://github.com/cathyqqtao/ddBD-tree-prior.

Contact: s.kumar@temple.edu

1 Introduction

In Bayesian relaxed clock methods for estimating species divergence
times from molecular sequences, node age estimates are a product of
the interaction of calibration time priors and the speciation tree
prior applied to a molecular phylogeny (Barba-Montoya et al.,
2017; Warnock et al., 2012; Yang, 2006). The calibration time pri-
ors come from incomplete fossil-record, often resulting in phyloge-
nies with only a few clock calibrations that are well-constrained
(Hipsley and Müller, 2014; Parham et al., 2012). Even in fossil-rich
taxonomic groups, the quality and quantity of calibration vary
across clades, and node calibrations are missing in most clades.
Actually, most phylogenies have only a few (or even no) well-con-
strained calibrations. So, molecular clock dating studies resort to
using calibrations derived from previous molecular studies or use
pre-determined evolutionary rates to convert sequence divergences
to time due to a paucity of calibrations (Hipsley and Müller, 2014;
Tao et al., 2020a).

Obviously, an increase in the quantity and quality of clock cali-
brations will remedy many problems facing molecular dating today.

However, it is not easy or cost-effective to acquire additional fossil
records and other information sources to establish node calibrations.
An alternative candidate to improve divergence time estimates in
calibration-poor phylogenies is the use of informative tree priors
for speciation, which is theoretically expected to improve the
Bayesian estimates of node ages. For example, in the MCMCTree
software (Yang, 2007), a birth–death (BD) speciation tree prior con-
sists of a per-lineage birth rate (k) and death rate (l) of the BD pro-
cess as well as a species sampling fraction (q). Parameters k and l
are the numbers of new species arising and going extinct in a given
time unit, respectively, and q is the fraction of sampled species in the
phylogeny.

For a given phylogeny of species (only the relationships), the
given set of parameters of speciation tree prior predicts a distribu-
tion of node times (Fig. 1). Figure 1A shows two distinct tree priors
produced by different combinations of parameter values. The flat
tree prior, which investigators often use, has a uniform-like density.
It posits that deep and recent node ages have a similar probability of
occurring anywhere in the phylogeny (Fig. 1B). In contrast, a skewed
tree prior may posit a higher probability for having recent
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divergences and a lower probability of deep divergences in the phyl-
ogeny (e.g. Fig. 1C) or vice versa.

It is well-appreciated that the choice of the tree prior has a lim-
ited impact on time estimates when many well-constrained calibra-
tions are applied because the calibration time prior exerts a strong
influence on estimated times (Barba-Montoya et al., 2018; Foster
et al., 2016). However, the choice of the speciation tree prior is
expected to influence node age estimates in the absence of inform-
ative calibrations (Heled and Drummond, 2012, 2015; dos Reis
et al., 2018; Yang, 2006; Yang and Rannala, 1997). Interestingly,
most investigators use a flat tree prior for calibration-poor phyloge-
nies, which is the default setting in MCMCTree and other Bayesian
software (Ronquist and Huelsenbeck, 2003). However, if the actual
distribution of node times is not flat (uniform-like), posterior time
estimates may be biased in calibration-poor phylogenies, as there is
not enough information to constrain posterior estimates.

Therefore, we wondered whether using an informative tree prior
can rescue time estimates in calibration-poor phylogenies. A survey
of the literature revealed no past investigations that examined the
power of an informative tree prior to dating calibration-poor phy-
logenies. We only found studies to have investigated the impact of
the tree prior for analyzing empirical datasets, rather than simulated
datasets and with many well-constrained calibrations (Barba-
Montoya et al., 2018). Neither of those situations offers insight into
informative speciation tree prior’s usefulness in dating calibration-
poor phylogenies.

So, we assessed the benefit of using the known (correct) tree
prior by analyzing a simulated dataset. We found that the node ages
were overestimated by 222% when the default tree prior was used,
i.e. estimates were highly biased (both average absolute error and
average error are 222%). The estimated highest posterior density
intervals (HPDs) only contained the true times for 14.6% of nodes,
i.e. a coverage probability of 14.6%. In sharp contrast, the use of
correct tree prior reduced the average absolute error of node ages to
33.7% and average error to 30.0% and increased the HPD coverage
probability to 95.8%. This simple example suggests that using the
correct tree prior may improve posterior point time estimates and
HPDs (Fig. 2; see Results for more details and expanded discussion).

This prompted us to devise a simple method to estimate tree pri-
or’s parameters based solely on a molecular phylogeny with branch
lengths (number of substitutions per site). In the following, we first
present this approach to generate data-driven estimates of BD
(ddBD) tree prior to use in Bayesian relaxed clock methods imple-
mented in MCMCTree. This method is an empirical Bayesian ap-
proach. We then explore ddBD tree priors’ use in analyzing
empirical and simulated datasets to quantify increased accuracy,
decreased bias and higher coverage probabilities of Bayesian

estimate in calibration-poor phylogenies. We consider well-con-
strained calibrations and calibrations with diffused uncertainty den-

sities to test if ddBD tree priors produce better estimates than the
default (flat) tree prior in MCMCTree. We investigate the impact of

using an incorrect substitution model and phylogenies on the im-
provement in divergence times offered by the use of ddBD tree pri-
ors. We also discuss the usefulness of ddBD tree priors in additional

practical situations.

2 Method and materials

2.1 A simple approach for estimating parameters of BD

speciation tree prior
A simple approach for building the tree prior by using a species
phylogeny and multispecies sequence alignment is to estimate node

ages using the relative rate framework (RRF) without calibrations
first (Tamura et al., 2012, 2018). RRF is a relaxed-clock method

that does not require the specification of any priors, such as
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Fig. 1. (A) Distinct density plots for a flat and a skewed tree prior. An example timetree simulated under the BD process using (B) a flat and (C) a skewed tree prior is shown.

Both timetrees have root age of 100 million years. Birth rate, death rate and sampling fraction are (0.02, 0.02, 0.1) and (0.1, 0.05, 0.99) in the simulation for flat prior and
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Fig. 2. Comparison of true times with node ages inferred using the correct (black)

and the default flat (red) tree prior for the dataset simulated using model tree in

Figure 1C. The slope and coefficient of determination (R2) for the linear regression

through the origin are shown. Dots are point estimates of node ages and lines are

highest posterior density intervals (HPDs). Gray dashed line is 1:1 line
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calibration, clock rate and tree priors. RRF is selected because it has
been shown to produce reliable relative node age estimates under
various scenarios and conditions (Tamura et al., 2012, 2018).
However, other non-Bayesian methods, e.g. penalized likelihood
method (Sanderson, 2002), can also be used to estimate node ages.

We utilize the kernel density distribution of node times generated
by RRF to estimate k, l and q needed by the MCMCTree program
using the following equations (Yang, 2006) through a maximum
likelihood procedure.

g tð Þ ¼ kp1ðtÞ
�t1

;

p1 tð Þ ¼ 1

q
Pð0; tÞ2e�ðk�lÞt;

�t1
¼ 1� 1

q
P 0; t1ð Þe�ðk�lÞt1 ;

P 0; tð Þ ¼ qðk� lÞ
qkþ ½kð1� qÞ � l�e�ðk�lÞt ;

where g(t) is the kernel density of node times, p1(t) is the probability
that a lineage arising in the past leaves exactly one descendant in the
sample, P(0, t) is the probability that a lineage arising at time t in
the past leaves one or more descendants in the present-day sample,
and t1 is the root age. In our calculation, we first assume the root
age is 1, so we estimate relative values of k, l and q. Then, we scale
the relative parameter values based on the root node’s age, which is
required by the MCMCTree program. As there are no analytical sol-
utions to estimate all three parameters simultaneously (Stadler,
2009), we estimate them numerically.

Because maximum likelihood estimation’s performance relies on
good initial values, we conduct a three-dimensional grid search of
the initial values. The grid search involves 10 k values (1.1–10.1,
step size ¼ 1), 10 l values (1–10, step size ¼ 1) and 5 q values to rep-
resent extremely sparse to highly dense sampling (0.001, 0.01, 0.1,
0.5 and 0.9). We set k>l, a biologically reasonable constraint for a
phylogeny of living species. These parameter choices in grid search
ensure that a wide range of tree prior densities is explored. From
these 500 parameter choices, we select the set that maximizes the
predicted density’s fit with the distribution of RRF node times as the
initial value. The fitness of predicted density can be determined by
the sum of squared errors or Kullback–Leibler divergence (Kullback
and Leibler, 1951), both of which produced similar results. We used
the sum of squared errors in all analyses reported here. The grid
search procedure was very fast (<1 s for a tree of 274 taxa in Fig. 3).
Also, it has the flexibility to specify q if the species sampling fraction
is known. In this case, only k and l need to be estimated. Using the
best initial values of k, l and q, we conduct a maximum likelihood
analysis to obtain the final estimates of k, l and q.

We must note that many combinations of the three parameters
can produce the same tree prior density, so the estimates produced
are not unique, but this will not impact MCMCTree time estimates
(see Sections 3 and 4).

2.2 Simulated datasets and analysis
We simulated ten model timetrees of 50 tips under the BD process
with k, l and q of 10, 5 and 0.99 (time unit ¼ 100 million years,
Myr) using ‘sim.bd.taxa.age’ function in TreeSim R package
(Stadler, 2011). The age of the most recent common ancestor
(MRCA) of species was fixed to be 100 Myr. An example model
tree is shown in Figure 1C. We then simulated molecular evolution-
ary rates to generate a phylogram for each model timetree. An ex-
ample phylogram is shown in Figure 4A. Branch-wise evolutionary
rates were drawn from a lognormal distribution where the mean
rate was 0.00228 substitutions per site per Myr, and the variance
was 0.4 (log-scale) (Fig. 4B). Rates varied independently among
sites.

Finally, alignments of 8000 base pairs (bp) were generated based
on phylograms in SeqGen (Rambaut and Grassly, 1997) under the
Hasegawa-Kishino-Yano (HKY) (Hasegawa et al., 1985) substitu-
tion model with the assumption of substitution rate variation across
sites under a gamma distribution (þG, a¼0.4). All parameter values
used in simulations were derived from an empirical mammalian
study (dos Reis et al., 2012). We need time estimates of all branches,
but RelTime does not produce estimates for the rooting outgroup.
So, we added an arbitrary rooting outgroup to all model timetrees
for simulating sequences. The arbitrary sequence of rooting out-
group was later removed in MCMCTree analyses.

We estimated divergence times using the default flat (uniform-
like) BD setting (2 2 0.1) and the ddBD tree prior for the correct tree
topology. Three calibration strategies were used: (i) root calibration
only, (ii) root and one internal node calibration (root þ 1C) and (iii)
root and three internal node calibrations (root þ 3C). In root cali-
bration only analysis, we used a uniform density (true age 6 10
Myr) to calibrate root age. Besides the default flat and ddBD tree
priors, we also analyzed datasets with only the root calibration and
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Fig. 3. Evolutionary relationships and branch lengths derived from an alignment of

7370 base pairs of 12 mitochondrial genes from 274 mammalian species from dos
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the simulated (correct) tree prior. In the rootþ1C analysis, we ran-
domly selected one internal node to calibrate, along with the root
calibration. This calibrated node may come from shallow, inter-
mediate and deep regions in the given phylogeny, which enabled us
to explore the impact of the calibration location on time estimation.
Shallow nodes were nodes with two descending tips; deep nodes
were immediate descendants of the root; intermediate nodes are
nodes whose ages were 30–70% of the root age. A uniform density
(true age 6 50% of true age) was used to calibrate the selected shal-
low, intermediate and deep nodes. In the rootþ3C calibration ana-
lysis, we applied the shallow, intermediate and deep calibration
together with the root calibration in each phylogeny.

We also test our method’s performance when the phylogenetic
tree has an error and when an oversimplified model of nucleotide
substitution is used to assess how the improvement in time estimates
using ddBD is impacted by such errors. We used the Jukes–Cantor
(JC) model (Jukes and Cantor, 1969) as the incorrect model, which
is the most extreme violation of the HKYþG substitution model
when considering the general time-reversible models. Comparison
of time estimates using the JC model and HKYþG model with and
without an informative prior is interesting to examine whether sub-
stitution model violation has a more serious impact on time esti-
mates using the ddBD. In these analyses, we also compared the
detrimental impact of using inferred phylogenies rather than correct
phylogenies when estimating ddBD. Neighbor-joining (NJ) method
(Saitou and Nei, 1987) with JC and Tamura-Nei (TrN) (Tamura
and Nei, 1993) model were used to infer phylogenies in MEGA X
(Kumar et al., 2018). We used the TrN model with a gamma distri-
bution (þG) of rate variation among sites in tree inference, as are no
analytical solutions for pairwise distance calculations using the
HKY model, and it is nested within the TrN model for which an
analytical solution exists. These inferred phylogenies contained
many topological differences from the correct tree. We compared
estimated times with the true times for eight different combinations
(flat versus ddBD tree prior, simple versus complex substitution
model, and inferred versus correct phylogeny). Because inferred phy-
logenies are not identical to the correct trees used in the simulation,
time estimates compared were the pairwise species divergence times
in the true timetree and the inferred Bayesian inferred timetree.

In all dating analyses, we assigned to the overall rate (l) a
gamma hyperprior G(1, 4) with a mean of 0.25, which translates
into a rate of 0.0025 substitutions per site per Myr that is similar to
the true value. For the rate drift parameter (r2), we assigned another
gamma hyperprior G(1, 10) with a mean of 0.1. Two independent
runs of 2 000 000 generations were conducted, and results were
checked for convergence (ESS >200). The performance was assessed
by mean absolute percent error (MAPE) over all nodes for each
dataset to measure the accuracy of time estimates, mean percent
error (MPE) to measure the bias of time estimates over all nodes in
phylogeny, and the HPD coverage (i.e. percent of true node times
contained in estimated HPDs) to measure the coverage probability
of HPDs across all nodes in a phylogeny.

2.3 Empirical dataset and analysis
We inferred the tree prior parameters for a mammalian dataset of
274 species (7370 bp) obtained from dos Reis et al. (2012). The ori-
ginal phylogeny (Fig. 3) and the alignment were used to estimate
node ages in MCMCTree v4.7h (Yang 2007). We also estimated
node ages using the flat tree prior used in the original study (1 1 0;
uniform density). All other priors were specified as in the original
study. Thirty-five internal calibrations were used in the original
study. We considered 10% of original count of calibrations as the
calibration-poor case (i.e. internal calibration count � 4), Therefore,
we applied five calibration strategies: (i) root calibration only, (ii)
root þ 1C, (iii) root þ 2C, (iv) root þ 3C and (v) root þ 4C internal
node calibrations. In the root calibration analysis and other analy-
ses, we used the original study’s root calibration. In the root þ 1C,
we selected a deep calibration from the 35 calibrations used in the
original study because the simulated analysis has shown that the
deep calibration has a bigger impact on time estimation. In the root
þ 2C analysis, we randomly selected an internal calibration and

used it together with the one used in the one-calibration analysis. A
similar strategy for choosing calibrations was used for root þ 3C
and root þ 4C analyses. Calibrated nodes are shown in figure 3.

To assess the impact of using diffused calibrations, we conducted
analyses using the same calibrated nodes but applying wider boun-
daries. Calibrations were specified using a uniform distribution
U(tL, tU), where tL is the minimum age bound and tU the maximum
age bound. The offset value from the original skewed student t (ST)
distribution was used as the minimum bound (tL), and the maximum
bound was specified at tU ¼ tLþ tL/2, which assigns a probability of
50% for the minimum bound (tL) to be older. All estimated node
ages were compared to the times reported in Tao et al. (2020b), be-
cause the new version of MCMCTree produced times slightly differ-
ent from those reported in the original study (v4.2e was used). For
each analysis, two independent runs of at least 1 500 000 genera-
tions were conducted, posterior estimates were checked for conver-
gence (ESS values >200).

3 Results

3.1 Correct tree priors enable better time estimates
We first tested whether a known tree prior is beneficial. We used the
simulated tree prior (i.e. correct tree prior) and the default flat tree
prior in the MCMCTree analysis of the simulated datasets (see
Section 2). No calibration priors were placed on the phylogeny’s in-
ternal nodes to focus purely on the impact of speciation tree priors.

Node ages were estimated with rather large errors when using
the flat prior (108–334%, Fig. 5A and B), and HPDs only contained
the true times for a few nodes (coverage probability ¼ 6.3–54.2%,
Fig. 5C). MAPE and MPE of flat tree prior estimates were similar
because the use of flat prior overestimated the node times for all the
simulated datasets. An uninformative flat tree prior produced highly
biased estimates in the absence of calibrations in these analyses. It is
because the flat tree prior tends to assign a similar number of shal-
low and deep node times on a phylogeny that was simulated using a
skewed tree prior and contains more shallow nodes (Fig. 1A).

The use of correct tree prior was very beneficial, as the MAPE
(17.2–61.1%, Fig. 5D) and MPE (–1.6% to –54.4%, Fig. 5E) were
reduced tremendously, and HPD coverage became much higher
(87.8–100%; Fig. 5F). Estimates with large errors were usually
found at recent nodes (<5 Myr), as the number of substitutions is
limited. However, these results clearly show that tree prior selection
can significantly impact node age estimates. If a suitable tree prior
can be estimated a priori, one will likely obtain much better time
estimates even without using internal calibrations (Figs 2 and 5).

3.2 Accuracy of ages with ddBD tree prior
Analysis of simulated datasets using ddBD tree prior produced time
estimates comparable to those obtained using the correct priors for
all datasets (Fig. 6). Using ddBD priors, we achieved MAPE of node
age as low as 17.1% (the flat prior MAPE was 107.7%), whereas
the maximum MAPE was 64.2% compared to 333.9% for the flat
prior. Clearly, ddBD performed better for some datasets than others,
but this was not due to difficulties in estimating tree prior parame-
ters, as the use of correct priors produced a similar amount of error.

The comparison of mean percent error (MPE) of node ages
showed a similar trend, where the MPE of node times estimated
using ddBD tree prior (–1.7% to 59.0%) was significantly smaller
than the estimates from the flat prior (107.7–333.9%). The im-
provement in HPD coverage probability was much more uniform
across datasets (>85%), suggesting that it is better to use HPDs esti-
mated using ddBD tree prior in making biological conclusions for
calibration-poor phylogenies. These results indicate that the use of
ddBD generates less biased estimates.

To assess the generality of the pattern observed in the analysis of
simulated datasets, we used ddBD to analyze an empirical alignment
(7370 base pairs) of 12 mitochondrial genes from 274 mammalian
species (dos Reis et al., 2012) (Fig. 3). Since there are no true times
in empirical analysis, we compared estimates obtained using ddBD
and flat tree priors with those reported in the original study in which
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36 calibrations and a flat tree prior were used. In both analyses, we
used the sequence alignment, phylogenetic relationships, substitu-
tion model (HKYþG4) and the root time calibration applied in the
original study to enable a direct comparison of absolute times and
avoid any confounding effect.

Our approach to estimate ddBD parameters showed an L-shape
density of node times (Fig. 7, blue curve). This is significantly differ-
ent from the flat tree prior applied in the original study (P<0.01;
Fig. 7, red curve). Compared with reported times obtained using 35
well-constrained internal calibrations, we found that node ages gen-
erated using ddBD tree prior and only a root calibration (i.e. no in-
ternal calibration) were much more similar (slope ¼ 1.31, Fig. 7B)
than those produced by using a flat tree prior (slope ¼ 1.94,
Fig. 7B). It suggested that the use of ddBD can reduce about 60% of

differences caused by using a flat tree prior when no internal calibra-
tions are used, which is also congruent with our results of simulated
datasets. Therefore, the Bayesian method’s performance with our
ddBD tree prior and no internal calibrations is encouraging.

3.3 Using ddBD tree prior with well-constrained

calibrations
The use of ddBD tree prior greatly reduces the difference in node age
estimates obtained without internal calibrations compared to those
obtained with 35 internal calibrations for the mammalian dataset.
Interestingly, two estimates showed a curvilinear but monotonic re-
lationship (Fig. 7B). Therefore, we explored whether the use of only
one well-constrained internal calibration can reduce this difference
(rootþ1C). Indeed, concordance increased significantly, as the aver-
age difference reduced to less than half (19.0% compared to 46.1%,
Fig. 8A) and coverage probability doubled (39.0–76.1%; Fig. 8B).
The concordance also increased for estimates obtained using the flat
tree prior, but its performance was still worse than the ddBD tree
prior (Fig. 8).

These observations prompted us to explore the performance
gains made by adding another calibration (rootþ2C), which made
the results very close to those obtained using 35 calibrations in the
original study. The difference in time estimates reduces to 11.4%,
and the coverage probabilities become higher (83.4%, Fig. 8). The
addition of a few more well-constrained calibrations only improved
the results slightly for ddBD estimates. The ddBD tree’s performance
prior was usually better than the performance of the flat tree prior,
except for the rootþ2C case where flat and ddBD tree priors per-
formed similarly.

Overall, the use of fewer than 10% of the internal calibrations
(i.e. <4) along with the ddBD tree prior produced time estimates
that differed <12% from those reported using all the calibrations.
Interestingly, HPD widths for dates with 0–4 internal calibrations
were very similar (not shown), which means that estimates and their
uncertainties can be generated using a small number of calibrations
and ddBD tree prior. We find these results highly encouraging for
improving molecular dating in situations where only one or few
well-constrained calibrations are known.

We confirmed the patterns observed for the empirical data by
analyzing simulated datasets (Fig. 9). The average error decreased
when using one internal calibration and ddBD tree prior (Fig. 9A).
The median value of the average absolute errors reduced from
37.6% to 29.6%. The HPDs also became slightly better with higher
coverage probabilities (improving from 93.1% to 95.8% on aver-
age, Fig. 9B) with similar HPD widths.

We found that the actual increase in performance depended on
the location of the node calibrated, with the highest performance
gain seen when deeper nodes were calibrated (Fig. 10). This observa-
tion is consistent with previous studies where shallow calibrations
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led to more biased time estimates (van Tuinen and Torres, 2015).
Interestingly, when more calibrations were used, the performance of
the ddBD tree prior only improved marginally (Fig. 9). In contrast,
results from the use of flat tree prior always performed worse than
ddBD tree prior in all calibration-poor scenarios (Fig. 9), consistent
with the pattern seen in the empirical data analysis.

3.4 Using ddBD tree prior with diffused calibrations
In all the above analyses, calibrations were well-constrained and
as used in the original study. However, the fossil-record usually
provides excellent minimum bounds on species divergences, but
not the maximum bounds (Bromham, 2019; Hedges et al., 2018;
Marshall, 2008; Parham et al., 2012; Warnock et al., 2012). One
way to avoid this fossilization of molecular derived dates is to use
fossil-based node age estimates as minimum-only calibration priors
(with diffused uncertainty densities, as appropriate). However, this
would have the side effect of making the phylogeny less calibra-
tion-rich. Therefore, we examined if the ddBD tree prior is better
than flat priors when only diffused (uniform density) calibrations
are used.

Similar to the analysis of well-constrained calibrations, the use
of only one diffused internal calibration improved node age esti-
mates to be more concordant with the reported times obtained
using all 35 calibrations. The average node age difference was
34.4% for ddBD estimates (Fig. 11A), and estimated HPDs con-
tained 56.3% of the reported times (Fig. 11B). The inclusion of
more diffused calibrations changed the results marginally. As
expected, the improvement of estimates was smaller than using
well-constrained calibrations because diffused calibrations offer
less information to calibrate molecular clocks. Performance of flat
tree prior was worse than ddBD tree prior when only a few dif-
fused calibrations were used (Fig. 11, red versus blue). We also
conducted an analysis using seven random internal calibrations
and found that the difference between estimates and the reported
values became much smaller for both ddBD and flat tree priors
(average error �8.4%, HPD coverage �96.7%). These results sug-
gest that ddBD tree prior works well with diffused calibrations
and can provide good estimates in calibration-rich (seven diffused
calibrations) cases. However, the benefit of using ddBD tree prior
is more prominent for calibration-poor phylogenies (e.g. 0–4
calibrations).
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3.5 Impact of substitution model violation and

phylogenetic error on ddBD tree prior
In all the above analyses of simulated datasets, we used the correct
substitution model and the correct tree topology to avoid any poten-
tial confounding effect. However, trees with phylogenetic errors
may be used in estimating the ddBD tree prior because phylogenetic
trees inferred from molecular sequences frequently contain topo-
logical errors. We found that the accuracy of node times estimated
(MAPE and MPE) using ddBD tree priors derived from inferred phy-
logenies were <1% different from those based on the correct phy-
logenies for every pair of conditions when using the ddBD tree
priors (Fig. 12), even though inferred phylogenies differed as much
as 12.8% from the true tree. While a small amount of phylogeny
errors had a limited adverse impact on the usefulness of the ddBD
tree prior, the use of an oversimplified model reduced the accuracy
of time estimates substantially (as much as 10%), especially when
the phylogeny used was incorrect. Importantly, however, overall
patterns in Figure 12 make it clear that the main determinant of the
accuracy of time estimates was the use of ddBD tree prior, as it
resulted in much better estimates than the use of flat tree prior under
every condition tested.

4 Discussion

Our analyses suggest that using a tree prior inferred from the mo-
lecular phylogeny, along with a few well-constrained internal cali-
brations, can produce time estimates of a quality similar quality to
that obtained by using a large number of well-constrained calibra-
tions. Even using a few diffused calibration time priors, which are
much easier to derive from the fossil record, coupled with a ddBD
tree prior, may produce better estimates than those obtained using
the default flat tree prior. These findings indicate that a tree prior
derived from data itself can constrain uncertainty densities of dif-
fused calibrations. This result may be explained by the fact that
Bayesian time estimates are a function of sequence divergences,
clock calibrations, tree prior and their interactions. The use of an in-
formative prior in Bayesian methods is expected to produce better
posterior estimates of node ages and HPDs. These findings highlight
the advantage of using a ddBD tree prior to dating species diver-
gence times for calibration-poor clades.

Our findings may address a growing concern that the molecular
dating using many calibration priors with narrow densities suppress
the time structure present in the molecular dataset, causing molecu-
lar-derived node ages to become spuriously concordant with the fos-
sil record (Battistuzzi et al., 2015; Bromham et al., 2018; Hedges
et al., 2018). One way to avoid this fossilization of molecular
derived dates is to use fossil-based node age estimates as minimum-
only calibration priors (with diffused uncertainty densities, if
desired) and only use a few well-constrained, well-established cali-
brations. Such a calibration design coupled with ddBD speciation
prior is likely to yield good time estimates, based on our results and
avoid the problem of ‘fossilization’ of molecular divergence time
estimates.

The use of ddBD tree priors may also enhance the detection of
problematic/influential calibrations because methods for such pur-
poses often involve estimating node ages with very few or without
any calibrations. For example, Near and Sanderson (2004) estimate
node ages with one fixed calibration at a time and calculate the dis-
tance between estimated node ages with fossil ages to identify incon-
sistent calibrations. Battistuzzi et al. (2015) developed another
protocol that utilizes the linear relationship between node ages esti-
mated with and without internal calibrations to detect the influential
calibrations. Therefore, the accuracy of influential calibration detec-
tion highly relies on the reliability of node times estimated with poor
calibrations. Since the ddBD tree prior performed better than the de-
fault flat tree prior for calibration-poor phylogenies in our simulated
and empirical phylogenies, it may enable better detection of outliers
and inconsistent calibrations.

Although analyses show that our method works well, many sour-
ces can potentially bias the results. The ddBD priors, phylogenetic
trees and the best-fit substitution models are all inferred from the
same multispecies alignment. Fortunately, ddBD can still improve
time estimates even when there are phylogeny errors and the
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substitution model used is not appropriate. More extensive simula-
tions are needed to confirm these early trends, but they are encour-
aging nonetheless. In the meantime, one may wish to choose a
relatively complex model in their analysis and embrace phylogenetic
uncertainty by estimating the tree prior for many phylogenies and
using it individually for phylogeny-specific dating use. Results from
all phylogenies can then be aggregated in the desired way to generate
the final timetree.

It is also important to note that our method does not guarantee
that one can recover the exact values for birth rate k, death rate l
and species fraction q, because many combinations of parameter
values can result in the same kernel densities (i.e. distribution of
node times) (Louca and Pennell, 2020; Stadler, 2009). The estimated
parameters work well because MCMCTree uses the parameters pro-
vided as input to generate a distribution of times internally. As long
as the three parameters recapitulate the approximate distribution of
node times, the tree prior will be informative and well-specified in
MCMCTree. Since the RRF approach adopted for generating the
distribution of node times relaxes the molecular clock, has a strong
theoretical foundation, and demonstrated high accuracy in various
simulated datasets (Tamura et al., 2018; Tao et al., 2020c), we ex-
pect the tree prior constructed to be effective and informative.

Our current method to estimate ddBD is focused on MCMCTree
because it is a fast Bayesian method that works well for large data-
sets. Since different software packages implement the BD model dif-
ferently, we plan to modify our method to suit other Bayesian dating
software [e.g. BEAST (Bouckaert et al., 2014)] in the future to pro-
vide a direct inference of parameter settings. Nevertheless, we expect
the benefits of using a ddBD tree prior may also exist for other
Bayesian software. Finally, our analyses did not explore phylogenet-
ic uncertainty because MCMCTree requires a fixed phylogenetic
topology in dating analysis.

5 Conclusions

We conclude that using an informative tree prior, derived directly
from the molecular phylogeny being subjected to relaxed clock anal-
yses, reduces the need to have many well-constrained calibrations to
obtain reliable time estimates. It shows improvement in the accuracy
and precision of divergence time estimation for calibration-poor
datasets. As the paucity of extensive fossil records for most taxo-
nomic groups is a key impediment in building the grand timetree of
life, the use of ddBD tree priors would enable the dating of the Tree
of Life with greater confidence and higher resolution, which would
have important implications for studies of diversification dynamics,
phylogeography and biogeography.
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