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Animal genomes are folded in topologically associating domains (TADs) that have been
linked to the regulation of the genes they contain by constraining regulatory interactions
between cis-regulatory elements and promoters. Therefore, TADs are proposed as
structural scaffolds for the establishment of regulatory landscapes (RLs). In this review,
we discuss recent advances in the connection between TADs and gene regulation, their
relationship with gene RLs and their dynamics during development and differentiation.
Moreover, we describe how restructuring TADs may lead to pathological conditions,
which explains their high evolutionary conservation, but at the same time it provides
a substrate for the emergence of evolutionary innovations that lay at the origin of
vertebrates and other phylogenetic clades.
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INTRODUCTION

In the last years, the development of chromosome conformation capture (3C) techniques, together
with remarkable advances in live cell imaging, have expanded our knowledge about the structural
organization of animal genomes (Lieberman-Aiden et al., 2009; McCord et al., 2020; Jerkovic’ and
Cavalli, 2021). 3C techniques consist of restriction enzyme digestion of crosslinked chromatin,
followed by proximity ligation to generate chimeric molecules that are interpreted as interactions
between two genomic regions (McCord et al., 2020). HiC is the genome-wide version of 3C
techniques and its increasing resolution has allowed to discern different levels of 3D folding at
different scales. At the megabases scale, gene-rich transcriptionally active regions tend to interact
among them, while gene-poor heterochromatic regions also interact more frequently, leading to
A and B compartments, respectively. At the sub-megabase scale, chromatin domains with high
interaction frequency and relatively isolated from neighbor regions form topologically associating
domains (TADs). Finally, below the scale of TADs, chromatin loops are formed by strong
interactions between specific genomic regions, i.e., CCCTC-binding factor (CTCF) and enhancer-
promoter loops (Bonev and Cavalli, 2016; Rada-Iglesias et al., 2018; Rowley and Corces, 2018).

Topologically associating domains are believed to facilitate interactions between cis-regulatory
elements (CREs) and their target promoters, which otherwise would not occur at enough frequency
to ensure a robust target gene expression (Galupa and Heard, 2017; Franke and Gomez-Skarmeta,
2018; Furlong and Levine, 2018). Therefore, TADs have been proposed as structural scaffolds for
regulatory landscapes (RLs; Acemel et al., 2017), which are defined as “large genomic regions
containing several long-range-acting regulatory sequences that control one or several target genes
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in a coordinated manner” (Spitz et al., 2003; Bolt and Duboule,
2020). However, whether TADs represent a privileged functional
level in the chromosome folding hierarchy has been challenged
by the increasing resolution of HiC assays that have uncovered
nested structures at the subTAD level with relative insulation
among them (Rao et al., 2014; Zhan et al., 2017; Hsieh et al.,
2020; Krietenstein et al., 2020). In this review, we discuss
the connections of the 3D genome with gene expression, the
relationship between TADs and RLs, and their dynamics in the
context of development, focusing on disease and evolution.

FORMATION OF TADs BY LOOP
EXTRUSION

TAD boundaries are enriched for the binding of CTCF (Phillips
and Corces, 2009; Dixon et al., 2012; Merkenschlager and
Nora, 2016), an 11-zinc-finger DNA binding protein that
was previously known by its role in transcriptional insulation
(Filippova et al., 1996; Bell et al., 1999). CTCF is distributed
throughout the genome not only at TAD boundaries, but also
at many other sites. However, its binding at boundaries has
preference for a specific orientation, with its DNA binding
motifs often positioned in convergent orientation between the
two boundaries that define a TAD (Rao et al., 2014). CTCF
co-localizes and determines the presence at TAD boundaries
of the cohesin complex, which is also involved in establishing
chromosomal interactions (Parelho et al., 2008; Hadjur et al.,
2009). These latter observations led to the proposal of the so
called “loop extrusion” model for TAD formation involving
cohesin and CTCF (de Wit et al., 2015; Sanborn et al.,
2015; Fudenberg et al., 2016). According to this model, TADs
would arise by chromatin extrusion mediated by cohesin and
counteracted by CTCF-mediated insulation, thus explaining both
the increased interaction frequency within TADs and their
relative insulation from neighbor TADs. Indeed, a recent study
has shown that the N-terminal domain of CTCF is essential
for blocking cohesin translocation from the interior of TADs,
providing a molecular basis for the requirement of a specific
binding polarity of CTCF for chromosome folding (Nora et al.,
2020). The predictions of this model of TAD formation have
been corroborated by the acute depletion of cohesin and CTCF
in mammalian cells, which shows loss of chromatin loops
and TAD insulation (Nora et al., 2017; Rao et al., 2017), as
well as the depletion of factors regulating cohesin loading on
chromatin, which leads to differences in the length of loops
formed (Busslinger et al., 2017; Haarhuis et al., 2017; Schwarzer
et al., 2017; Wutz et al., 2017).

REGULATORY LANDSCAPES AND
CHROMATIN STRUCTURE

Regulatory landscapes contain CREs that control the expression
of their target genes (Bolt and Duboule, 2020). Different
mechanisms have been proposed to explain the transcriptional
control mediated by CREs: tracking, which implies that the

RNA polymerase II would bind to enhancers and track along
chromatin synthesizing RNA until it reaches the promoter;
linking, where transcription factors (TFs) would oligomerize
from the enhancer to the promoter; or looping, in which factors
bound to both sides of the loop (enhancer and promoter) would
interact with each other (Furlong and Levine, 2018). The latter
mechanism is widely accepted and would be favored by CTCF-
and cohesin-dependent chromatin folding and promoted by
mediator and TFs as Yin Yang 1, a zinc-finger DNA binding
protein that form dimers similarly to CTCF and anchors
enhancer-promoter interactions (Kagey et al., 2010; Dowen et al.,
2014; Weintraub et al., 2017). Direct evidence of the functionality
of enhancer-promoter looping comes from studies in the β-
globin locus, where forcing these interactions by artificial zinc
fingers leads to gene activation (Deng et al., 2014).

An interesting feature of vertebrate RLs is that enhancers
are broadly distributed throughout them and not in a gene-
centric manner (Symmons et al., 2014). Indeed, the RLs of
developmental genes, such as those encoding for lineage-
specific TFs or signaling molecules, are characterized by their
large sizes and the abundance of enhancers that confer tissue-
specific expression to their target genes, thus explaining their
common pleiotropy (Bolt and Duboule, 2020). How do enhancers
regulate only their target genes? This may be explained in
part by the coincidence of RLs coordinates with those of
TADs (Symmons et al., 2014). According to this observation,
RLs would be confined within TADs and TAD boundaries
would correspond to transitions of regulatory domains, therefore
ensuring the contact of enhancers with the appropriate target
genes and avoiding promiscuous interference with genes located
in neighbor domains (see below). However, restriction of RLs
within TADs is not enough for gene activation and other
mechanisms may influence the outcome of enhancer-promoter
contacts (Serebreni and Stark, 2021), including phase separation,
which refers to local microenvironments resulting from weak
multivalent interactions that concentrate some factors and
exclude others (Banani et al., 2017), and enhancer-promoter
compatibility (see below).

The RL of the Shh gene, encoding an important morphogen
involved in the patterning of the developing neural tube and
limb buds, is one of the best studied cases in vertebrates.
This gene is located within an evolutionary conserved TAD
of around 1 Mb in size that contains other non-related genes
and multiple tissue-specific enhancers (Lettice et al., 2003;
Sagai et al., 2005, 2009; Jeong et al., 2006). In particular, the
enhancer known as ZRS [zone of polarizing activity (ZPA)
regulatory sequence] is responsible for Shh expression in the
limb bud and is located around 900-kb away, in the intron
5 of the Lmbr1 gene (Lettice et al., 2003). Disruption of the
ZRS sequence in mice causes loss of limbs, while in humans
point mutations cause preaxial polydactyly (Sagai et al., 2005).
Other paradigmatic examples of vertebrate RLs are the loci
containing the HoxD and HoxA gene clusters, homeobox genes
that are largely responsible for the patterning of several body
structures including limbs. These clusters are located between
two adjacent TADs that compartmentalize long-range regulatory
interactions in two blocks at the spatial and temporal levels
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(Lonfat and Duboule, 2015). Thus, enhancers in the 3′ TAD
preferentially contact “anterior” Hox genes, while enhancers
in the 5′ TAD mostly interact with “posterior” Hox genes
(Lonfat et al., 2014). In addition, a switch in the interactions
of central genes explains a sequential transition between
two regulatory phases (Andrey et al., 2013). The regulatory
activity of these enhancers is therefore combined to generate
the collinearity of Hox genes. Apart from these well-known
examples, other cases have been studied and recently reviewed
(Bolt and Duboule, 2020).

THE LINK BETWEEN CHROMATIN
STRUCTURE AND FUNCTION

The relationship between TADs and gene expression remains
an issue of open debate due to apparent discrepancies between
different approaches. Studies analyzing structural variations
encompassing TAD boundaries have provided strong links
between the chromatin architecture of particular loci and the
expression of the nearby developmental genes, which become
miss-expressed causing developmental abnormalities (Spielmann
et al., 2018; Ibrahim and Mundlos, 2020). Although the adoption
of enhancers by genes that were not previously in contact
with them explains some of these phenotypes (Lupiáñez et al.,
2015; Franke et al., 2016), this is not always the case (Laugsch
et al., 2019) and the effects of structural variations on gene
expression are context-specific (Figure 1A), which suggests
that additional mechanisms may be involved. Indeed, fusion of
neighbor TADs by boundary removal at the Sox9-Kcnj2 locus
does not result in major effects on gene expression (Despang
et al., 2019). A study in Drosophila using highly rearranged
balancer chromosomes concluded that TAD rearrangements did
not result in altered expression of most genes (Ghavi-Helm
et al., 2019). In agreement with this, the works describing
alterations in chromatin structure and boundary deletions in
the Shh locus show minor consequences on Shh expression
not leading to developmental phenotypes (Paliou et al., 2019;
Williamson et al., 2019).

The absence of transcriptional effects observed in some
cases of TAD disruption may be explained by the lack of
compatibility between enhancers and promoters. In this sense,
it has been reported that transcriptional cofactors are able to
activate only specific core promoters (Haberle et al., 2019),
and that a particular group of highly conserved developmental
enhancers, known as poised enhancers, contain CpG islands
and are able to activate only developmental promoters also
harboring CpG islands (Pachano et al., 2020). Moreover, it has
been shown that enhancers within genomic regulatory blocks,
which are regions containing a number of highly conserved non-
coding elements, only activate particular target genes and not
syntenic bystander genes (Akalin et al., 2009). While target genes
commonly encode for developmental TFs and have promoters
showing long CpG islands and multiple TF motifs, bystander
genes often encode for proteins involved in unrelated functions,
have different expression patterns and contain promoters with
short CpG islands and few TF motifs. These observations

indicate that enhancer-promoter compatibility mechanisms may
determine the consequences of TAD restructuring at the
transcriptional level.

On the other hand, several studies have attempted to remove
architectural proteins and assess the effects of their loss genome
wide. In this sense, the acute depletion of cohesin or CTCF in
mammalian cells shows only a moderate effect in gene expression,
affecting from some hundreds to few thousands of genes in
different systems (Nora et al., 2017; Rao et al., 2017; Kubo
et al., 2021). These studies have been limited in vivo due to the
essential nature of cohesin and CTCF (Moore et al., 2012; Ju
et al., 2013); however, this limitation was recently overcome by
generating zebrafish ctcf knock-out embryos (Franke et al., 2020).
In these embryos, a prolonged maternal contribution allows the
survival of the mutant embryos until larval stages, when the
absence of CTCF results in the miss-regulation of thousands of
genes enriched in developmental functions (Franke et al., 2020).
Although part of the effects seen in CTCF depletion or knock-
out approaches may be indirect due to CTCF function as a
TF, a subset of chromatin interactions involving lineage-specific
genes change upon CTCF loss (Kubo et al., 2021). These data
suggest that chromatin architecture might not be essential for the
expression of most genes, but instead provide robustness to the
expression of developmental genes that are frequently regulated
by many CREs within complex RLs.

CHROMATIN STRUCTURE DYNAMICS
DURING DEVELOPMENT AND
DIFFERENTIATION

An important question in the field of chromatin structure is
how variable are TADs during dynamic processes, including
embryonic development or cell differentiation. Studies of
chromatin structure during animal early development have
revealed a phase in which TADs become undetectable followed
by a progressive reestablishment of chromatin folding (van der
Weide and de Wit, 2019). However, there are some differences
between species regarding when this phase happens in relation
to the zygotic genome activation (ZGA). While in mammals
the period without detectable chromatin structure takes place
before the ZGA, with structure being progressively reestablished
from there (Du et al., 2017; Gassler et al., 2017; Chen et al.,
2019), similar to Drosophila (Hug et al., 2017), in zebrafish and
medaka embryos it occurs during the ZGA and persist after it,
being reestablished mostly during gastrulation (Kaaij et al., 2018;
Nakamura et al., 2018), but there are observed discrepancies
regarding the existence of chromatin structure before the ZGA
in zebrafish (Kaaij et al., 2018; Wike et al., 2021). Although once
formed, TADs seem to be very stable at later developmental
stages, little is known about the correlation of these structures
with progressive changes in gene expression.

Several studies have reported that TADs are largely stable
when compared between embryonic stem cells and differentiated
cells (Dixon et al., 2012, 2015; Nora et al., 2012). Consistent
with this observation, a recent study has shown that chromatin
structure in Drosophila embryos is preserved in different
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FIGURE 1 | Phenotypical outputs of regulatory landscapes rearrangements. (A) Similar rearrangements may lead to very different situations. In the two examples
illustrated in this panel, the fusion of two adjacent TADs produces no detectable phenotype in the case of the Kcnj2/Sox9 locus (Despang et al., 2019), and a striking
polydactylia phenotype in the case of the Ihh/Eph4a locus (Lupiáñez et al., 2015). (B) TAD restructuring can generate evolutionary innovations by gaining new
regulatory inputs or by increasing regulatory complexity. An example is the splitting of the HoxD and HoxA ancestral TAD found in non-vertebrate chordates in two
TADs that are vertebrate-specific and could favor the emergence of vertebrate appendages (Acemel et al., 2016). Black arrows, genes; colored rectangles,
enhancers; colored arrows, productive enhancer-promoter interactions; dashed arrows, unproductive enhancer-promoter interactions; purple ellipses,
TAD boundaries.

embryonic tissues despite lineage-specific gene expression (Ing-
Simmons et al., 2021). However, another report showed a
high variability of TAD boundaries across 37 human cell types
(McArthur and Capra, 2021). It is worth noting that these
apparent discrepancies might be explained either by the different
biological systems used or by different resolutions in HiC
experiments, as well as different computational methods to call
TADs or TAD boundaries. At lower resolutions than TADs,
it was shown that variations in intra-TAD contacts during
mammalian differentiation corresponded with switches between
active and inactive chromatin modifications and gene expression

(Dixon et al., 2015). Indeed, enhancer-promoter interactions
are highly dynamic and cell-type-specific during neural and
erythroid differentiation, accompanying the activation of lineage-
specific genes (Bonev et al., 2017; Oudelaar et al., 2020;
Kubo et al., 2021). However, enhancer-promoter interactions
are stably formed before gene activation in other contexts.
Indeed, poised enhancers required for the activation of anterior
neural genes are already engaged in contacts with their target
genes in mESCs in a polycomb repressive complex 2-dependent
manner (Cruz-Molina et al., 2017). However, enhancer-promoter
loops in Drosophila precede target gene transcription and
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even TAD formation, being associated with paused RNA
polymerase (Ghavi-Helm et al., 2014; Espinola et al., 2021). These
observations suggest that the dynamics or stability of TADs and
enhancer-promoter loops are highly context-specific, some of
them being stable and others being dynamically regulated during
development and differentiation.

ALTERATIONS OF THE 3D GENOME
ASSOCIATED WITH DISEASE

Strong evidence for the importance of genome architecture
for correct gene expression comes from studies showing that
the disruption of 3D structure in particular loci, either by
genomic rearrangements or alterations in TAD boundaries, lead
to pathological situations, including developmental disorders
or cancer (Ibrahim and Mundlos, 2020). A number of cases
reported in the last years have provided a link between
structural variations and disease. At the Epha4 locus, deletions,
duplications and inversions disrupting TAD structure cause
several limb malformations, including brachydactyly, polydactyly
and F-syndrome, due to de novo enhancer-promoter interactions
that lead to gene miss-expression of the surrounding genes
Wnt6, Ihh and Pax3 (Figure 1A; Lupiáñez et al., 2015). At the
Sox9 locus, duplications encompassing the neighbor Kcnj2 gene
lead to the formation of a “neo-TAD” in which Kcnj2 is miss-
regulated by interactions with new enhancers, leading to a limb
malformation phenotype known as Cooks syndrome (Franke
et al., 2016). A similar situation has been reported in the locus
of GDPD1 gene in autosomal-dominant retinitis pigmentosa,
caused by a rearrangement that place a TAD border and several
retinal enhancers within this locus. This generates a “neo-TAD”
and new contacts between the retinal enhancers and GDPD1
gene, which is overexpressed and likely contributes to the disease
(de Bruijn et al., 2020). Finally, inversions at the TFAP2A locus
in branchiooculofacial syndrome patients have been shown to
disconnect this gene from its neural crest-specific enhancers,
leading to its reduced expression and explaining the patient’s
phenotype (Laugsch et al., 2019).

Genomic rearrangements can also lead to the fusion of genes
that become overexpressed and function as oncogenes. This is
the case of chromosomal translocations fusing the genes PAX3
and FOXO1 in alveolar rhabdomyosarcoma, which result in the
fusion of both RLs and the activation of transcription from PAX3
promoter by enhancers from the FOXO1 RL (Vicente-Garcia
et al., 2017). At larger scales, it has been found that higher
order chromatin-folding structures can modulate interactions
between different loci spanning several megabases in a highly
aggressive type of squamous cell carcinoma (Alekseyenko et al.,
2015; Rosencrance et al., 2020). The appearance of these
interactions, called “megadomains,” responds to the formation
of large regions of hyperacetylated chromatin due to the
BRD4-NUT fusion oncoprotein. These fusions are generated
by genomic translocations, usually between genes like BRD4 or
BRD3 and NUT, which recruits the histone acetyltransferase
p300 leading to hyperacetylated regions of up to 2 Mb. Both
intra- and interdomain interactions are up-regulated, as well as

the expression of the oncogenes SOX2, TP63 and MYC, which
eventually contribute to tumorigenesis (Alekseyenko et al., 2015;
Rosencrance et al., 2020; Eagen and French, 2021).

Apart from genomic rearrangements, alterations of TAD
boundaries have also been linked to disease. The analyses of copy-
number variants involving TAD boundary deletions revealed
that a substantial proportion of cases could be explained by
enhancer adoption (Ibn-Salem et al., 2014). In a recent work,
CTCF binding sites surrounding the well-known ZRS enhancer
of the Shh gene (see above) were removed by CRISPR-mediated
genome editing in mice. Strikingly, the lack of these CTCF
binding sites reduced the interaction between ZRS and Shh
promoter, as well as the expression of the latter (Paliou et al.,
2019). Nevertheless, this does not lead to a clear phenotype
in these mice unless a hypomorphic allele of the ZRS is
used, suggesting that chromatin structure provides robustness
but does not determine enhancer-promoter communication.
Indeed, a recent study from The Cancer Genome Atlas showed
that only 14% of cancer-associated TAD boundary deletions
resulted in significant changes in expression of the nearby genes
(Akdemir et al., 2020). Moreover, mutations in CTCF binding
sites have been frequently found in cancer (Katainen et al.,
2015), which might lead to miss-expression of nearby genes
causing tumorigenesis. Indeed, the disruption of boundaries
demarcating insulated neighborhoods, which are chromatin
domains smaller in size than TADs, leads to aberrant activation
of proto-oncogenes, such as TAL1 and LMO2 associated with
T-cell acute lymphoblastic leukemia (Hnisz et al., 2016). In
the opposite situation, the overexpression of the Neurotensin
gene NTS, a central nervous system neurotransmitter, has been
recently related with melanomas due to a gained CTCF-mediated
chromatin loop that establish contacts between theNTS promoter
and a CRE in the intron of the LRRIQ1 gene located 800 Kb away
(Chai et al., 2021).

It is worth to remark that mutations in the coding sequence or
miss-expression of architectural proteins, i.e., cohesin and CTCF,
can lead to a wide set of human pathological phenotypes (Singh
and Gerton, 2015). For example, somatic mutations in cohesin
have been associated with different forms of cancer (Mullenders
et al., 2015; Fisher et al., 2017; Carico et al., 2021), which is also
related to the important role of cohesin in the separation of sister
chromatids during cell division (Nasmyth and Haering, 2009).
In addition, CTCF has been proposed as a tumor suppressor
gene, since mutations in its coding sequence have also been
detected in different types of cancer (Filippova et al., 2002).
Interestingly, different missense mutations affected specific zinc-
finger domains, leading to defects in the binding to the promoters
of a subset of genes involved in the regulation of proliferation, but
not to others. Therefore, both cohesin and CTCF play an essential
role in gene regulation that prevents pathological situations.

CONSERVATION OF TADs ACROSS
GENOME EVOLUTION

Several studies comparing chromatin structure in diverse species
have reached the conclusion that TADs and their boundaries
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are largely conserved in animal genomes. The first HiC data
comparing TADs in human and mouse cells found a general
conservation of their boundaries (Dixon et al., 2012) and an
in-depth analysis of conservation in mammals revealed that
conserved TAD boundaries were associated with conserved
CTCF sites, while divergent CTCF sites correlated with
divergence of chromatin structure (Vietri Rudan et al., 2015).
Indeed, CTCF binding at TAD boundaries is highly clustered
and these sites are subjected to stronger selective constrains than
other CTCF sites among closely related species (Kentepozidou
et al., 2020; McArthur and Capra, 2021). Therefore, the strong
selection against disruption of TAD boundaries in evolution
is likely responsible for their enrichment in rearrangement
breakpoints in vertebrates, being reshuffled as whole blocks
during evolution (Krefting et al., 2018). A clear case of this
conservation is the boundary splitting the RLs of the Six
genes, which is conserved not only in vertebrates but also
in echinoderms, illustrating the deep conservation of TADs
involving important developmental genes (Gomez-Marin et al.,
2015). Finally, studies analyzing highly conserved gene regulatory
blocks, which are clusters of conserved non-coding elements
around important developmental regulators, have revealed that
a subset of TADs exhibit extreme non-coding conservation
across metazoans (Harmston et al., 2017). Therefore, TADs
involving developmental genes represent evolutionary conserved
chromatin domains likely because they provide a scaffold for
developmental RLs.

TAD RESHUFFLING UNDERLIES THE
EMERGENCE OF EVOLUTIONARY
NOVELTIES

As commented above, genomic rearrangements involving TAD
restructuring and the associated alterations in gene expression
usually entail deleterious effects. Nevertheless, they also provide
a substrate for evolution and changes in genome structure may
result in the gain of new functions that underlie the appearance
of evolutionary novelties during species evolution (Maeso et al.,
2017; Figure 1B). This has probably been the case with the
emergence of limbs in vertebrates, for which the restructuring
of TADs at the HoxA and HoxD loci has been essential. As
can be inferred from slow evolving, non-vertebrate animals like
amphioxus, the ancestral Hox locus was organized in a single
TAD encompassing all Hox genes and the enhancers regulating
their expression. However, at the origin of vertebrates this TAD
was split in two located at either sides of the cluster and separating
some genes from the rest, while leaving some others in the
hinge between both TADs (Figure 1B; Acemel et al., 2016). This
organization allowed the spatial and temporal segregation of
regulatory inputs that explains the collinearity of the HOX genes
(see above; Andrey et al., 2013; Lonfat et al., 2014) and likely
enabled the plasticity in the usage of the Hox patterning system
that was essential for vertebrate evolutionary novelties such as
the development of paired appendages. On the other hand, the
gnathostome-specific expression of Shh in the limbs was shown
to be originated between the two whole-genome duplications by

a translocation that linked the RL of that gene with Lmbr1 (Irimia
et al., 2012). Then, the ZRS enhancer could emerge in the intron 5
of Lmbr1, being critical for the emergence of paired and unpaired
appendages (Letelier et al., 2018a).

Apart from TAD restructuring early in the evolution of
vertebrates, other cases have been documented when comparing
relatively close species. Thus, the regulatory cluster formed
by rac3b, rfng and sgca genes emerged at the origin of the
Ostariophysi fish superorder by a genomic rearrangement that
brought in contact the RLs of rac3b/rfng and sgca, which are
separated in Actinopterygii and tetrapods (Letelier et al., 2018b).
Such rearrangement led to the formation of new regulatory
contacts between rac3b and rfng promoters and the ancestral
sgca RL, which was responsible to direct its expression to the
hindbrain boundaries. These new regulatory interactions resulted
in the co-option (which refers to the redeployment of pre-
existing genetic or regulatory mechanisms for the acquisition
of new functions or expression domains) of rac3b and rfng
in the rhombomeres margins, thus promoting the formation
of actomyosin cables characteristic of these structures (Letelier
et al., 2018b). Moreover, it has been found that human brain
tissue shows a subset of species-specific TADs compared with
macaques that are associated with human-specific expression
changes that are likely responsible of the higher complexity of the
human brain (Luo et al., 2021). Similarly, interspecies differences
in chromatin structure between human and chimpanzees are
commonly associated with differences in gene expression (Eres
et al., 2019). These differences between phylogenetically related
species have also been discovered in two different species of
Drosophila genus, D. melanogaster and D. triauraria. Only
25% of the TADs are orthologous between both species, and
importantly these genomic rearrangements could be related
with changes in gene expression (Torosin et al., 2020). These
findings support the hypothesis that reorganization of genomic
3D structure may act as an important force in the rise of
evolutionary novelties.

CONCLUDING REMARKS

Although the recent technological advances have allowed an
increasingly detailed understanding of the 3D organization of
the genome, many questions remain unanswered. How CREs
operate within the context of TADs over their target genes
in a mechanistic level remains incompletely understood, and
to what extent the alterations of TADs lead to gene miss-
expression is still an open debate. Moreover, our knowledge of
how the restructuring of TADs leads to evolutionary innovations
is limited to a few reported examples and the scarce availability
of genome-wide chromosome conformation experiments in
different species limits the comparative analyses of the 3D
genome from an evolutionary perspective. Finally, the increasing
applicability of the single cell technologies to chromosome
conformation experiments will hopefully make possible to
discern between chromatin structure in particular cell types and
its association with cell type-specific gene expression during
development and differentiation.
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