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Background. The computational identification of functional transcription factor binding sites (TFBSs) remains a major challenge of
computational biology. Results. We have analyzed the conserved promoter sequences for the complete set of human RefSeq genes
using our conserved transcription factor binding site (CONFAC) software. CONFAC identified 16296 human-mouse ortholog
gene pairs, and of those pairs, 9107 genes contained conserved TFBS in the 3 kb proximal promoter and first intron. To attempt to
predict in vivo occupancy of transcription factor binding sites, we developed a novel marginal effect isolator algorithm that builds
upon Bayesian methods for multigroup TFBS filtering and predicted the in vivo occupancy of two transcription factors with an
overall accuracy of 84%. Conclusion. Our analyses show that integration of chromatin immunoprecipitation data with conserved
TFBS analysis can be used to generate accurate predictions of functional TFBS. They also show that TFBS cooccurrence can be
used to predict transcription factor binding to promoters in vivo.
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1. Background

One of the important challenges in computational biology
is the accurate prediction of functional transcription factor
binding sites (TFBSs). A primary reason that accurate
prediction of relevant TFBS remains difficult is due to the
short (6-12bp) degenerate motifs represented as position
weight matrices (PWMs) that match high numbers of false
positives in genomic sequences. We previously described
the conserved transcription factor binding site (CONFAC)
software that uses a comparative genomic approach to iden-
tify evolutionarily conserved and statistically overrepresented
TFBS [1]. The use of comparative genomics to identify
functional TFBS [2-9] is based on the hypothesis that
functional noncoding genomic sequences are more highly
conserved during evolution than nonfunctional TEBS.

Here we have applied the CONFAC analysis to the
complete set of 21222 RefSeq transcripts identified in the
Human Genome. We mined our conserved TFBS data in
combination with public in vivo occupancy data [10] using
Bayesian methods to determine the sequence contexts that

influence binding of the HNF1 and HNF4 transcription
factors. We predicted the binding of HNF1 and HNF4 to
promoters in human pancreatic islet cells and hepatocytes in
an independent test set of 1349 genes with 84% accuracy.

2. Results

We have applied CONFAC to the complete set of 21222
publicly available human RefSeq transcripts. CONFAC works
by identifying the conserved sequences in the 3 kb proximal
promoter region and first intron of human-mouse ortholog
gene pairs and then identifying TFBS, defined by position
weight matrices from the MATCH software [11], that are
conserved between the two species [1]. Conserved sequence
is defined as that which is aligned between the human and
mouse genomes by pairwise BLAST of the 3kb upstream
and first intron. Thus, those sequences are not necessarily
aligned within the global human-mouse genome alignment.
CONFAC then identifies within those conserved sequences
the TFBS that fall within a 25bp window of each other
in the human- and mouse-conserved sequences. The cutoff
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threshold parameters for core similarity score (CSS) and
matrix similarity score (MSS) used were 0.85 and 0.75,
respectively. The TFBSs that meet these criteria are defined
here as conserved TFBSs. Of the 21222 available human Ref-
Seq transcripts, CONFAC identified 16296 human-mouse
ortholog gene pairs, and of those pairs, 9107 genes contained
conserved TFBS in their promoter regions. We observed
conserved TFBS for 310 position weight matrices (PWMs)
from this initial analysis. The result was a 9107-gene by 310-
TFBS table in which each element represented the number
of conserved occurrences of each TFBS in the promoter
of each gene. The complete dataset from this analysis is
provided in the supplementary material (see additional file 2:
SuppTableS1.txt for the complete dataset available online at
doi:10.1155/2008/369830), and is also available on our web-
site (http://morenolab.whitehead.emory.edu/pubs/Refseq/).

2.1. In Vivo Occupancy Predictions

We sought to develop methods to enable integration of
in vivo occupancy data from ChIP-chip studies with our
genomic CONFAC TEBS analysis to determine what TFBS
patterns might improve computational prediction that a
TEBS would be bound in vivo. Towards this end, we utilized
publicly available ChIP-chip data on HNF4 and HNF1 [10]
to analyze the patterns of TFBS identified by CONFAC. We
classified the genes from this dataset into seven groups: those
(1) bound by HNFI in hepatocytes, (2) bound by HNF1
in pancreatic islets, (3) bound by HNF1 in both tissues,
(4) bound by HNF4 in hepatocytes, (5) bound by HNF4 in
pancreatic islets, (6) bound by HNF4 in both tissues, and (7)
unbound genes. The public in vivo occupancy data for HNF1
and HNF4 [10] on 13046 genes was cross-referenced with the
9107 genes containing conserved TFBS. A total of 6683 genes
were present on the ChIP-chip microarray and had conserved
TFBS data using CONFAC. This set of 6683 genes was
used for further analysis. CONFAC uses a pairwise-BLAST
method for generation of conserved sequence alignments
between promoters of human-mouse ortholog pairs. This
approach allows for local alignments as opposed to global
genome alignments. However, one limitation is that if no
significant alignment is found, there is no sequence to
analyze for TFBS, no matter what parameters for core and
matrix similarity are utilized. Complete data on conserved
TFBS for each of the seven groups analyzed are available
in the supplementary material (see Additional Files 3-9:
Supplementary Tables S2-S8). To ensure that our TFBS data
was not skewed by differences in GC-content, we examined
the %GC content of the conserved promoter sequences in
each of the seven groups of genes, and found that each
group had a similar %GC content in its conserved promoter
sequences (Figure 1).

Previous studies have utilized Bayesian methods to
identify TFBS combinations that might be predictive of gene
expression patterns [12]. For our analysis, we employed the
Bayesian Analysis for Microarrays (BAMarray) software [13].
We used BAM to generate pattern-specific lists of significant
TFBS where each pattern type corresponded to each of the
seven groups of genes described above. This dataset has
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FIGURE 1: %GC content of the conserved promoter sequences in
each of the seven groups considered. Plotted are the mean and
standard deviation of the %GC in each promoter set. Although
there is slightly higher GC content in the HNF4-bound groups, no
statistically significant GC bias was observed for any of the groups
analyzed for patterns of conserved TFBS.

been mined in other studies using multivariate adaptive
regression splines to identify cooccurring TFBS pairs that
correlated with expression patterns and localization data
[14]. However, these earlier analyses identified patterns
correlated with occupancy, and did not attempt to predict
whether a promoter was occupied or unoccupied in a blinded
fashion. Moreover, BAM estimates are model-averaged, and
have been shown to have lower mean squared error than
competing nonmodel-averaged estimates [15], thus resulting
in more reproducible TFBS pattern sets.

We trained the BAMarray software using 80% of the
genes that fell into each of these seven groups and then used
the marginal effect isolation (MEI) method to predict the
remaining 1349 (or 20%) of the genes (Table 1) as described
in the Methods section. Self-consistency of predictions on the
training set is shown in Table 2. The end result is a clearer
understanding of the biological underpinnings of how TFBSs
are able to separate the above gene groupings. Because the
complete absence of a given TFBS in any of the seven gene
types creates a spuriously large and falsely significant Z-score
for a given class, we prefiltered the TFBS data to eliminate
those that had zero occurrences in any given gene group.
BAMarray analysis was then performed on the 216 TFBS that
remained after the prefiltering step. Using this approach, we
found that the presence of E2FDP1 sites positively influenced
the binding of HNF4 in pancreatic islets, while the presence
of HNF3 and homeobox sites negatively influenced HNF4
binding. In addition, we found that pairs of HNF4 sites
and cooccurring HNF4 and HNF6 sites negatively influence
HNFI1 binding. A summary of the gene predictions using
this method is provided in Table 1. Our analysis of the data
produced 1134 correct predictions, or 84% correct (P <
.0005).

It must be noted that if 100% of the genes were predicted
to be unbound, we would have achieved 77% accuracy.
However, all of the misclassifications are between the various
bound genes and the unbound class, that is, there are
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TaBLE 1: Prediction of in vivo occupancy by HNF1 and HNF4. Data from ChIP-chip studies (3) were integrated with CONFAC TFBS data
and genes were separated randomly into training and test sets. The BAM MEI classifier was applied to the independent test set of 1349 genes
to predict which class each gene belonged based on the TFBS patterns that were predictive of occupancy.

Predicted
Observed ~ HNF1both HNF1hep HNF1panc HNF4both HNF4hep HNF4panc Unbound Total (obs) Sensitivity
HNF1 both 5 0 0 0 0 0 3 8 63%
HNF1 hep 0 0 0 0 0 0 23 23 0%
HNF1 panc 0 0 3 0 0 0 7 10 30%
HNF4 both 0 0 0 35 0 0 54 89 39%
HNF4 hep 0 0 0 0 14 0 70 84 17%
HNF4 panc 0 0 0 0 41 45 86 48%
Unbound 0 0 0 6 2 1036 1049 99%
total (pred) 5 0 3 41 19 43 1238 1349
Specificity 100% NA 100% 85% 74% 95% 84%

no bound genes that were misclassified into other bound
categories. Thus, if we excluded genes that were predicted
to be unbound, we achieved 98/98 correct predictions.
Thus, our estimated false positive rate was zero for bound
genes. However, our estimated false negative rate (ie.,
predicted unbound genes/total bound genes) was 202/300
or 67%. Thus, while our estimated specificity for bound
genes was excellent, our estimated sensitivity (33%) was
fairly low. Most difficult to predict were genes bound only
in hepatocytes by HNF1 or HNF4, which may be due to
influences of newly identified TFBS [16] not included in this
analysis, post-translational modifications of HNF1 and/or
HNF4, or epigenetic alterations in chromatin structure that
differ between pancreatic islets and hepatocytes. Another
reason for the low sensitivity is that the vast majority of
significant associations of TFBS with HNF1 and HNF4
binding were negative correlations, that is, those factors were
not likely to bind to promoters containing the significant
TEBS.

2.2. Ten-Fold Repeated Holdout Training-Test
Set Validation

To validate the rules identified by BAMarray analysis of the
TEBS patterns, we performed a ten-fold repeated holdout
validation of the data. Each group was randomly sampled
ten times to split into training and test sets containing 80%
or 20% of the data, respectively. Training was performed
on a training set of 80% of the genes and prediction
was then performed on the remaining test set of 20%
of the genes using the ten independent random splits of
the data. We expected the BAMarray filtering to be very
reproducible according to [17, Theorem 3 and Corollary
1]. The theory indicates that differentially associated factors
should be found with probability going to 1 at a rate inversely
proportional to the group sample sizes. The outcome of this
cross-validation is summarized in Table 4, and the detailed
results are given in Supplementary Tables 1-8 (see additional
files 10-16: SuppTableS9-S15). In general, the results of the
ten random splits of the data were very reproducible, with

dozens of sites repeatedly significant in over 50% of the
analyses, and many results were reproduced in 100% of the
ten random splits. Of great interest was the fact that families
of similar TFBS were repeatedly negatively associated with
binding of HNF1 or HNF4 in the six classes that we selected
(Table 3). For example, V$E2F1, VSE2F1DP2, V$E2F1DPI,
V$E2F4DP2, VS$E2F1DPIRB, and V$E2F4DP1 were all
negatively associated with HNF1 binding in pancreatic islets.
In addition, NF«B sites were negatively associated with the
three classes of promoters associated with HNF1 binding,
while FOX and Homeobox sites were negatively associated
with the three classes of promoters associated with HNF4
binding.

To get a better handle on the stability of MEI classi-
fication portion of the analysis, we repeated the splitting
of the dataset into training and test components 25 times
(with the same 80-20 proportions each time). For the MEI
classifier, the average total misclassification rate over the 25
splits was 0.1666 with a standard deviation of 0.007. Thus,
the overall accuracy over the 25 splits was 83% =+ 0.7%. The
average false positive rate for bound genes was 0.0099 with a
standard deviation of 0.0062. The predictions for each group
of genes are summarized in Table 4. Taken as a whole, this
repeated splitting exercise indicates that the results presented
are highly reproducible.

2.3. Contribution of the Large Unbound Class

To gauge the effect of the large unbound class on our
sensitivity and false positive rates, we repeated the training
and testing of an 8020 split of the data, this time using only
the six bound classes of genes. The results of this classification
are shown in Table 5. In general, the maximum false positive
rate observed for any class was 16% (HNF4 bound genes
in pancreas), and the average false positive rate was 6%.
Sensitivity for the six classes ranged from 84% to 100%, while
specificity ranged from 95% to 100%. Overall accuracy of
the predictions improved to 86% when the unbound class
was removed from the dataset. These data suggest that the
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TaBLE 2: Training set self-consistency performance. Data from ChIP-chip studies (3) were integrated with CONFAC TFBS data and genes
were separated randomly into training and test sets. The BAM MEI classifier was trained on the training set of 5399 genes and predictions
were made on this same set of genes.

Predicted
Observed ~ HNF1both HNF1hep HNF1panc HNF4both HNF4hep HNF4panc Unbound Total (obs) Sensitivity
HNF1 both 10 0 0 0 0 0 4 14 71%
HNF1 hep 0 4 0 0 0 0 74 78 5%
HNF1 panc 0 0 10 0 0 0 14 24 41%
HNF4 both 0 0 0 130 0 0 142 272 48%
HNF4 hep 0 0 0 0 88 0 295 383 23%
HNF4 panc 0 0 0 0 0 181 159 340 53%
Unbound 0 0 0 6 5 2 4249 4262 99%
total (pred) 10 4 10 136 93 183 4937 5373
Specificity 100% NA 100% 89% 85% 96% 86%

TABLE 3: Rules associated with HNF1 and HNF4 binding identified by 10-fold cross-validation of BAMarray analysis.

TFBS family Negative association Positive association
E2F HNF1-pancreas HNF4 binding
ETS HNF1-both None

MAF HNF1-hepatocytes None

NFxB HNF1-any None
Homeobox HNF4-pancreas None
SOX/TCF HNF4-both None
Homeobox HNF4-hepatocytes None
FOX/Homeobox HNF4-any None

TABLE 4: Summary of MEI predictions from 25 splits of training and test sets. “NA” means that cell could not be calculated for all splits.
Otherwise, the means and sd’s were calculated from those splits without NA’s.

Group Mean sensitivity (sd) Mean specificity (sd)
HNF1Both 252 (.152) 1(0)
HNF1Hep 0(0) NA
HNF1Panc .352 (.102) 1(0)
HNF4Both 388 (.083) 840 (.023)
HNF4Hep 130 (.041) 486 (.201)
HNF4Panc 430 (.047) 1940 (.070)
Unbound 1982 (.008) 838 (.004)

TaBLE 5: Prediction of in vivo occupancy by HNF1 and HNF4 by BAM MEI analysis after removal of the unbound class from the analysis.

Predicted

observed HNF1 both HNF1 hep HNF1 panc HNF4 both HNF4 hep HNF4 panc Total (obs) Sensitivity
HNF1 both 3 0 0 0 0 0 3 100%
HNF1 hep 0 12 0 0 4 2 18 100%
HNF1 panc 0 0 6 1 2 0 9 100%
HNF4 both 0 0 0 66 3 7 76 93%
HNF4 hep 0 0 0 74 9 84 85%
HNF4 panc 0 0 0 4 6 82 92 84%
Total (pred) 3 12 6 72 89 100 282

Specificity 100% 98% 99% 95% 95% 95%
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TABLE 6: Sites overrepresented by oPOSSUM single site analysis.

Gene set Significant sites
HNF1-Hepatocytes HNF4, TCF1
HNF1-Pancreas None
HNF1-Both None
HNF4-Hepatocytes HNF4
HNF4-Pancreas Staf, GABPA

HNF4-Both Staf, ELK1, SPIB, Bapx1, ELK4

poor sensitivity that we observed is partially due to the large
unbound class of genes from this dataset.

2.4. Alternative TFBS Prediction Methods

To compare the performance of the CONFAC approach
with other methodologies, we input all of the genes from
the HNF ChIP-chip experiment into the oPOSSUM 2.0
software [18, 19]. We performed single site analysis using
oPOSSUM and we were able to determine that HNF4
sites were overrepresented in the genes bound by HNF4
and HNFI in hepatocytes (Table 6). However, since the
oPOSSUM 2.0 software only reports the aggregate number
of TFBS occurrences in each gene set, and not the individual
numbers per gene, it was not possible to use these data for a
predictive MEI classification analysis.

However, we did perform additional analyses using
two modifications to the CONFAC software. One uses
the genomic alignments of human and mouse with a
window size of zero, requiring perfect alignment of the sites
(Table 7). The second uses the sequences that have significant
regulatory potential based on alignment of seven species
[20] and uses the window length of 25bp (Table 8). Using
these two approaches, the specificity remains high, and the
sensitivity was slightly increased.

3. Discussion

Here we have accurately predicted in vivo occupancy of pro-
moters based on conserved TFBS patterns and public ChIP-
chip localization data. The TFBS patterns were generated for
the complete set of human RefSeq genes using our CONFAC
software, which identifies TFBS that are conserved between
human and mouse genomes [1]. A possible reason for our
low sensitivity could be the requirement for conservation
between human and mouse genomes. However, without
this requirement, the gains in sensitivity would likely be
lost by losses in specificity. This is supported by an earlier
study of 14 gene pairs and 40 verified TFBSs, which found
that requiring evolutionary conservation reduced the total
number of sites detected by 85% but maintained detection
of 83% of verified sites [4]. Thus, comparison of human and
mouse genome sequences can greatly reduce the background
noise of false positive TFBS with only a small loss in the
overall sensitivity for detection of functionally significant
TFBS. In addition, analysis of only the bound classes of genes
exhibited sensitivity ranging from 86—100%, suggesting that

part of the computational challenge lies in the unbalanced
nature of these datasets.

While other studies have mined public ChIP-chip data
[10] to identify cooccurring TEBS pairs that correlated with
expression patterns and localization data using multivariate
adaptive regression splines, these studies [14] did not attempt
to predict whether a promoter was occupied or unoccupied
in a blinded fashion. Our success rate of 84% on an
independent test set of 1349 genes demonstrates that given
sufficient localization and sequence data, it is possible to
separate bound from unbound promoters computationally.
One of the challenges with these predictions is the marked
lack of balance in the sample sizes between genes bound by
a transcription factor and the unbound genes. Since typical
approaches tend to minimize overall error rates across all
groups, higher error rates on smaller classes are tolerated for
smaller error rates on the unbound class. That is, we tend
to learn posterior inferences much more accurately on the
larger represented class. Under certain situations, this can
lead to a bias represented as an underestimation of posterior
probabilities of assignment for the smaller classes [21]. There
are some approaches to alleviate these biases that deal with
this issue in a systematic manner rather than resorting
to ad hoc corrections. These approaches include biased
sampling in the training set by subsampling from the larger
represented group and down weighting observations in the
larger represented group [21]. The strategy that we used was
to adjust class priors such that posterior class assignments
could be made using conventional cutoffs rather than ones
that were adjusted for unequal group representation. We will
continue to investigate other statistically optimal approaches
for bias adjustment with the goal of optimal prediction of
TFBS functionality.

Genome-wide analyses of TFBS have been conducted in
Saccharomyces cerevisiae which have identified combinations
of TFBS and integrated the cooccurrence of TFBS in
promoter elements with microarray expression data [17, 22,
23]. Bayesian approaches have also been applied to yeast
and C. elegans [12], but not yet to mammalian genomes,
partially because earlier methods for identification of TFBS
produced such a high number of false positives. One analysis
of the human genome found TFBSs that were enriched in
1 kb of upstream sequences relative to the second exon [24].
This study did find that many transcription factors associated
with immune response had TFBS in the promoters of genes
annotated for immune system regulation. However, regu-
latory elements are quite often further than 1kb upstream
of transcription start sites or in intronic sequences, and
it is not clear if the second exon of genes represents an
optimal background to compare against upstream sequences.
Moreover, the study by Long et al. [24] did not use
comparative genomics to identify evolutionarily conserved
TEFBS.

Our approach exhibited high specificity, but low sensi-
tivity for prediction of in vivo binding of HNF4 and HNF1.
Part of the reason for the low sensitivity could be due to the
nature of the HNF1 binding site, which consists of two 7 bp
half-sites with a one-base spacer, resulting in a long (15 bp)
PWM [25]. Other approaches for site identification that use
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TaBLE 7: Prediction of in vivo occupancy by HNF1 and HNF4 by BAM MEI analysis using human-mouse genomic alignments instead of

local pairwise BLAST alignments and a window size of zero.

Predicted
Observed ~ HNF1 both HNF1 hep HNFI1panc HNF4both HNF4hep HNF4panc Unbound Total (obs) Sensitivity
HNF]I both 3 0 0 0 0 0 1 4 75%
HNF]1 hep 0 1 0 0 0 0 18 19 5%
HNF]1 panc 0 0 2 0 0 0 4 6 33%
HNF4 both 0 0 0 21 0 0 29 50 42%
HNF4 hep 0 0 0 16 0 82 98 16%
HNF4 panc 0 0 0 0 34 30 64 53%
Unbound 0 0 0 7 1 1259 1274 99%
Total (pred) 3 1 2 28 23 35 1423 1492
Specificity 100% 100% 100% 75% 67% 95% 88%

TaBLE 8: Prediction of in vivo occupancy by HNF1 and HNF4 by BAM MEI analysis using human-mouse genomic alignments instead of
local pairwise BLAST alignments restricted to regions of positive regulatory potential and a window size of 25 bp.

Predicted
Observed ~ HNF1 both HNF1 hep HNFI1panc HNF4both HNF4hep HNF4panc Unbound Total (obs) Sensitivity
HNFI both 3 0 0 0 0 0 1 4 75%
HNF]1 hep 0 0 0 0 0 0 16 16 0%
HNF]1 panc 0 0 1 0 0 0 3 4 25%
HNF4 both 0 0 0 20 0 0 30 50 40%
HNF4 hep 0 0 0 0 18 0 71 89 20%
HNF4 panc 0 0 0 8 8 16 50%
Unbound 0 0 0 3 2 908 916 99%
Total (pred) 3 0 1 23 21 10 1037 1095
Specificity 100% NA 100% 87% 86% 80% 87%

half-sites might increase our sensitivity, but CONFAC
uses the PWM available in the latest release of MATCH
(TRANSFAC Professional Release 11.1). We anticipate that
further refinements of our input parameters to include cis-
regulatory modules [26] or nucleosome occupancy prob-
abilities [27] may enhance our ability to find positive
associations between TFBS sets and in vivo occupancy.

4. Conclusions

One of the many challenges of computational biology
has been to identify functional genomic binding sites for
transcription factors (TFBSs) and the direct downstream
targets they affect. Identification of such sites would allow the
development of more accurate gene networks and an under-
standing of important biological pathways. We applied the
Conserved Transcription Factor Binding Sites (CONFAC)
software to identify evolutionarily conserved and statistically
overrepresented TFBS in the region immediately upstream
of the complete set of identified human genes. We have
developed a novel statistical technique that uses the TFBS
patterns to accurately predict binding of transcription factors
in a tissue specific manner based on prior biological data.
These methods can be applied to additional transcription
factors as more biological data becomes available. These
methods will allow more accurate predictions of functional

transcription factor binding sites, saving time in the wet
lab and allowing faster development of more accurate gene
networks.

5. Methods

5.1. CONFAC Analysis

The CONFAC software runs in the linux operating system,
using cgi scripts written in the Per]l programming language,
and accepts lists of genes via a web browser interface
(http://confac.emory.edu/). The user inputs a tab-delimited
text file containing a unique identifier for the gene name
in the first column and a GenBank accession number or
RefSeq ID in the second column [1]. The CONFAC software
then automatically identifies orthologous murine genes by
accessing ortholog lookup tables obtained from the UCSC
and ENSEMBL genome databases. The RefSeqs analyzed
were based on Tables hg16 refFlat and mm3 refFlat, available
at http://genome.ucsc.edu/cgi-bin/hgTables. The CONFAC
analysis was performed using hgl6 (July 2003, NCBI Build
34) of the human genome and mm3 (Feb. 2003, NCBI Build
30) of the mouse genome. The settings used for the CONFAC
analysis of the complete RefSeq dataset were as follows:
matrix similarity: 0.75; core similarity: 0.85; Repeatmasking
= ON.
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For analysis of using whole genome alignments, the
axtNet human-mouse whole genome alignment files (chr[1-
22XY].hg[v17].mm[v7].net.axt.gz) were downloaded from
the UCSC genome database. Analysis of sequences with
positive regulatory potential used the regPotential7X tables
also downloaded from the UCSC genome database.

5.2. High Throughput Screening with Bayesian
ANOVA for Microarrays (BAM)

Bayesian ANOVA was performed using BAMarray 2.0
software available at http://ora.ra.cwru.edu/bamarray/ [28].
BAM is a new statistical technique for detecting differentially
expressing genes from multigroup high throughput microar-
ray experiments. The underlying methodology for BAM has
been rigorously studied theoretically [15, 29]. BAM is robust
to nonnormality of gene expression measurements and to
correlations between expression measurements on a given
chip [13]. BAM relies on a special type of inferential regu-
larization (i.e., borrowing strength across the data) allowing
it to balance the number of false detections against false
non-detections hence detecting more genes [13, 29]. This
is an oracle (ideal) property guaranteeing lower total gene
misclassification [29]. This differs from current statistical
methods that protect false detection rates. Controlling false
detection rates tends to identify obviously changing genes
but it misses many subtle changes. For multigroup designs,
BAM adaptively reduces correlations between test statistics
on a given gene, enabling signal to be extracted from
noise more efficiently, thus allowing true differential gene
expression patterns to be readily identified and reducing the
number of implausible patterns detected [29].

While originally developed for gene expression microar-
ray experiments, we have extended the usage of BAM for
TFBS analysis. Since the BAM methodology does not make
parametric assumptions about the nature of the data being
analyzed, the count nature of our TFBS data can be handled
easily. The number of occurrences of each TFBS for each
gene was input into BAMArray. The genes were grouped
according to the biological data indicating HNF1 and HNF4
binding, (bound by HNFI in pancreatic cells, bound by
HNF4 in pancreatic cells, bound by HNF1 in hematocytes,
bound by HNF4 in hematocytes, bound by HNF1 in both
tissues, bound by HNF4 in both tissues, and unbound genes).
The baseline group for comparisons was taken to be the class
of unbound genes. Analyses were performed using unequal
variance between groups and high-accuracy setting. Rare
TEBS that had zero conserved occurrences in the groups of
genes bound by HNF1 or HNF4 were excluded from the
analysis to eliminate spuriously high-negative correlations.

5.3. Marginal Effect Isolation (MEI)

Gene predictions were made using a marginal effect isolation
(MEI) multigroup classifier. In order to do so, class-specific
patterns of differential TFBS associations were pulled from
the BAM analysis above. These are patterns that uniquely
separate one class from all of the others. These are sometimes

termed “hit-and-run” patterns in the original context; they
were developed for analyzing differentially expressing genes
in multigroup microarray experiments [29]. A simple form
of these kinds of patterns can be found in the work of Li
and Wong [30], but the BAM-based patterns are much more
rigorously defined.

The MEI classifier is a novel multigroup classifier that
operates by building separate two group classifiers using
these hit-and-run patterns to separate HNF1 and HNF4
bound genes. Specifically, a classifier is built to separate a
particular gene set from all of the other by using the hit-
and-run pattern TFBS found as predictors and building a
two group classifier for discriminating a particular class from
all of the others (i.e., the others are put together into a
collapsed group). This is repeated for each class one by one
except for the baseline group, which is handled separately
as described below. For predictions on new test data, these
two group classifiers are aggregated in a way that mimics a
data-based estimate of a full multigroup Bayes rule. That is,
a new observation is tested on each two-group classifier, and
is assigned to the group with highest posterior probability
of membership. That is, each classifier generates a posterior
probability estimate belonging to a group (or not) using
only that group’s set of hit-and-run TFBS as predictors. A
baseline group is always included in the construction of
each two-group classifier as part of the collapsed group. If
each classifier predicts that the test observation belongs to
the collapsed group, then the observation is assigned to the
baseline group. The power of this approach for multigroup
classification is that it uses specific predictor sets (i.e., TFBS
sets) that have been determined by BAM to be particularly
informative in uniquely separating individual classes from all
of the others. This approach was detailed previously in [31]
and is described briefly below.

The test set of TFBS for the genes from the HNFI
and HNF4 in vivo data along with the marginalized TFBS
patterns identified by BAM using the training set of HNF1
and HNF4 in vivo data are input for MEI. MEI then outputs
its predictions for the test set for which group (HNF1 bound
in pancreatic cells, HNF4 bound in pancreatic cells, etc.) each
gene should belong to based on its TFBS. The p-value of
achieving this number of correct predictions compared to
random assignment was based on a chi-squared like test with
resampling used to generate a null sampling distribution
[32].

List of Abbreviations

BAM: Bayesian analysis of microarrays

ChIP-chip: Chromatin immunoprecipitation followed
by microarray analysis

CONFAC: Conserved transcription factor binding site
software

HNE: Hepatocyte nuclear factor

MELI: Marginal effect isolation

PWM: Position weight matrix

REFSEQ: Reference sequence transcripts
TEBS: Transcription factor binding site.


http://ora.ra.cwru.edu/bamarray/

Acknowledgments

The authors would like to thank Drs. William Fairbrother,
James Thomas, and Scott Devine for critical reading of this
manuscript. This research was supported in part by NIH
Grants K22-CA96560 and R01-CA106826 to CSM and NIH
K25-CA89868 and NSF DMS-0405072 to JSR. CDM was
supported by DOD CDMRP Prostate Cancer Postdoctoral
Training Fellowship PC060114. C. S. Moreno directed the
study, performed BAM analyses, analyzed data, and wrote the
manuscript. J. S. Rao developed the MEI software, performed
prediction analyses, and cowrote the manuscript. S. Karanam
performed the CONFAC analysis of the Refseq gene set and
generated tables and scripts necessary for the analysis. C. D.
McCabe cowrote the manuscript.

References

[1] S. Karanam and C. S. Moreno, “CONFAC: automated appli-
cation of comparative genomic promoter analysis to DNA
microarray datasets,” Nucleic Acids Research, vol. 32, web
server issue, pp. W475-W484, 2004.

[2] J. Flint, C. Tufarelli, J. Peden, et al., “Comparative genome
analysis delimits a chromosomal domain and identifies key
regulatory elements in the « globin cluster,” Human Molecular
Genetics, vol. 10, no. 4, pp. 371-382, 2001.

[3] R. C. Hardison, J. Oeltjen, and W. Miller, “Long human
mouse sequence alignments reveal novel regulatory elements:
a reason to sequence the mouse genome,” Genome Research,
vol. 7, no. 10, pp. 959-966, 1997.

[4] B. Lenhard, A. Sandelin, L. Mendoza, P. Engstrom, N.
Jareborg, and W. W. Wasserman, “Identification of conserved
regulatory elements by comparative genome analysis,” Journal
of Biology, vol. 2, no. 2, article 13, pp. 131-141, 2003.

[5] W. W. Wasserman, M. Palumbo, W. Thompson, J. W. Fickett,
and C. E. Lawrence, “Human-mouse genome comparisons to
locate regulatory sites,” Nature Genetics, vol. 26, no. 2, pp. 225—
228, 2000.

[6] J. W. Fickett and W. W. Wasserman, “Discovery and modeling
of transcriptional regulatory regions,” Current Opinion in
Biotechnology, vol. 11, no. 1, pp. 19-24, 2000.

[7] W. W. Wasserman and J. W. Fickett, “Identification of regu-
latory regions which confer muscle-specific gene expression,”
Journal of Molecular Biology, vol. 278, no. 1, pp. 167-181, 1998.

[8] J. C. Oeltjen, T. M. Malley, D. M. Muzny, W. Miller, R. A.
Gibbs, and J. W. Belmont, “Large-scale comparative sequence
analysis of the human and murine Bruton’s tyrosine kinase loci
reveals conserved regulatory domains,” Genome Research, vol.
7, 0. 4, pp. 315-329, 1997.

[9] G. G. Loots and I. Ovcharenko, “rVISTA 2.0: evolutionary
analysis of transcription factor binding sites,” Nucleic Acids
Research, vol. 32, web server issue, pp. W217-W221, 2004.

[10] D. T. Odom, N. Zizlsperger, D. B. Gordon, et al., “Control
of pancreas and liver gene expression by HNF transcription
factors,” Science, vol. 303, no. 5662, pp. 1378-1381, 2004.

[11] A. E. Kel, E. Gofiling, I. Reuter, E. Cheremushkin, O. V. Kel-
Margoulis, and E. Wingender, “MATCH™": a tool for search-
ing transcription factor binding sites in DNA sequences,”
Nucleic Acids Research, vol. 31, no. 13, pp. 3576-3579, 2003.

[12] M. A. Beer and S. Tavazoie, “Predicting gene expression from
sequence,” Cell, vol. 117, no. 2, pp. 185-198, 2004.

Advances in Bioinformatics

[13] H. Ishwaran and J. S. Rao, “Detecting differentially expressed
genes in microarrays using Bayesian model selection,” Journal
of the American Statistical Association, vol. 98, no. 462, pp.
438-455, 2003.

[14] A. D. Smith, P. Sumazin, D. Das, and M. Q. Zhang, “Mining
ChIP-chip data for transcription factor and cofactor binding
sites,” Bioinformatics, vol. 21, supplement 1, pp. 1403-i412,
2005.

[15] H. Ishwaran and J. S. Rao, “Spike and slab variable selection:
frequentist and Bayesian strategies,” Annals of Statistics, vol.
33, no. 2, pp. 730-773, 2005.

[16] X. Xie, J. Lu, E. J. Kulbokas, et al., “Systematic discovery
of regulatory motifs in human promoters and 3" UTRs by
comparison of several mammals,” Nature, vol. 434, no. 7031,
pp. 338-345, 2005.

[17] C.T.Harbison, D. B. Gordon, T. L. Lee, et al., “Transcriptional
regulatory code of a eukaryotic genome,” Nature, vol. 431, no.
7004, pp. 99-104, 2004.

[18] S.J. Ho Sui, D. L. Fulton, D. J. Arenillas, A. T. Kwon, and W.
W. Wasserman, “oPOSSUM: integrated tools for analysis of
regulatory motif over-representation,” Nucleic Acids Research,
vol. 35, web server issue, pp. W245-W252, 2007.

[19] S.J. Ho Sui, J. R. Mortimer, D. J. Arenillas, et al., “oPOSSUM:
identification of over-represented transcription factor binding
sites in co-expressed genes,” Nucleic Acids Research, vol. 33, no.
10, pp. 3154-3164, 2005.

[20] D. C. King, J. Taylor, L. Elnitski, F. Chiaromonte, W. Miller,
and R. C. Hardison, “Evaluation of regulatory potential and
conservation scores for detecting cis-regulatory modules in
aligned mammalian genome sequences,” Genome Research,
vol. 15, no. 8, pp. 1051-1060, 2005.

[21] B. D. Ripley, Pattern Recognition and Neural Networks, Cam-
bridge University Press, Cambridge, UK, 1996.

[22] P. Sudarsanam, Y. Pilpel, and G. M. Church, “Genome-wide
co-occurrence of promoter elements reveals a cis-regulatory
cassette of rRNA transcription motifs in Saccharomyces cere-
visiae,” Genome Research, vol. 12, no. 11, pp. 1723-1731, 2002.

[23] Y. Pilpel, P. Sudarsanam, and G. M. Church, “Identifying
regulatory networks by combinatorial analysis of promoter
elements,” Nature Genetics, vol. 29, no. 2, pp. 153-159, 2001.

[24] E. Long, H. Liu, C. Hahn, P. Sumazin, M. Q. Zhang, and
A. Zilberstein, “Genome-wide prediction and analysis of
function-specific transcription factor binding sites,” In Silico
Biology, vol. 4, no. 4, pp. 395-410, 2004.

[25] J. Locker, D. Ghosh, P.-V. Luc, and J. Zheng, “Definition and
prediction of the full range of transcription factor binding
sites—the hepatocyte nuclear factor 1 dimeric site,” Nucleic
Acids Research, vol. 30, no. 17, pp. 3809-3817, 2002.

[26] M. Blanchette, A. R. Bataille, X. Chen, et al., “Genome-
wide computational prediction of transcriptional regulatory
modules reveals new insights into human gene expression,”
Genome Research, vol. 16, no. 5, pp. 656-668, 2006.

[27] E. Segal, Y. Fondufe-Mittendorf, L. Chen, et al., “A genomic
code for nucleosome positioning,” Nature, vol. 442, no. 7104,
pp. 772-778, 2006.

[28] H. Ishwaran, J. S. Rao, and U. B. Kogalur, “BAMARRY™: Java
software for Bayesian analysis of variance for microarray data,”
BMC bioinformatics, vol. 7, article 59, pp. 1-21, 2006.

[29] H. Ishwaran and J. S. Rao, “Spike and slab gene selection
for multigroup microarray data,” Journal of the American
Statistical Association, vol. 100, no. 471, pp. 764-780, 2005.



Advances in Bioinformatics

[30] J. Li and L. Wong, “Identifying good diagnostic gene groups
from gene expression profiles using the concept of emerging
patterns,” Bioinformatics, vol. 18, no. 5, pp. 725734, 2002.

[31] J. S. Rao and H. Ishwaran, “Multigroup classification by
marginal effect isolation,” Tech. Rep., Department of Epi-
demiology and Biostatistics, Case Western Reserve University,
Cleveland, Ohio, USA, 2006.

[32] W. M. Patefield, “Algorithm AS 159: an efficient method of
generating r X ¢ tables with given row and column totals,”
Applied Statistics, vol. 30, no. 1, pp. 91-97, 1981.



	Background
	Results
	In Vivo Occupancy Predictions
	Ten-Fold Repeated Holdout Training-Test Set Validation
	Contribution of the Large Unbound Class
	Alternative TFBS Prediction Methods

	Discussion
	Conclusions
	Methods
	CONFAC Analysis
	High Throughput Screening with Bayesian ANOVA for Microarrays (BAM)
	Marginal Effect Isolation (MEI)

	List of Abbreviations
	Acknowledgments
	References

