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Abstract

Bacterial pathogens are highly adaptable organisms, a quality that enables them to over-

come changing hostile environments. For example, Vibrio cholerae, the causative agent of

cholera, is able to colonize host small intestines and combat host-produced reactive oxygen

species (ROS) during infection. To dissect the molecular mechanisms utilized by V. cho-

lerae to overcome ROS in vivo, we performed a whole-genome transposon sequencing

analysis (Tn-seq) by comparing gene requirements for colonization using adult mice with

and without the treatment of the antioxidant, N-acetyl cysteine. We found that mutants of the

methyl-directed mismatch repair (MMR) system, such as MutS, displayed significant coloni-

zation advantages in untreated, ROS-rich mice, but not in NAC-treated mice. Further analy-

ses suggest that the accumulation of both catalase-overproducing mutants and rugose

colony variants in NAC- mice was the leading cause of mutS mutant enrichment caused by

oxidative stress during infection. We also found that rugose variants could revert back to

smooth colonies upon aerobic, in vitro culture. Additionally, the mutation rate of wildtype col-

onized in NAC- mice was significantly higher than that in NAC+ mice. Taken together, these

findings support a paradigm in which V. cholerae employs a temporal adaptive strategy to

battle ROS during infection, resulting in enriched phenotypes. Moreover, ΔmutS passage

and complementation can be used to model hypermuation in diverse pathogens to identify

novel stress resistance mechanisms.

Author summary

Cholera is a devastating diarrheal disease that is still endemic to many developing nations,

with the worst outbreak in history having occurred recently in Yemen. Vibrio cholerae,
the causative agent of cholera, transitions from aquatic reservoirs to the human gastroin-

testinal tract, where it expresses virulence factors to facilitate colonization of the small
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intestines and to combat host innate immune effectors, such as reactive oxygen species

(ROS). We applied a genome-wide transposon screen (Tn-seq) and identified that dele-

tion of mutS, which is part of DNA mismatch repair system, drastically increased coloni-

zation in ROS-rich mice. The deletion of mutS led to the accumulation of catalase-

overproducing mutants and a high frequency rugose phenotype when exposed to ROS

selective pressures in vivo. Additionally, ROS elevated mutation frequency in wildtype,

both in vitro and in vivo. Our data imply that V. cholerae may modulate mutation fre-

quency as a temporal adaptive strategy to overcome oxidative stress and to enhance

infectivity.

Introduction

Vibrio cholerae, the etiological agent of the pandemic disease cholera, resides in aquatic envi-

ronments and can also colonize human intestines following ingestion of contaminated food

and water. In order to survive in both aquatic and host environments, V. cholerae has the abil-

ity to cope with harsh conditions during the transition to the host gut and during subsequent

growth [1]. For example, upon infection, V. cholerae senses host signals and is able to coordi-

nate both virulence gene activation and repression to evade host defenses and successfully col-

onize intestines [2–5]. Late in the infection, V. cholerae also optimally modulates its genetic

programs for the forthcoming dissemination into the aquatic environment [6, 7] where it is

often associated with abiotic or biotic surfaces such as phytoplankton and zooplankton. These

associations enable the formation of biofilms, which provide protection from a number of

environmental stresses; including nutrient limitation, protozoa predation, and bacteriophage

infection [8]. Additionally, biofilms may enhance infectivity due to their acid-resistant proper-

ties and higher growth rate during infection [9, 10].

One of the major stresses V. cholerae must overcome is exposure to reactive radical species.

Reactive compounds, including reactive oxygen species (ROS), are abundant in marine sys-

tems [11]. V. cholerae also encounters oxidative stress during the later stages of infection, as

demonstrated by an increase in ROS levels and a decrease in the levels of host antioxidant

enzymes during V. cholerae-induced diarrhea [12, 13]. It has been previously demonstrated

that catalases (KatG and KatB), peroxiredoxin (PrxA), organic hydroperoxide resistance pro-

tein (OhrA), a redox-regulated chaperone (Hsp33), and a DNA-binding protein from starved

cells (DPS) are important for V. cholerae ROS resistance [14–17]. ROS resistance in V. cholerae
is known to be tightly regulated through a variety of mechanisms. OxyR is required to activate

catalase genes and dps, and is modulated by another OxyR homolog, OxyR2 [14, 16, 18]. Quo-

rum sensing systems [19], PhoB/PhoR two-component systems [20], and the virulence regula-

tor, AphB, also play important roles in oxidative stress response [21]. Further identifying

bacterial stress responses to host-derived ROS is important for understanding V. cholerae
pathogenesis.

In this study, we used Tn-seq to screen for V. cholerae genes that are involved in ROS resis-

tance during infection. By comparing colonization in control mice to mice treated with antiox-

idant N-acetyl cysteine (NAC) that reduces the production of ROS in murine intestines [15],

we found that deletion of mutS, encoding a key component in the DNA methyl-directed mis-

match repair (MMR) system, results in a significant colonization advantage compared to wild-

type in ROS-rich mice. The MMR system is highly conserved from bacteria to humans and is

critical for maintaining the overall stability of the genetic material [22]. Mutations in this path-

way lead to hypermutation rates across the genome. It has been shown that inactivation of the
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MMR system of various bacterial pathogens, such as Escherichia coli, Salmonella enterica sero-

var Typhimurium, and Pseudomonas aeruginosa leads to better adaptation and persistence of

these pathogens in murine models [23–26]. It has been proposed that under certain stressful

conditions, hypermutators are selected in the total population by hitchhiking with the adaptive

mutations that they produce. However, the mechanism(s) by which hypermutators become

better persistors is less clear. In this work, we developed a strategy to study bacterial temporal

hypermutation in vivo and found that mutations resulting in increased catalase production

and increased biofilm formation, demonstrated by rugose colony phenotypes, may lead V. cho-
lerae hypermutators to display colonization advantages in ROS-rich mouse intestines.

Results

Tn-seq screens identify in vivo enrichment of mutations in MMR pathways

in the presence of ROS

To investigate V. cholerae genes involved in ROS resistance during colonization, we performed

a Tn-seq screen in a streptomycin-treated adult mouse model, in which bacteria experience

host-generated oxidative and nitrosative stress [15, 27, 28]. As a comparison, we also treated a

set of mice with N-acetyl cysteine (NAC), an antioxidant widely used in human and animal

studies to artificially reduce ROS levels [29, 30]. Previously we have shown that NAC signifi-

cantly reduces the production of ROS related biomarkers in mice [15]. We mutagenized V.

cholerae with a Tn5 transposon and inoculated the Tn5 library into adult mice with NAC treat-

ment as a variable. At the 3-day post-infection (PI) time point, passaged mutants were recov-

ered from fecal pellets. We then extracted bacterial DNA and used Illumina sequencing [6] to

determine the number of transposon insertions in the input and output mutant libraries. We

compared the output/input ratios of mutants colonized in NAC-treated mice (NAC+ mice) to

mice without NAC treatment (NAC- mice) (Fig 1A). Several mutations that have Tn insertions

in previously-known genes required for ROS resistance were found colonizing poorly in NAC-

mice but not in NAC+ mice (S1 Data), validating the NAC treatment and suggesting that these

genes are important for overcoming ROS in vivo. These genes include prxA (VC2637)[14],

ohrA (VCA1006)[15], dps (VC0139)[16], and rpoS (VC0534)[21]. In addition, we identified

iron transport systems (VC0776-VC0780, VC1264), efflux pumps (VC0629, VC1410, VC1675,

VC2761, VCA0183, VCA0267), and a number of transcriptional regulators (such as VC0068,

VC2301, VCA0182) that are important for colonizing in NAC- mice (S1 Data). These genes

are subject for independent confirmation and further investigation.

Interestingly, the Tn-seq screen revealed that a number of mutations are highly enriched in

NAC-mice but not in NAC+ mice (Fig 1A), suggesting that mutants containing disruptions in

these genes have colonization advantages in ROS-rich intestines. Among them, several muta-

tions in DNA methyl-directed mismatch repair (MMR) pathways displayed significantly

higher number of reads in the pools isolated from NAC- mice than those of NAC+ mice (Fig

1A). MMR is highly conserved in all organisms and repairs mispaired bases in DNA generated

by replication errors [22]. In E. coli, MutS recognizes mispairs and coordinates with MutL and

MutH to direct excision of the newly synthesized DNA strand [31](Fig 1B). We found that the

reads of insertions in mutS, mutL, and mutH from NAC- mice were all higher when compared

to NAC+ mice, whereas reads of insertions in the downstream MMR pathway (uvrD, recJ and

dinB) were similar between these two conditions (Fig 1C). It has been reported that UvrD,

RecJ, and DinB play less critical roles in bacterial DNA repair than MutSLH [22, 32]. We con-

firmed that in V. cholerae, deletion of dinB did not affect colonization, nor spontaneous muta-

tion frequency (Fig A in S1 Text). Therefore, in this study, we selected MutS for further

investigation to decipher the possible role of hypermutation on ROS resistance. Of note, the
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Tn-seq screen also revealed that other mutations are significantly enriched in NAC- but not in

NAC+ mice. These mutations included genes in the flagellar biosynthesis pathway (VC2120-

VC2134) and the MSHA pilin biogenesis pathway (VC0398-VC0411)(S1 Data). The mecha-

nisms are subjected to another study, but we speculate that since both flagella and MSHA

pilins activate host innate immunity [2, 33, 34], which is activated by reactive oxygen species

synergistically [35, 36], deletion in flagellar synthesis or MSHA synthesis may therefore have

localized colonization advantages. Removing ROS in the gut abolishes the advantage of these

mutants.

To confirm the Tn-seq results, we constructed an in-frame deletion of mutS. We first com-

pared spontaneous rifampicin resistance by colony enumeration of the ΔmutS mutant with

that of wildtype as a proxy for mutation frequency. As predicted, the mutation frequency in

ΔmutS mutants was approximately 100-fold higher than that in wildtype (Fig 2A).

Fig 1. Tn-seq identification of the enrichment of DNA mismatch repair pathway mutants in NAC- mice. A. Tn-

seq results. Average of output/input ratios from two Tn libraries of mapped read counts of Tn mutants pooled from

five mice without N-acetyl cysteine (NAC) treatment (NAC- mice) were normalized against average of output/input

ratios from two Tn libraries of those from NAC-treated mice (NAC+ mice)(pooled from five mice each group). B.

DNA mismatch repair system pathway. C. Selected average mapped read counts of Tn mutants in the DNA mismatch

repair pathway. Error bars represent means and SDs from two independent libraries. �: Student t-test, P< 0.05. ns: no

significance.

https://doi.org/10.1371/journal.ppat.1007413.g001
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Complementation of mutS on a plasmid restored the mutS mutation frequency to wildtype lev-

els (Fig 2A, grey bar). We then performed a competition experiment by mixing differentially-

labeled wildtype and ΔmutS mutants in a 1:1 ratio and inoculated them into streptomycin-

treated mice with NAC treatment as a variable. Fecal pellets were collected daily and colony

Fig 2. The effect of mutS on mutation rate and colonization. A. Mutation frequency. Cultures of wildtype, ΔmutS,

and ΔmutS complemented strains were grown in LB until saturation and then plated on LB agar and LB agar + 50 μg/

ml rifampicin. After overnight growth at 37˚C, rifampicin resistant colonies were scored. Error bars represent means

and SDs from three independent assays. ���: One-way ANOVA test, P value< 0.001. ns: no significance. B&C.

Colonization of in-frame mutS deletion mutants. 108 cells of wildtype and ΔmutS mutants were mixed in a 1:1 ratio

and intragastrically administered to NAC- (B) and NAC+ (C) mice. Fecal pellets were collected from each mouse at the

indicated time points and plated onto selective plates. The competitive index (CI) was calculated as the ratio of mutant

to wildtype colonies normalized to the input ratio. Horizontal line: mean CI of 5 mice. ��: Kruskal-Wallis test, P

value< 0.005; �: P<0.05; ns: no significance.

https://doi.org/10.1371/journal.ppat.1007413.g002

Hypermutation and ROS resistance

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007413 October 30, 2018 5 / 22

https://doi.org/10.1371/journal.ppat.1007413.g002
https://doi.org/10.1371/journal.ppat.1007413


forming units (CFU) of wildtype and ΔmutS mutants were determined by serial dilution and

colony enumeration on selective LB agar plates. Fig 2B shows that in the NAC- mice, ΔmutS
mutants colonized similarly to wildtype initially, but outcompeted wildtype later in the infec-

tion. At day 6, the competitive index (ΔmutS/WT) exceeded a 1,000-fold advantage. On the

other hand, in the NAC+ mice, ΔmutS mutants did not display a colonization advantage over

wildtype throughout the course of infection (Fig 2C). Note that the total number of colonized

bacteria was similar between different infection time, mice, and conditions. These data con-

firm the Tn-seq study suggesting that ΔmutS mutants are advantageous over wildtype in NAC-

mice, which is predicted to have relatively higher levels of ROS compared to NAC+ treated

mice.

Overproduction of catalases in ΔmutS mutants isolated from NAC- mice

To investigate the possible mechanisms that enable a ΔmutS colonization advantage in NAC-

mice, we further examined these isolates in vitro and in vivo. To avoid additional accumulation

of mutations after in vivo passage, we introduced a copy of mutS into the lacZ locus of mutS
mutants immediately after being isolated from mice. Introducing the chromosomal copy of

mutS into mutS mutants restored the mutation frequency to wildtype levels (Fig B in S1 Text).

We then tested 24 mutS (lacZ::mutS) isolates (annotated as ΔmutS�) from NAC- mice. We first

performed competition colonization experiments to examine whether these individual isolates

maintain colonization advantages over wildtype. We found that all 24 ΔmutS� tested colonized

NAC- mice better than wildtype and the competitive indexes ranged from ~10–1000 (Fig 3A,

light green squares). In NAC+ mice, these isolates gained little, if any, competitive advantage.

As a control, we also tested 5 wildtype isolates (WT�) that were passaged through NAC- mice.

These isolates colonized at a comparable level to the wildtype parental strain in both types of

mice (Fig 3A, orange triangles). These data suggest that the ΔmutS competitive advantage in

ROS-rich mice is heritable.

We then measured ROS resistance of these ΔmutS� isolates in vitro. Parental ΔmutS
mutants had a similar in vitro growth rate as wildtype in LB medium and AKI virulence-induc-

ing medium [37](Fig C in S1 Text). WT� and ΔmutS� also grew similarly under these condi-

tions (Fig C (C) in S1 Text). When cultured in LB until mid-log and then treated with H2O2,

we found that ΔmutS had similar ROS resistance as that of wildtype (Fig 3B). However,

approximately half of ΔmutS� isolates tested displayed significantly more resilience to H2O2

exposure than that of parental ΔmutS (Fig 3B circles, one-way ANOVA P value = 0.0005),

whereas WT� were similar to the parental wildtype strain (Fig 3B triangles, P value> 0.99). Of

note, most of those ΔmutS� isolates that did not produce more catalase displayed different col-

ony morphology (Fig 3B and 3C, squares) (see next section). Correspondingly, about half of

ΔmutS� were detected to have more catalase activity (Fig 3C, circles, one-way ANOVA P

value = 0.0074). The mutations that led to overproduction of catalase in these ΔmutS mutants

were not determined. We selected five such high-catalase-producing ΔmutS� isolates and

examined transcription of catalase genes (katG and katB)[14] induced by H2O2 using qPCR

and found transcription of both catalase genes was elevated in three of these mutants (Fig D in

S1 Text). For the other two ΔmutS� isolates that did not displayed increasing catalase gene

expression, it is possible that mutations involved in post-transcriptional regulation of KatGB

activity are accumulated in these isolates. Taken together, these data suggest that mutations

leading to increased catalase production are a contributing factor to the observed colonization

advantage gained by ΔmutS during colonization in NAC- mice. To test this hypothesis, we

deleted two catalase genes katG and katB [14] in ΔmutS and the resulting strain was competed

with wildtype in NAC- mice. We found that deletion of katG and katB in ΔmutS mutants
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reduced colonization advantage of ΔmutS mutants significantly (Fig E (A) in S1 Text). To fur-

ther confirm the importance of ROS resistance for V. cholerae in vivo, we examined the coloni-

zation of ΔoxyR mutants in NAC- mice. OxyR activates a number of ROS resistance genes in

V. cholerae [14, 16]. Fig E (B) in S1 Text shows that ΔoxyR mutants colonized poorly in this

Fig 3. Recolonization and ROS resistance of passaged V. cholerae. A. Competitive index of recolonized isolates.

Twenty-four ΔmutS mutants isolated from NAC- mice were complemented by a chromosomal copy of mutS (ΔmutS�)
into the lacZ locus. Five wildtype colonies were also selected (WT�) as a control. These isolates were co-infected with

wildtype (lacZ+) into 6-week-old CD-1 NAC- and NAC+ mice. Fecal pellets were collected after 5 days and plated onto

selective plates. The competitive index was calculated as the mutant to wildtype output ratio normalized to the input

ratio. One-way ANOVA test P value< 0.001 includes WT� (NAC+/-) vs ΔmutS� (NAC-) and ΔmutS� (NAC-) vs

ΔmutS� (NAC+). B. ROS resistance. Mid-log cultures of wildtype, ΔmutS, and in vivo-isolated wildtype (WT�), and

ΔmutS (lacZ::mutS) (ΔmutS�) were diluted into saline and into saline containing 300 μM H2O2. After a 1 hr

incubation, viable cells were enumerated. Survival rate was calculated by normalizing CFU to the H2O2-treated group.

Error bars represent means and SDs from three independent experiments. C. Catalase production. Mid-log cultures

were induced with 500 μM H2O2 for 1 hr. The lysates were then subjected to catalase activity assays. Error bars

represent means and SDs from three independent experiments. Circles: smooth variants; squares: rugose colony

variants.

https://doi.org/10.1371/journal.ppat.1007413.g003
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mouse model. These results suggest that ROS is important for V. cholerae colonization of

NAC- mice.

High frequency of arising rugose variants in ΔmutS mutants contributes to

in vivo ROS resistance

Upon enumeration of bacteria from fecal mouse pellets, an unusually high number of rugose

(wrinkled) colonies, originating from smooth ΔmutS mutants, were observed on LB plates (Fig

4A). It has been reported that V. cholerae can switch its colony morphology from smooth to

rugose phenotypes due to the overproduction of exopolysaccharide. This phenotypic switch is

reversible and confers greater resistance to environmental stresses compared to strains that

undergo this transition at low frequency [38–40]. We thus determined the frequency of rugose

colony formation in wildtype and ΔmutS isolates from NAC- and NAC+ mice. Fig 4B shows

that from NAC- mice, a significant number of output ΔmutS colonies displayed the rugose

phenotype, ranging from ~5% to ~30% of total colonies isolated form each mouse. In NAC+

mice, however, the percentage of rugose colonies recovered from ΔmutS mutants was much

lower (Fig 4B, blue circles). As for wildtype that were isolated from either NAC- or NAC+

mice, a relatively low number of colonies displayed the rugose phenotype (Fig 4B, squares).

These data suggest that the lack of a functional DNA repair system may increase the frequency

of rugose colony formation, which may lead to enhanced survival in ROS-rich, in vivo envi-

ronments. Interestingly, when the rugose variants were cultured in liquid LB with aeration, a

majority of them reversed to smooth colonies with high reversion rates (Fig 4C, left panel).

However, if incubated anaerobically, which mimics the in vivo growth condition, the reversion

rates were less prominent as compared to aerobic incubation (Fig 4C, right panel), implying

that anaerobiosis may be one of the in vivo selective pressures that promote rugose colony for-

mation. These data suggest the involvement of temporal phenotypic switches during V. cho-
lerae infection possibly mediated or enhanced by genetic adaptation.

To determine whether rugose colony phenotypes contribute to enhanced survival, we per-

formed in vitro experiments to investigate the possible role of these variants in ROS resistance.

We found that a majority of these rugose ΔmutS� variants did not display more ROS resistance

in liquid cultures (Fig 3B, squares) and did not display increased catalase production compared

to wildtype (Fig 3C, squares). The rugose colony phenotype is often the result of the overpro-

duction of exopolysaccharides, a major component of the biofilm matrix [38, 41]. To examine

whether exopolysaccharide overproduction is the cause of rugose colony formation in ΔmutS�

isolates, we measured the biofilm formation capacity of various isolates. We found that biofilm

mass formed by smooth variants of ΔmutS� was similar to that of wildtype and ΔmutS parental

strains, whereas rugose variants displayed an increased biofilm formation capacity (Fig 5A).

We thus hypothesized that rugose variants are enriched in ROS-rich intestines due to their

increased biofilm production and predict that biofilm-associated cells are more resistant to ROS

exposure. To test this prediction, we assessed the viability of planktonic and biofilm-associated

cells after exposure to organic and inorganic oxidants (Fig 5B). Biofilms were formed on glass

test tubes at the air-broth interface through static culture. The majority of planktonic cells were

killed after exposure to 1 mM H2O2 or 100 μM cumene hydroperoxide exposure for 60 mins. In

contrast, biofilm-associated cells displayed more than a 30-fold increase in resistance to ROS

than planktonic cells (Fig 5B). ROS resistance was mostly eliminated when biofilm structures

were disrupted by vortexing with glass beads prior to ROS exposure (Fig 5B, grey bars). These

results indicate that it is primarily the physical structure of the biofilm that confers protection

against ROS, rather than increased ROS resistance in individual cells. Taken together, our

results imply that biofilm formation in vivo may play a role in ROS resistance.
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Rugose colonies are often caused by mutations in the quorum sensing master regulator

HapR and many clinically-isolated rugose variants harbor loss-of-function hapR mutations [9,

Fig 4. Rugose phenotypes of V. cholerae isolated from NAC- and NAC+ mice. Fecal pellets from 5-day-PI NAC- and

NAC+ mice were resuspended in PBS and diluted samples were spread onto selective LB plates. After overnight

incubation at 37˚C, the plates were incubated at room temperature for two days. The colonies were photographed (A)

and the percentage of rugose colonies was determined (B). Each data point represents the percentage of rugose

colonies out of at least 300 total colonies isolated from one mouse. Horizontal line: average percentage of 8 mice. ����:

One-way ANOVA test, P value<0.0001. C. Reversion rate of the ΔmutS� rugose variants. Rugose colonies were

resuspended in LB and spread onto selective LB plates. After overnight incubation at 37˚C aerobically (circles) and

anaerobically (squares), the plates were incubated at room temperature for two days. The percentage of smooth

colonies was determined out of at least 400 colonies. Colors correspond to unique isolates. ���: Student t-test

P< 0.001.

https://doi.org/10.1371/journal.ppat.1007413.g004
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Fig 5. Biofilm formation capacity of passaged isolates and ROS resistance of biofilm-associated cells. A. Biofilm

formation. Wildtype, ΔmutS, and ΔmutS� smooth and rugose variants were cultured in LB without shaking for 16 hrs

at 37˚C. Culture supernatants were removed, and biofilms were washed with PBS. Biofilm formation was quantified as

described previously [9]. Error bars represent means and SDs from three independent experiments. ����: One-way

ANOVA test, P value<0.0001. B. Biofilm resistance to ROS. Planktonic cells (P), biofilm-associated cells (B), and

disrupted biofilm cells (D) were incubated with fresh LB containing 1 mM H2O2 or 100 μM cumene hydroperoxide

(CHP) for 1 hr. The surviving cells were then enumerated by serial dilution and plated onto LB agar. Error bars

represent means and SDs from three independent experiments. ����: One-way ANOVA test, P value<0.0001. ��:

P< 0.05. C. Colonization of smooth revertants in NAC- mice. 108 cells of ΔmutS� rugose isolates and their Rif-

resistant smooth revertants were mixed in a 1:1 ratio and intragastrically administered to NAC- mice. Fecal pellets

were collected from each mouse at 4-day PI and plated onto selective plates. The competitive index (CI) was calculated

as the ratio of smooth revertants to parental rugose colonies normalized to the input ratio. Horizontal line: mean CI of

4 mice. ��: One-way ANOVA test P< 0.005 [compared with the input ratios (A5 = 1.1±0.7; B16 = 1.7±1.0; M23 = 1.3
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19]. We examined possible disruptions of the quorum sensing pathway in the rugose ΔmutS�

mutants we isolated and found that they were similar to wildtype (Fig F (A) in S1 Text).

Sequencing analysis did not reveal any mutations in the hapR locus. Indeed, although ΔhapR
mutants form thicker biofilms [9, 19], ΔhapR displayed colonization defects in both NAC- and

NAC+ mice (Fig F (B) in S1 Text), suggesting that HapR may regulate other targets that are

involved in adult mouse colonization. To test our hypothesis that biofilm formation is impor-

tant for in vivo ROS resistance, we first performed in vivo competition experiments using

ΔmutS� rugose variants and their corresponding smooth revertants. We selected spontaneous

rifampicin resistant smooth revertants in order to distinguish them with their parental rugose

strains. Fig 5C shows that all three smooth revertants displayed different degrees of colonization

disadvantage over their parental rugose ΔmutS� in NAC- mice. The competitive indexes of

these rugose/smooth variants were comparable to those indexes when these rugose ΔmutS� iso-

lates competed with wildtype (Fig 3A), suggesting that increasing biofilm formation is the main

factor in the rugose isolates that promotes ROS resistance in vivo. To further confirm this, we

then deleted vpsA, which encodes the major component of the Vibrio polysaccharide biosynthe-

sis pathway [42], in ΔmutS and the resulting strain was competed with wildtype in NAC- mice.

We found that abolishing biofilm formation capacity in ΔmutS mutants reduced the coloniza-

tion advantage of ΔmutS mutants significantly (Fig 5D). These data again suggest that biofilm

formation in vivo may play a role in ROS resistance. Of note, ΔmutS/ΔvpsA still outcompeted

wildtype. It is possible that accumulation of other beneficial mutations, such as those enhancing

catalase production, may elevate ROS resistance in vivo for ΔmutS/ΔvpsA mutants.

ROS increases mutation frequency in vitro and in vivo
Mutations in DNA repair systems greatly increase mutation rates in bacteria, as shown by this

and other studies, and it has also been reported that ROS enhances mutation frequency in bac-

teria [43–45]. We then sought to examine whether V. cholerae may display distinct mutation

frequencies as a function of in vivo ROS exposure. Both wildtype and ΔmutS mutants were

inoculated into mice with and without NAC treatment as done in previous experiments. After

3 days of colonization, we collected fecal pellets and outgrew V. cholerae in LB medium for 12

hrs. We then plated these bacteria on rifampicin to determine mutation rate through a gain of

function mutation in rpoB that confers resistance to rifampicin. We determined that for wild-

type V. cholerae colonized in NAC- mice, the mutation frequency was over 30-fold higher than

those in NAC+ mice (Fig 6A). For ΔmutS mutants, as expected, the mutation frequency in vivo
was high, but there was no significant difference between colonizers in NAC- and NAC+ mice

(Fig 6A), suggesting a theoretical limit of in vivo mutagenesis or that the observed elevation in

mutation frequency caused by ROS is mediated by a reduction in MMR activity. We also

determined the in vitro mutation rate in the presence of ROS. Upon exposure to higher levels

of H2O2, elevated mutation frequency was detected in wildtype, whereas changes in mutation

rate in ΔmutS mutants had no statistical significance (Fig 6B). These data suggest that ROS

enhances mutation rate for V. cholerae in both in vitro and in vivo environments. This stress-

induced mutagenesis and resulting increased genetic variability may provide additional means

for V. cholerae to adapt to ROS-rich environments.

±0.7)]. D. Colonization of biofilm formation-deficiency mutants in NAC- mice. ΔmutS or ΔmutS ΔvpsA mutants were

mixed with wildtype at 1:1 ratio and intragastrically administered to NAC- mice. Fecal pellets were collected from each

mouse at 4-day PI and plated onto X-gal plates with appropriate antibiotics. The competitive index (CI) was calculated

as the ratio of mutants to wildtype normalized to the input ratio. Horizontal line: mean CI of 4 mice. ��: Mann-

Whiteney test P value< 0.01.

https://doi.org/10.1371/journal.ppat.1007413.g005
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Discussion

Bacterial pathogens are constantly confronted with changing and aggravating environments

and have been known to leverage genetic adaptation as a means to overcome challenges faced

in these environments. In this study, we used a streptomycin-treated mouse model to study V.

cholerae ROS resistance in vivo. Bacteria experience host-generated oxidative stress in the

streptomycin-treated adult mouse model [15, 27, 28]. Inclusion of antioxidant N-acetyl cyste-

ine (NAC) significantly reduced ROS levels [15](Fig G in S1 Text). For mice without the

Fig 6. ROS exposure effects on mutation frequency in vivo and in vitro. A. Mutation rate in vivo. Fecal pellets from

wildtype or ΔmutS mutants colonized in NAC- (blue circles) and NAC+ (orange squares) mice were collected and

homogenized in LB containing streptomycin. After brief centrifugation, the supernatants were incubated at 37˚C

shaker for 12 hrs. The cultures were then serial diluted onto LB agar + streptomycin and LB agar + rifampicin and

streptomycin. After overnight growth at 37˚C, rifampicin resistant colonies were scored. ��: Mann-Whitney test

P< 0.01; ns: no significance. B. H2O2 effects on mutation rate in vitro. Overnight cultures of wildtype and ΔmutS were

inoculated into fresh LB in the presence of indicated concentration of H2O2 and grown at 37˚C shaking for 12 hrs. The

cultures were then plated on LB agar and LB agar + 50 μg/ml rifampicin. After overnight growth at 37˚C, rifampicin

resistant colonies were scored. Error bars represent means and SDs from four independent experiments. ��: one-way

ANOVA P<0.01 (compared to 0 μM H2O2).

https://doi.org/10.1371/journal.ppat.1007413.g006

Hypermutation and ROS resistance

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007413 October 30, 2018 12 / 22

https://doi.org/10.1371/journal.ppat.1007413.g006
https://doi.org/10.1371/journal.ppat.1007413


streptomycin treatment, ROS levels were lower than streptomycin-treated mice, but remained

detectable (Fig G (A) in S1 Text). In addition, it has been reported that during choleric diar-

rhea, ROS levels were increased in the host [12, 13]. Taken together, it is suggestive that ROS

stress encountered by V. cholerae in the streptomycin-treated mouse model may be physiologi-

cally relevant. By the Tn-seq screen, we discovered that hypermutation rates resulting from the

impairment of the V. cholerae mismatch repair system (ΔmutS) led to a colonization advantage

in mice, which was not observed in NAC-treated mice. E. coli colonization studies of mouse

intestines have shown that hypermutation is initially beneficial because it allows for a rapid

adaptation to the mouse gut environment [26]. However, such strains then experience a loss of

fitness due to the constant accumulation of detrimental mutations. To prevent additional det-

rimental mutations and to be able to study those mutations that conferred a colonization

advantage in vivo, we complemented ΔmutS isolates from NAC- mice immediately after isola-

tion. Further study shows that passage of ΔmutS through NAC- mice resulted in the enrich-

ment of catalase-overproducing isolates and a high frequency rugose phenotype. These

ΔmutS� isolates remained super-colonizers in NAC- mice but did not gain advantages in

NAC+ mice (Fig 3A). We also examined infant mouse colonization (Fig H (A) in S1 Text) as

well as virulence gene expression (Fig H (B&C) in S1 Text) and found that compared to wild-

type, some ΔmutS� isolates were defective in infant mouse colonization and virulence factor

production. These results suggest that mutations are specifically selected to overcome ROS

stress in the NAC- mice. Indeed, in a previous report [45] by Davies, et al., it was observed that

V. cholerae ΔmutS mutants displayed an approximately 5-fold defect in infant mouse coloniza-

tion. Considering the short incubation time in infant mouse colonization (18 hrs) and the

speculated lack of inflammation in infant mouse gut, it is possible that ΔmutS mutants do not

experience the same selective pressures as in ROS-rich adult mice. Similarly, in P. aeruginosa,

ΔmutS mutants are attenuated in a mouse model of acute infections but are favored in long

term persistence of oropharyngeal colonization in cystic fibrosis mice [25].

Many hyper-mutational bacterial pathogens are frequently identified from clinical and

environmental isolates, including E. coli, Salmonella, P. aeruginosa, Haemophilus influenzae,
Neisseria meningitidis, and Streptococcus pneumoniae [46]. This is often the case when bacteria

need to adapt a new stressful environment. For example, a high percentage of mutators of P.

aeruginosa, H. influenzae, and S. aureus were isolated from cystic fibrosis patients who

received antibiotic treatments [47]. Infection of a mammalian host is certainly another new

environment to adapt to and an increase in genetic variability can help to cope with host

defense systems [48]. V. cholerae hypermutators have also been found in clinical isolates. In a

recent study [49], Didelot et al. reported that among 260 V. cholerae genomes they sequenced

and analyzed, 17 isolates have unusually high number of SNPs that are evenly spread through-

out their genomes. Further analysis shows that 14 of these 17 genomes possess genetic varia-

tions in one or more of four genes in the MMR system and the mutation rate of these strains

are significantly increased compared to the others. Interestingly, the majority of these hyper-

mutator strains were isolated between 1961 and 1965, relatively soon after the beginning of the

seventh pandemic. The authors cautiously speculated that hypermutators might be causally

associated with the rapid spread of the seventh pandemic. In addition, a mobile element is

found to insert into the mutS gene of a marine Vibrio species, providing a new mechanism for

altering the mutation rate [50].

Hypermutation may promote adaptive evolution for bacteria, but the high mutation

rate comes at a cost in fitness in the long term [26]. It has been proposed that bacteria may

transiently modulate their mutation rates to balance the trade-off between adaption and the

accumulation of detrimental mutations [51]. For example, the expression of mutS is downre-

gulated by RpoS in response to antibiotic stress, which increases the mutation rate in several
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bacterial species including V. cholerae [52]. In Streptococcus pyogenes, the integration and exci-

sion of a prophage inserted between mutS and mutL causes a reversible increase in mutation

rate in response to the environmental stress [53]. We found that in wildtype V. cholerae, muta-

tion rate was significantly increased when colonizing NAC- mice compared to NAC+ mice (Fig

6A). This finding suggests that V. cholerae might utilize increased mutation rates as a temporal

strategy for adopting advantageous phenotypes during infection of a ROS-rich host. Interest-

ingly, our Tn-seq screen (S1 Data) revealed that rpoS mutants failed to colonize NAC- mice but

not NAC+ mice. Further testing is required to investigate whether the observed increase in

mutation rate in NAC- mice is RpoS-mediated. Moreover, the rugose variants isolated from

NAC- mice could reverse to smooth colonies in vitro (Fig 4C), indicative of use of temporal

adaptive strategies by V. cholerae to combat ROS during infection. Of note, the mechanism of

V. cholerae smooth-rugose phase variation is not clear, but DNA repair pathways have been

implicated in phase variation in several species, including Neisseria gonorrhoeae, V. parahaemo-
lyticus, and Pseudomonas sp.[54–57]. Interestingly, the high reversion rate from rugose to

smooth colonies under aerobic growth (Fig 4C) occurred in mutS complemented background

(ΔmutS�), suggesting that reversion is not due to DNA mutation. Cell variants in some bacterial

species are generated without the burden of mutation, but rather from reverse biostability,

which can be controlled by genetic mechanisms such as DNA rearrangement or epigenetic

mechanisms such as DNA methylation [58, 59]. Alternatively, the rapid reversion from rugose

to smooth in vitro even though these cells have been repaired for mutS may simply because that

the selective pressure for reversion to the smooth variant is remarkably strong during aerobic

growth and therefore the reverting mutations arise rapidly. The exact mechanisms of O2-depen-

dent rugose-to-smooth phenotypic switch is currently under investigation.

Hypermutable strains are often associated with higher incidences of antibiotic resistance

than strains with lower mutations rates. This study proposes a model of in vivo temporal

hypermutation by mutating MMR and complementing mutants with functional MMR after

isolation. This approach allowed for the identification of ROS resistance mechanisms that

could be genetically upregulated under ROS stress. It is likely that this approach could be uti-

lized in the context of distinct stressors such as low pH, desiccation, nitrosative stress, etc.,

revealing likely mechanisms used to overcome those specific environments by comparing

mutation spectra or phenotypic changes between experimental groups. In reverse order, MMR

mutants could also be used to shed light on stresses experienced in undefined environments

by bacteria by associating enriched pathways with stressors. Insight into the mechanisms used

to overcome specific stressors could be used to refine antibacterial strategies. This insight

would allow for the proactive targeting of arising mutators under treatment, preventing resis-

tant lineages. This application could improve the efficacy of antibacterial agents and reduce

the incidence of resistant mutators.

Materials and methods

Ethics statement

All animal experiments were carried out in strict accordance with the animal protocols that

were approved by the Ethical Committee of Animal Experiments of Nanjing Agricultural Uni-

versity (Permit Number: SYXK (Su) 2017–0007). All efforts were made to minimize animal

suffering. Euthanasia was performed by CO2 inhale.

Strains, plasmids and culture conditions

V. cholerae El Tor C6706 [60] was used as a parental strain in this study, and was propagated

in LB media containing appropriate antibiotics at 37˚C, unless otherwise noted. The mutS and
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dinB in-frame deletions were constructed by cloning the regions flanking mutS or dinB into

the suicide vector pWM91 containing a sacB counter-selectable marker [61]. The resulting

plasmids were introduced into V. cholerae by conjugation and deletion mutants were selected

for double homologous recombination events. The construction of hapR, katG, katB, oxyR,

and vpsA mutants has been described previously [14, 19, 62]. The mutS overexpression plas-

mid was constructed by cloning mutS coding sequences downstream of the lac promoter in

pBBR-MCS-3 [63]. Chromosomal complementation of mutS was constructed by inserting

mutS into the lacZ locus using pJL1 [64]. AKI medium was used to induce virulence gene

expression [37]. Transcriptional lux reporters of promoter regions of tcpA have been described

previously [64]. For growth of oxyR mutants on LB plates, 10 μg/ml catalase from bovine liver

was included in the medium. When necessary, rugose variants were propagated in LB media

without shaking to avoid smooth revertants.

Mouse colonization

The streptomycin-treated adult mouse model was used to examine V. cholerae ROS resistance

in vivo as previously described [15, 27] with the following modifications. Six-week-old CD-1

mice were provided with drinking water or drinking water containing the antioxidant N-acetyl

cysteine (NAC) [1% (wt/vol)] for one week. 0.5% (wt/vol) streptomycin and 0.5% aspartame

were then added to the drinking water for the remainder of the experiment. Two days after

streptomycin treatment, approximately 108 CFU of each of the two differentially-labeled

strains (wildtype and mutant) were mixed at a 1:1 ratio and intragastrically administered to

each mouse. Fecal pellets were collected from each mouse at the indicated time points, resus-

pended in LB, serially diluted, and then plated on plates containing 5-bromo-4-chloro-3-indo-

lyl-β-D-galactopyranoside (X-gal) and appropriate antibiotics. The competitive index was

calculated as the ratio of mutant to wildtype colonies normalized to the input ratio.

The infant mouse colonization assays were performed as previously described [65] with the

following modifications. Briefly, mid-log phase cultures of WT (lacZ +) and mutants (lacZ -)

were mixed in a 1:1 ratio and approximately 105 cells were intragastrically inoculated into

5-day-old CD-1 suckling mice. After a 20-hr period of incubation, mice were sacrificed. Small

intestines were harvested and homogenized, the ratio of mutants to WT bacteria was deter-

mined by plating on LB agar containing antibiotics and X-Gal.

Tn-seq screens to identify in vivo ROS resistance-related genes

Approximately 108 CFU from overnight culture of a saturated Tn5 insertion C6706 library

using pRL27 [66] were then intragastically inoculated into six-week-old CD-1 mice +/- N-ace-

tyl cysteine (NAC) treatment (5 mice/group). 3 days PI, freshly-collected fecal pellets from

each group were pooled and homogenized, the samples were then filtered through a 40 μm

membrane. The filtrates were centrifuged, bacterial pellets were resuspended into 20 ml LB

medium with appropriate antibiotics and were grown to saturation for DNA extraction (out-

put library). The transposon junctions were amplified from sheared gDNA samples and sub-

jected to massive parallel sequencing using Illumina MiSeq as described previously [6]. All

read mapping and data analysis were performed using previously described methods [67].

ROS resistance and catalase production assays

Overnight cultures of wildtype, ΔmutS, and in vivo-isolated mutS (lacZ::mutS)(designated

ΔmutS �) strains were inoculated at 1:100 into fresh LB containing appropriate antibiotics and

shaken at 37˚C until mid-log phase. Cultures were then diluted into saline and into saline con-

taining 300 μM H2O2 and were further incubated for 1 hr. Viable cells were then enumerated
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by serial dilution and plating. Survival rate was calculated by normalizing CFU to the H2O2-

treated group. Catalase production assays used mid-log cultures that were induced with

500 μM H2O2 for 1 hr. 1 ml of culture samples was withdrawn. Rinsed cells were collected and

lysed using sonication. The lysates were then subjected to catalase activity assays using the

Fluorometric Catalase Activity Assay Kit (Enco Scientific) per the manufacturer’s instructions.

Mid-log cultures were induced with 500 μM H2O2 for 1 hr for measuring catalase expression.

Bacterial cells were then collected and total RNA was extracted using TRIzol (Invitrogen). Sin-

gle-stranded cDNA was synthesized using SuperScript III reverse transcriptase (Invitrogen)

with hexadeoxyribonucleotide mixture as primers. Reverse transcription-quantitative PCR

(qRT-PCR) was carried out by using the CFX96 real-time PCR system (Bio-Rad) and a two-

step RT-qPCR kit with SYBR green detection (TaKaRa). To standardize results, the relative

abundance of 16S rRNA was used as the internal standard.

Biofilm formation and biofilm ROS resistance assays

Overnight cultures of wildtype, ΔmutS, and in vivo-isolated ΔmutS� strains were inoculated at

1:100 into fresh LB containing appropriate antibiotics and incubated without shaking at 37˚C

for 16 hrs. Culture supernatants were removed, and biofilms were washed with PBS. Biofilm

formation was quantified by crystal violet staining as previously described [9].

To compare the ROS resistance of planktonic and biofilm associated cells, overnight cul-

tures were inoculated at 1:100 into LB and incubated for 16 hrs at 37˚C without shaking.

Planktonic cells were removed and pelleted, while the remaining biofilms were rinsed with

PBS. Fresh LB containing 1 mM H2O2 or 100 μM cumene hydroperoxide (CHP) was then

added into tubes containing either rinsed biofilms or pelleted planktonic cells and further

incubated for 1 hr. To disrupt biofilm structures, cultures were vortexed for 1 minute in the

presence of glass beads. The surviving cells were then enumerated by serial dilution and plated

onto LB agar.

Mutation frequency analysis

Overnight cultures of wildtype, ΔmutS, and ΔmutS� strains were inoculated into fresh LB con-

taining different concentrations of H2O2 and grown at 37˚C shaking for 12 hrs. The cultures

were then plated onto LB agar +/- 50 μg/ml rifampicin. After overnight growth at 37˚C, rifam-

picin resistant colonies were scored. The in vivo mutation frequency was determined using the

protocol described previously [45] with modifications. Briefly, fecal pellets from V. cholerae
colonized mice were collected and homogenized in 10 ml LB containing 500 μg/ml streptomy-

cin. After brief centrifugation, the supernatants were incubated at 37˚C shaking for 12 hrs.

The cultures were then serially diluted and plated onto LB agar containing streptomycin

(500 μg/ml) and LB agar containing rifampicin (50 μg/ml) and streptomycin (500 μg/ml).

After overnight growth at 37˚C, rifampicin resistant colonies were scored.

Virulence gene and quorum sensing regulated gene expression

Overnight cultures of V. cholerae strains containing PtcpA-luxCDABE transcriptional fusion

plasmids were inoculated 1:10,000 into AKI medium [37] and incubated without shaking at

37˚C for 4 hrs, followed by shaking at 37˚C for an additional 3 hrs. Luminescence was then

measured at the indicated time points and normalized to OD600. At the final time point, 109

cells were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)

and immunoblotting using anti-TcpA antiserum.

To determine the functionality of HapR-regulated quorum sensing, the cosmid pBB1, car-

rying the V. harveyi lux operon [68] was introduced into V. cholerae strains by conjugation.
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The resulting strains were grown in LB with appropriate antibiotics at 30˚C overnight, diluted

to a concentration of 1:100 in fresh LB and transferred to white opaque 96 well plates and incu-

bated at 30˚C shaking. Luminescence was read at OD600 = 1.

Supporting information

S1 Data. Tn-seq reads of V. cholerae colonization in NAC- and NAC+ mice.

(XLSX)

S1 Text. Fig A. The effect of dinB on colonization and mutation rate. A&B. Colonization of

in-frame dinB deletion mutants. 108 cells of wildtype and ΔdinB mutants were mixed in a 1:1

ratio and intragastrically administered to NAC- (A) and NAC+. (B) mice. Fecal pellets were

collected from each mouse at the indicated time points and plated onto selective plates. The

competitive index (CI) was calculated as the ratio of mutant to wildtype colonies normalized

to the input ratio. Horizontal line: mean CI of 4 mice. B. Mutation frequency. Cultures of wild-

type and ΔdinB strains were grown in LB until saturation and then plated onto LB agar and LB

agar + 50 μg/ml rifampicin. After overnight growth at 37˚C, rifampicin resistant colonies were

scored. Error bars represent means and SDs from three independent assays. ns: Student t-test

no significance.

Fig B. Chromosomal complementation of mutS. Cultures of wildtype, ΔmutS, and chro-

mosomally inserted (in lacZ locus) mutS in ΔmutS were grown in LB until saturated and then

plated on LB agar and LB agar + 50 μg/ml rifampicin. After overnight growth at 37˚C, rifampi-

cin resistant colonies were scored. ����: One-way ANOVA P< 0.0001. ns: no significance.

Fig C. The effect of mutS on V. cholerae growth. Wildtype and ΔmutS growth in LB (shaking)

(A) and AKI medium (standing)(B). OD600 was measured. C. Growth of WT� and ΔmutS� in

LB and AKI to mid-log phase. OD600 was measured and compared with their parental strains.

Fig D. Expression of catalase genes in ΔmutS� isolates. Mid-log cultures of wildtype, ΔmutS,

and selected ΔmutS � were induced with 500 μM H2O2 for 1 hr. Total RNA was extracted and

cDNA was synthesized. Reverse transcription-quantitative PCR (qRT-PCR) was carried out

and normalized against 16S rRNA as the internal standard. Error bars represent means and

SDs from three independent assays. �: One-way ANOVA P <0.05 (compared to wildtype).

Fig E. Colonization of ROS-sensitive mutants in NAC- mice. A. ΔkatGB. ΔmutS or ΔmutS
ΔkatGkatB mutants were mixed with wildtype at 1:1 ratio and intragastrically administered to

NAC- mice. Fecal pellets were collected from each mouse at 4-day PI and plated onto X-gal

plates with appropriate antibiotics. The competitive index (CI) was calculated as the ratio of

mutants to wildtype normalized to the input ratio. Horizontal line: mean CI of 5 mice. ��:

Mann-Whiteney test P value < 0.01. B. ΔoxyR. ΔoxyR mutants were mixed with wildtype in a

1:1 ratio and intragastrically administered to NAC- mice. Fecal pellets were collected from

each mouse at 4-day PI and plated onto X-gal plates with 10 μg/ml catalase and appropriate

antibiotics. The competitive index (CI) was calculated as the ratio of mutants to wildtype nor-

malized to the input ratio. Horizontal line: mean CI of 5 mice. ��: Mann-Whiteney test P

value < 0.01.

Fig F. The relationship between quorum sensing regulator HapR and rugose variants of

ΔmutS�. A. pBB1 expression in ΔmutS�. Wildtype, ΔmutS, and ΔmutS� rugose variants con-

taining a HapR-regulated luxCDABE (pBB1) [68] were grown in LB with appropriate antibiot-

ics at 30˚C overnight, diluted to a concentration of 1:100 in fresh LB and transferred to white

opaque 96 well plates and incubated while shaking at 30˚C. Luminescence was read at OD600 =

1. B. Colonization. Wildtype and ΔhapR were co-inoculated into 6-week-old CD-1 mice with

or without NAC treatment. Fecal pellets were collected after 5 days and plated onto selective

plates. The competitive index was calculated as the ratio of mutant to wildtype colonies
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normalized to the input ratio.

Fig G. ROS production in adult mouse intestinal tissues. Small intestinal frozen tissue sections

from mice with no treatment (A, -Sm, -NAC), treated with streptomycin (B, +Sm, -NAC), and

with streptomycin and N-acetyl cysteine (C, +Sm, +NAC) were stained with CM-H2DCFDA

(Invitrogen) for 60 min at 37˚C. Images were taken using a fluorescence microscope (IX81;

Olympus). Five randomly selected areas were photographed with the same exposure time. The

images were processed using the same fixed threshold in all samples by Slidebook 5.0, and

cropped using Adobe Photoshop. Representative images are shown.

Fig H. The effects of mutS on virulence factor production and infant mouse colonization. A.

The infant mouse colonization assays. Mid-log phase cultures of WT (lacZ +) and mutants

(lacZ -) were mixed in a 1:1 ratio and approximately 105 cells were intragastrically inoculated

into 5-day-old CD-1 suckling mice. After a 20-hr period of incubation, mice were sacrificed.

Small intestines were harvested and homogenized, the ratio of mutants to WT bacteria was

determined by plating onto LB agar containing antibiotics and X-Gal. B.&C. Overnight cul-

tures of wildtype, ΔmutS and ΔmutS� containing PtcpA-luxCDABE transcriptional fusion plas-

mids were inoculated 1:10000 into AKI medium [37] and incubated without shaking at 37˚C

for 4 hrs, followed by shaking at 37˚C for an additional 3 hrs. Luminescence was then mea-

sured at the indicated time points and normalized to OD600 (B). At the final time point, 109

cells were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis

(SDS-PAGE) and immunoblotting using anti-TcpA antiserum (C).

(PDF)
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