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Abstract: Real-time and accurate longitudinal rip detection of a conveyor belt is crucial for the safety
and efficiency of an industrial haulage system. However, the existing longitudinal detection methods
possess drawbacks, often resulting in false alarms caused by tiny scratches on the belt surface. A
method of identifying the longitudinal rip through three-dimensional (3D) point cloud processing
is proposed to solve this issue. Specifically, the spatial point data of the belt surface are acquired
by a binocular line laser stereo vision camera. Within these data, the suspected points induced by
the rips and scratches were extracted. Subsequently, a clustering and discrimination mechanism
was employed to distinguish the rips and scratches, and only the rip information was used as alarm
criterion. Finally, the direction and maximum width of the rip can be effectively characterized in 3D
space using the principal component analysis (PCA) method. This method was tested in practical
experiments, and the experimental results indicate that this method can identify the longitudinal rip
accurately in real time and simultaneously characterize it. Thus, applying this method can provide
a more effective and appropriate solution to the identification scenes of longitudinal rip and other
similar defects.

Keywords: longitudinal rip; 3D point cloud; clustering process; principal component analysis (PCA)

1. Introduction

A belt conveyor is widely used in the industrial field and is mainly used in material
transportation equipment [1–5]. The longitudinal rip of the belt—along the running
direction caused by hard impurities’ puncture, penetration, and blocking—is one of the
common faults of the belt conveyor. The identification of the longitudinal rip in real-time
can avoid further extension of the rip, which may cause material leakage, conveyor damage,
transport system paralysis, and even safety accidents [6–9]. As a result, many methods for
identifying longitudinal rips have been proposed.

The method first used to identify the longitudinal rip was the traditional mechanical
method [10,11], which indirectly identifies the longitudinal rip by detecting materials or
impurities leaking through the rip, but has the obvious shortcomings in identification time.
Afterwards, the non-contact identification methods based on ultrasonic [12,13], radio fre-
quency [14,15], and electromagnetic induction [16,17], are employed in the industrial field,
and these methods have decreased the identification time to a sub-second. Nonetheless,
there are still deficiencies in accuracy and reliability when using these methods.

In recent years, identification methods based on image processing have been grad-
ually developed. A method was proposed to preliminarily identify the rip by the defect
information extracted from the pixels of images, such as area, slightness, and rectangle
degree [18]. Another method based on infrared and visible light fusion was adopted
to detect the longitudinal rip of conveyor belts [19], which improved the identification
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accuracy. A monitoring system was designed to identify the longitudinal rip by extracting
the laser stripe skeleton and distinguishing the jump distortion [20], which has a good
performance in response time. However, in some harsh environments, due to the uneven
illumination and the stains attached to the belt surface, image-processing methods for pixel
color often fail. Furthermore, on the belt’s surface, there are many small scratches, which
have no effect on the normal running of the conveyors, but based on image processing,
those scratches are often mistakenly identified as longitudinal rips, resulting false alarms
and unplanned downtime to seriously affect production efficiency. Thus, an improved
longitudinal rip detection method with higher accuracy, reliability, and real-time still needs
to be exploited. In contrast to the image processing method, which extracts characteristics
from the color or brightness of pixels in the two-dimensional images, the method based on
point cloud processing deals with a set of three-dimensional point coordinates [21,22]. It
means that this method can achieve more accurate data acquisition and three-dimensional
measurement of object surface [23–25].

In this work, a novel longitudinal rip detection and characterization method based on
3D point cloud processing is proposed and demonstrated. To be specific, a binocular line
laser stereo vision camera was used to obtain the point cloud data on the lower surface of the
belt by a line-scanning mode. Through the convenient threshold judgments, the suspected
points induced by the rips or scratches within the point cloud data could be extracted. Then,
these suspected points were clustered and the clusters of scratch points were eliminated
by a distance recognition mechanism. Then only the clusters of the longitudinal rips were
treated as the alarm criteria to achieve the identification operation. The method in this
work has the following three advantages: first, it prevents the probability of false alarm
by overcoming the interferences of the uneven illumination in harsh environment and the
scratches on belt surface. The identification correct rate obtained from a large amount of
tests is 99.2%. Second, it has exceptional advantages in real-time, and the identification
time of longitudinal rip is less than 0.04 ms. Third, the direction and maximum width of
the longitudinal rip in 3D space can be determined simultaneously with high precision.

2. System Setup and Algorithm Flow in This Work

The diagram of the system setup and belt surface data acquisition process are shown
in Figure 1. A data acquisition system, including a binocular line laser stereo vision
camera and a belt speed sensor, was mounted near the loading area of a conveyor where
the longitudinal rip was most likely to occur (90%) [14]. In this system, the camera was
installed between the upper and lower belts, on which, a laser source projected a line laser
with a certain fan angle on the lower surface of the upper belt (then a laser stripe could be
generated on the belt surface along the belt’s width direction (the y direction)). The belt
ran in the x direction and a belt speed sensor was used to measure its running speed in
real time. To further explain, the operating principle of the camera was to collect spatial
data by using binocular parallax theory [26]. The camera collected point data (ti, yj, zj) of
about 2000 points on the laser stripe. ti was the timestamp to get these points on the i-th
laser stripe; yj and zj, respectively, denote the coordinate values in the width and height
directions of the j-th point on the laser stripe from left to right. Then, these point data were
sent to the industrial personal computer (IPC).
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Figure 1. System setup and data acquisition process; IPC, industrial personal computer.

The x coordinate value of each point can be presented as:

xj = vti , j = 1, 2, 3, · · · , 2000 (1)

where v presents the real-time belt speed, which can be derived from a belt speed sensor
(A list of symbols in this paper with units and notes is created in Appendix A, please see
Table A1). Thus, the 3D point cloud data on each laser stripe can be obtained:

Pj =
(
xj, yj, zj

)
, j = 1, 2, 3, · · · , 2000 (2)

As the belt runs, its lower surface will be scanned by the camera so that the 3D point
cloud data will be obtained line-by-line, and the data will be applied as the raw data.

The flowchart of algorithm in this work is shown in Figure 2. The function realization
of the system is divided into two phases, before and after the occurrence of the longitudinal
rip. The first one is the identification of the longitudinal rip. In this phase, we take
the time interval of the 3D data input between the present stripe and next stripe as an
identification cycle. In each cycle, the original data on the present stripe will be processed
through four steps: suspected points extraction, clustering process, cluster elimination,
and empirical discrimination. Specifically, at the beginning, the suspected points induced
by the rips or scratches are extracted by convenient threshold judgments. Then through
the clustering process, these points are classified into different clusters. Subsequently,
through the elimination of clusters, points induced by the scratches, which have been
completely scanned, are eliminated. Finally, the empirical discrimination based on length
detection is applied to identify the longitudinal rip. Once the longitudinal rip is identified,
the intelligent decisions (alarm and automatic shutdown) will be implemented. Then, the
points in the rip clusters are used to further characterize the longitudinal rip in the second
phase, so that the direction and maximum width of the longitudinal rip can be effectively
characterized in 3D space.
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Figure 2. Flowchart of algorithm in this work.

3. Phase I: Identification of the Longitudinal Rip

As stated above, the real-time identification of the longitudinal rip includes four
steps: suspected points extraction, clustering process, cluster elimination, and empirical
discrimination. Each processing step will be explained in the following sections.

3.1. Suspected Points Extraction

Figure 3a shows the cross-section view with the line laser plane as the cutting plane,
the blue dots in the zoom view are a set of 3D points collected by the camera, and the
distribution of the 2000 original 3D points input in each cycle reflects the morphological
information of the belt’s lower surface. Under normal circumstances, the points should
be evenly distributed in y and z directions, but when there is a rip on the belt surface, the
point distribution near the rip’s edges will induce abnormal jump fluctuations. Thus, by
extracting the suspected points (point A and B in Figure 3a), which cause fluctuations, we
can get the information of the rip edges.

The threshold judgments are used to extract the suspected points and the two cases of
belt with and without materials cover are discussed separately as follow.

(1) Belt covered with materials.

When there is a rip on the belt surface, the line laser will pass through the rip and
project on materials. In the vicinity of the longitudinal rip, there will be a sudden change in
the z direction between two adjacent points. We define the change rate of point Pj(xj,yj,zj) as:

∆zj/∆yj =
(
zj − zj−1

)
/
(
yj − yj−1

)
, j = 2, 3, 4, · · · , 2000 (3)



Sensors 2021, 21, 6650 5 of 16

Figure 3. Point distribution near the rip. (a) The cross-section view with the line laser plane as the cutting plane, the bottom
illustration is the zoom view of the middle rectangle box near the rip. (b) The data analysis chart for finding the suspected
points (point A and B shown in (a)), the black dots correspond to the values of ∆z/∆y of the points when the belt upper
surface covered with materials, while the red dots correspond to the values of ∆y of the points when the belt upper surface
covered with no materials.

As shown in Figure 3b, the black dots represent the change rate in z direction of each
3D point. The change rate of point B is much smaller than the conventional value and
the change rate of the adjacent point on the right side of point A is much larger than this
value. Hence, point Pj(xj, yj, zj) is considered a suspected point, if it meets one of the
following conditions:

∆zj/∆yj < −Taz or ∆zj+1/∆yj+1 > Taz (4)

where Taz is the threshold of the change rate in z direction and determined by the following formula:

Taz = sab/
(

ymax − ymin

2000

)
, sa = 0.3 ∼ 0.7 (5)

where b presents the thickness of the belt, ymax and ymin represent the largest and the
smallest y coordinate values among the 2000 points, separately. sa between 0.3 and 0.7 is an
empirical coefficient that is obtained through a large number of experiments.

(2) Belt covered without materials.

Under the circumstance of belt covered without materials, the line laser will pass
through the rip and no point will be collected in the rip area. It means that the laser stripe
is interrupted by the longitudinal rip and a few 3D points are lost. In this case, we define
the space in y direction between two adjacent points Pj-1(xj-1,yj-1,zj-1) and Pj(xj,yj,zj) as:

∆yj = yj − yj−1 , j = 2, 3, 4, · · · , n, n < 2000 (6)

As shown in Figure 3b, the red dots represent the space in y direction between two 3D
adjacent points Pj-1(xj-1, yj-1, zj-1) and Pj(xj, yj, zj). We can also see that the space in the y
direction between point A and B is much wider than the conventional value. Thus, point
Pj-1 and Pj are considered to be a pair of suspected points, if the following condition is met:

∆yj > Tay (7)

where Tay is the threshold of space in y direction and determined by the following empirical formula:

Tay = 6(ymax − ymin)/2000 (8)
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Combining the extraction methods proposed in case (1) and (2), the suspected points
can be found in all possible application scenarios.

Figure 4 shows the result of the suspected point extraction process. Figure 4a shows a
piece of belt where there is an obvious longitudinal rip and a tiny scratch on its surface.
Figure 4b is the in-situ result image of Figure 4a. White dots are the suspected points
extracted in each processing cycle. It can be seen that, not only the suspected points
induced by the longitudinal rip, but also the scratches all have been extracted. Note
that scratches in Figure 4a are common for the industrial conveyor belts, especially on
the old belt surfaces. Therefore, in order to differentiate the rips from the scratches, we
need to eliminate the interferences entailed by the scratches through the steps, which
will be explained in the following two sections (Sections 3.2 and 3.3). Moreover, for the
convenience of the following description, we mark the suspected points corresponding to
the edges of the rip and scratch (see rip_L, rip_R, scratch_L, and scratch_R in Figure 4b).

Figure 4. The result of suspected point extraction process. (a) The physical picture, the upper
illustration is the zoom view of the lower rectangle box. (b) The in-situ result image of (a).

3.2. Clustering Process

In this step, we separate the suspected points induced by different scratches or rips
into different clusters in real time and represent the points in different clusters by coloring
them differently in Figure 5.

As shown in Figure 5a, there are four suspected points extracted on the present stripe
(denoted by Psus_i, i = 1–4) at time I. Moreover, two clusters (denoted by Cj, j = 1,2) already
exist before time I and the latest point added in cluster Cj is denoted as Cj_last.

In each processing cycle, three-dimensional Euclidean distance from Psus_i to every
Cj_last (denoted by ρ(Psus_i,Cj_last)) is calculated.

(1) If there is a cluster Cj that makes ρ(Psus_i,Cj_last) ≤ Tb, where Tb is the clustering
threshold, then Psus_i will be added into Cj. Hence, in Figure 5a, Psus_3 and Psus_4 are
added to clusters C1 and C2, respectively. It is worth noting that if there are more than
two clusters meeting the condition that ρ(Psus_i,Cj_last) ≤ Tb, then Psus_i will be added
into the one with the smallest Euclidean distance.

(2) If there is no cluster Cj that makes ρ(Psus_i,Cj_last) ≤ Tb, then a new cluster will be
created and Psus_i will be added to it. Thus, we can see that in Figure 5a, new clusters
C3 and C4 are created and Psus_1 and Psus_2 added into them, respectively.

In the next processing cycle, the suspected point Psus_i that were just added into Cj in
present cycle will be treated as new Cj_last, then this point will be traversed and neighbor
searched by the newly suspected points extracted on the next stripe.

Figure 5b is the subsequent clustering result of Figure 5a after several processing
cycles. It can be seen that the suspected points on scratch_L, scratch_R, rip_L, and rip_R
(see Figure 4b) have been successfully placed into different clusters C3, C4, C1, and C2 at
time II.
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Figure 5. Clustering process and cluster elimination process: (a) the result of clustering process at time I. (b) The subsequent
clustering result of (a) after several processing cycles at time II, coloring the points with different colors means the points
are clustered in different clusters; (c) the result of cluster elimination process at time III, the red points are the invalid data
that can be eliminated. In each subfigure, the middle illustrations are the zoom views of the lower little rectangle boxes.

The value of the clustering threshold Tb is determined by the following formula:
Tb =

√
Sx2 + Sy2 + Sz2

Sx = vmax/ f
Sy= 1.2~1.5
Sz= 1.5~2

(9)

where Sx, Sy, and Sz represent the clustering distances in the x, y, and z directions, re-
spectively. vmax is the maximum belt speed. f is the framerate, namely the number of
stripes of input data per second. Sx denotes the x-coordinate difference of the points
between two adjacent frames at the maximum belt speed. The values of Sy and Sz are
determined by analyzing the fluctuation of the points along the rip edges in the y and z
directions, respectively.

3.3. Cluster Elimination

In order to ensure the real-time and efficiency of identification, the invalid clusters
induced by scratches should be eliminated in time.
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It is found that, once the longitudinal rip occurs, the rip will extend infinitely along the
x direction, and there will be continuous suspected points added into the corresponding
clusters. Whereas for the scratches, due to their limited lengths, their edges are scanned in
a limited number of processing cycles. Therefore, if no newly suspected points were added
to a cluster in recent processing cycles, it indicates that the cluster cannot correspond to a
rip, but to a scratch that has been completely scanned, and should be eliminated.

Figure 5c shows that a scratch has been fully scanned at time III and the corresponding
suspected points are in C3 and C4. The distance from each Cj_last to present stripe is
calculated by

d
(

xp, Cj_last_x
)
= xp − Cj_last_x (10)

where xp is the x-coordinate value of all points on present stripe and C j_last_x is the x-
coordinate value of point Cj_last.

Then the cluster Cj and all the points in it will be eliminated, if

d
(
xp, Cj_last_x

)
> Tc (11)

where Tc is the distance threshold, which is determined by:

Tc = sc · vmax/ f (12)

where vmax is the maximum belt speed, f is the framerate and coefficient sc > 1.
After this step, C3 and C4 are automatically eliminated because the distances from

C3_last and C4_last to present stripe is more than Tc. By contrary, C1 and C2 are retained.
By eliminating the useless clusters, the number of clusters always stays small rather

than increasing indefinitely, thus ensuring that the computational time and space costs are
relatively low during each processing cycle.

Additionally, the event will be logged when the cluster is eliminated to get the fre-
quency of the scratches. When the frequency of these scratches, which have been scanned,
is increased sharply, it indicates that there may be some abnormal situations on the belt.
This can be used as a reference for safety inspection, but it does not trigger a longitudinal
rip alarm.

3.4. Empirical Discrimination

In this step, we realize the real-time identification of the longitudinal rip through an
empirical mechanism. As shown in Figure 5c, at time III, the suspected points on rip_L
and rip_R have been clustered in C1 and C2, respectively. Cj_first and Cj_last represent the
suspected points that firstly and lastly added into the cluster Cj. The longitudinal rip is
infinitely extended along the running direction of the belt (the x direction) while the size of
the scratch is limited in this direction. Thus, longitudinal rip is identified when a cluster
grows to a certain size through clustering. We quantify the size of the cluster as

g
(
Cj
)
= Cj_last_x − Cj_first_x (13)

where Cj_first_x and Cj_last_x denote the x-coordinate of point Cj_first and Cj_last, respectively.
Then if g(Cj) > Td, it indicates that the edge corresponding to Cj has been scanned

long enough in the x direction to be considered as an edge of a longitudinal rip. Td is an
empirical discrimination threshold, which can be taken as 100 mm, since no scratch is over
100 mm long according to our experimental statistics and survey [3]. On the contrary, once
longitudinal rip occurs, the rip length will be far more than 100 mm.

As the belt continues move in the x direction, once g(C1) > Td and g(C2) > Td, it can be
concluded that C1 and C2 correspond to the two edges of the longitudinal rip respectively
and the longitudinal rip has occurred. Then the system will make intelligent decisions such
as alarm and automatic shutdown.
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4. Phase II: Characterization of the Rip

After the longitudinal rip is identified, we need to make corresponding characteriza-
tion of the rip to provide intuitive reference information for maintenance staff. Therefore,
an effective characterization method used to determine the direction and maximum width
of longitudinal rip by PCA (principal component analysis) [27,28] is proposed.

4.1. Determination of Rip Direction

As shown in Figure 6, it is supposed that there are m points in cluster C1 (which
correspond to rip_L) and n points in cluster C2 (which correspond to rip_R). All the m + n
rip edge points will be taken out and then form a 3D point cloud matrix P of 3 × (m + n), i.e.,

P = [p1, · · · , pm, pm+1, · · · , pm+n] = [C1_1, · · · , C1_m, C2_1, · · · , C2_n]

=

 C1_1_x
C1_1_y
C1_1_z

· · ·
C1_m_x
C1_m_y
C1_m_z

C2_1_x
C2_1_y
C2_1_z

· · ·
C2_n_x
C2_n_y
C2_n_z


3×(m+n)

(14)

Figure 6. The visualization of the direction of the rip; the color bar corresponds to the z coordinate values.

Next, the PCA algorithm is used to determine the principal component vectors (e1st
and e2nd) of the distribution of P:

(1) Firstly, P is normalized by the center to get
~
P, i.e.,

~
P = [

~
p1, · · · ,

~
pm+n]

~
pi = pi −

¯
p, i = 1, · · · , m + n

¯
p = 1

m+n ∑m+n
i=1 pi

(15)

(2) Then the covariance matrix H is decomposed by singular value decomposition
(SVD) [29,30].

H =
~
P

~
P

T
= UΣ2UT = [u1, u2, u3]

 σ2
1

σ2
2

σ2
3

 uT
1

uT
2

uT
3

 (16)

(3) The principal vectors are the columns of U, i.e., u1, u2 and u3. The first princi-
pal vector e1st is the eigenvector with the largest eigenvalue in Σ2. Namely, if
σ2

i = max{σ2
1 , σ2

2 , σ2
3 }, then e1st = ui. Similarly, the second principal vector e2nd is

the eigenvector with the second largest eigenvalue in Σ2.
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The first principal vector e1st calculated by the PCA can represent the length direction
of the distribution of the point cloud; therefore, the direction of longitudinal rip can also be
represented by e1st.

4.2. Maximum Width of the Rip

The measurement of the maximum width of the longitudinal rip is necessary since
it directly reflects the severity of the current tearing situation. However, the measuring
method of obtaining the width of the rip by simply calculating the Euclidean distances
between the points on the left and right edges of the rip may easily lead to inexact results.
As the conveyor belts used in factories and mines (to transport materials) are usually
arched, and the rip may occur in any area of the arc. In addition, the direction of the rip is
not always parallel to the belt running directions (the x direction). Thus, in order to get the
more accurate measuring result, we propose a novel characterization model (see Figure 7)
to calculate the rip width.

Figure 7. Schematic diagram of rip’s width measurement; the color bar corresponds to the z coordi-
nate values; plane Π is the projection plane; Wmax is the maximum width of the rip.

Similar to Section 4.1, PCA is employed to get e1st and e2nd, which, respectively,
represent the length direction and width direction of the 3D point cloud distribution (P) of
the rip.

The 3D points in P are projected onto plane Π, which is determined by e1st and e2nd.
The two-dimensional matrix P’ of the projection points on Π is calculated by:

P′ = [p′1, · · · , p′m, p′m+1, · · · , p′m+n] =

[
eT

1st
eT

2nd

]
P

=

[
eT

1st
eT

2nd

] C1_1_x
C1_1_y
C1_1_z

· · ·
C1_m_x
C1_m_y
C1_m_z

C2_1_x
C2_1_y
C2_1_z

· · ·
C2_n_x
C2_n_y
C2_n_z


3×(m+n)

(17)

where p′
1, . . . , p′m are 2D points transformed from the left edge points (rip_L) of the rip

and p′m+1, . . . , p′m+n are from the right edge (rip_R).
Then the adjacent points among p′

m+1 – p′
m+n are connected to form a polyline L.

Points p′
1 − p′

m are taken as the starting points and vector e2nd is taken as the direction to
make half-lines. These half-lines will intersect the polyline L, and the distance between
each intersection point and the starting point is calculated. Then the maximum width
Wmax of the rip can be represented by the maximum distance.
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5. Experiment Validation
5.1. Experiment System Building

As shown in Figure 8, we built a simulation experimental platform in the laboratory.
The trough conveyor widely used in factories and mines [31] is selected as the experimental
conveyor, which adds the practical value of this study and also makes the result more
representative. The trough angle is 20◦ and the belt width is 1 m. Moreover, we make
1 × 1 m belt sections into a replaceable form by installing belt fasteners at both ends of
them so that different experiment data can be collected by replacing the replaceable belt
sections rather than the whole belt.

Figure 8. The simulation experiment platform in laboratory; only the replaceable belt section needs
to be replaced rather than the whole belt in each experiment.

The camera used in the experiment is a binocular line laser stereo vision camera (VZ-
XJGY-1300G) produced by Vizum corporation (Beijing, China). This camera can uniformly
collect 2000 3D point coordinates on each laser stripe and acquire the data from 1000 stripes
per second. An IPC with Core i7 6700 CPU, NVIDA GTX 1050Ti Graphics card, 8 GB
memory, and a Windows 10 operating system were used in this experiment to process
data. The IPC communicates with the camera through a 1000 M network cable. We
programed the experiment procedure using Visual C++ to verify the proposed algorithm
and the parameters were set as follows: the extraction threshold in z Taz = 12, the extraction
threshold in y Tay = 3 mm, the clustering threshold Tb = 3.67 mm, the distance threshold
Tc = 3 mm, the discrimination threshold Td = 100 mm.

Twenty belt sections were selected as the experimental samples, and 10 of them were
taken from the new belts and the other 10 were taken from the old belts. On these 20 belt
sections, the rips were artificially created. These belt sections were replaced on the conveyor
one-by-one to test the identification and characterization method in this work.

5.2. Experimental Results

By using the identification algorithm proposed in Section 3, we performed 50 tests on
each belt section at different speeds (10 tests at 0.5, 1.0, 1.5, 2.0, and 2.5 m/s, respectively)
and obtained good identification results. The correct rate was 99.2% and the identification
times (from the time when the 100 mm rip length in x direction was scanned to the time
when the identification result was obtained) were less than 0.04 ms. Furthermore, the
calculation results of the rip’s maximum width Wmax were obtained by the characterization
method proposed in Section 4 and the relative errors are within ±5%.

To further demonstrate the effectiveness of the method, Figure 9 shows the experi-
mental results of three representative cases. Case 1 is a general case where the rip is located
in the center of the belt and its direction is almost parallel to the running direction (the
x direction). Case 2 and Case 3 are two extreme cases; one is that the rip direction and
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the running direction are at a relatively large angle; the other is that the rip is close to
the side of the belt. In each case, when a certain length (100 mm in this work) of the rip
was scanned (see the red rectangle boxes in Column I), the identification result would be
obtained within 0.04 ms. In Column II, we can see that these rips are accurately identified
and the longitudinal rip edge points are accurately extracted. Using the characterization
method, the max width of each rip is obtained in the 2D coordinate system determined by
the principal vectors e1st and e2nd (see Column III). This indicates that the identification
and characterization method proposed in this work is suitable for different situations.

Figure 9. The experimental results; column I: physical pictures; column II: the 3D visualization of
the rip edge points, the color bar corresponds to the z coordinate values; column III: the calculation
result visualization of max width of each rip.

To further test the proposed method, we set up the identification system on a belt
conveyor, located at Shandong Energy Reshipment Group Co., Ltd in China (see Figure 10).

The site environment was dim and dusty. The conveyor belt width was 1.4 m and the
conveyor would vibrate when running. During the 48 hours of the system’s operation in
the industrial scene, no longitudinal rip occurred. Nevertheless, we found many different
scratches on the lower surface of the belt. As shown in Figure 11, there were five scratches
in Figure 11a, three in Figure 11b, and two in Figure 11c.
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Figure 10. The experiment in industrial scene.

Figure 11. The scratches on the lower surface of the belt. There are five scratches in (a), three in (b),
and two in (c).

Using the traditional methods based on image processing, these scratches can easily
be confused with longitudinal rips. However, using the method in this work based on
3D point cloud processing, the effects of lighting conditions and stains on the belt surface
will be eliminated. In addition, since the scanned length of all the scratches would not
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exceed 100 mm, the scratches in the experiment would not trigger the condition mentioned
in Section 3.4: the length of a defect scanned along the x direction being longer than the
distance threshold Td (100 mm in this work). Therefore, the identifying system herein
makes it possible to effectively differentiate rips from scratches, which avoids the false
alarm and unplanned downtime. Meanwhile, the information of the scratches was recorded,
which can be further used as a reference for safety inspection.

6. Conclusions

To summarize, to the best of our knowledge, this is the first time a belt longitudinal rip
detection and characterization method based on 3D point cloud processing was proposed;
it could work in a harsh environment. Using a binocular line laser stereo vision camera, the
3D point cloud data on the lower surface of the belt was collected in a line-scanning mode.
The proposed identification algorithm was used in each processing cycle to process the 3D
point cloud data and identify the longitudinal rip in real time. The experimental results
show that the proposed method is effective at identifying longitudinal rips whose widths
are more than 3 mm. The issue of a false alarm caused by the scratches was solved perfectly
by using this method and the identification correct rate was 99.2% in all experiments we
performed. Meanwhile, compared with the time required by image processing methods
for longitudinal rip detection (about 18–50 ms) [19,32,33], the identification time of this
method was greatly shorter (0.01–0.04 ms). Furthermore, the PCA algorithm was employed
to realize the effective characterization of the identified rip, and the relative error of the
calculation result of the rip’s maximum width was within ±5%. Compared with the
characterization method based on 2D image processing [18], the proposed method realized
3D characterization for the longitudinal rips; hence, it is more applicable and has higher
precision. This method is suitable for trough belt conveyors with belt widths of less than
1.4 m, and can be used in mines, ports, power plants, and other occasions. In order to make
the proposed method in this work have higher application value and reliability, we will
perform more long-term tests in a variety of industrial scenes and multiform conveyors
(e.g., pipe conveyors) to further verify the method. In addition, it should be noted that the
method in this work could not only could be used for the identification and characterization
of the belt longitudinal rip, but it also has broad application prospects in solving other
defect detection problems, such as defect detection for mechanical parts, buildings, roads,
tracks, etc.
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Appendix A

Table A1. List of symbols in this paper.

Symbol Notes

b/mm The thickness of the belt
Cj The j-th cluster

Cj_first The firstly suspected point added in cluster Cj
Cj_last The latest suspected point added in cluster Cj

C j_last_x/mm The x-coordinate value of point Cj_last
e1st The first principal vector of P
e2nd The second principal vector of P

f Framerate, the number of stripes of input data per second
P The 3D point cloud matrix of the rip edge points

Psus_i The i-th suspected point extracted on the present stripe
sa The empirical coefficient to determine Taz
sc The coefficient to determine Tc

Sx/mm, Sy/mm, Sz/mm The coefficient to determine Tb
Tay/mm The extraction threshold of space in y direction

Taz The extraction threshold of change rate in z direction
Tb/mm The clustering threshold
Tc/mm The distance threshold
Td/mm The empirical discrimination threshold

ti/s The timestamp to get points on the i-th laser stripe
v/(mm/s) The real-time belt speed

vmax/(mm/s) The maximum belt speed
Wmax/mm The maximum width of the rip

xj/mm The coordinate value in the belt running direction of the j-th point on the laser stripe from left to right
xp/mm The x-coordinate value of all points on present stripe
yj/mm The coordinate value in the width direction of the j-th point on the laser stripe from left to right

ymax/mm The largest y coordinate value among all points on each laser stripe
ymin/mm The smallest y coordinate value among all points on each laser stripe

zj/mm The coordinate value in the height direction of the j-th point on the laser stripe from left to right
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