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The major mood disorders, which include bipolar disorder (BD) and major depressive disorder 

(MDD), are substantially heritable, but few risk loci have been identified. We performed a meta-

analysis of 5 major mood disorder case-control samples, including over 13,600 unique individuals 

genotyped with approximately 500,000 to 1 million single nucleotide polymorphism (SNP) 

markers on high-density arrays. Allele-wise association results were meta-analyzed with a method 

that weights results by sample size. We found genome-wide significant evidence that SNPs in a 

region of chromosome 3p21.1were associated with major mood disorders. The SNP rs2251219 

returned the smallest meta-analysis p-value, 3.63 × 10−8, with a pooled odds ratio of 0.87. 

Supportive results were observed in 2 out of 3 independent samples tested in a replication study. 

These results implicate one or more genes in this region in the etiology of major mood disorders 

and suggest that BD and MDD share genetic risk factors.
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The major mood disorders have a total lifetime prevalence up to 20%, and may soon become 

the leading cause of morbidity worldwide1. Similarities in symptoms and treatment 

response, twin concordance, and shared familial risk (reviewed in ref. 2), have long fed the 

suspicion that the major mood disorders share genetic risk factors, but molecular evidence 

remains scarce. Genome-wide association study (GWAS) data offer the opportunity to take a 

fresh look at genetic factors involved in these common disorders.

Samples (see Table 1) consisted of cases with a major mood disorder and controls, all of 

European ancestry, ascertained and genotyped as previously described(see Methods). One 

published GWAS of MDD 3 was not included in the meta-analysis, because complete 

results were not available, but key SNPs were tested later in a replication study. SNP 

genotype data were obtained from dbGaP (National Institute of Mental Health BD [NIMH-

BP] and Genetic Association Information Network [GAIN-MDD] samples), the Wellcome 

Trust Case Control Consortium (WTCCC) sample, and through collaborators (German 

sample). Data from the Systematic Treatment Enhancement Program for Bipolar Disorder 

(STEP-BD) sample were obtained from the authors’ website. Data from the NIMH-BP, 

GAIN-MDD, and German samples were used to impute genotypes for about two million 

HapMap Phase 2 markers. The WTCCC and STEP-BD samples were both genotyped on the 

same platform, so only the observed data were used.

A total of 317,889 markers could be reliably scored across 4 or 5 samples (Figure 1a). The 

final results revealed no evidence of residual bias, with a mean genome-wide Z-score of 

0.005, close to the theoretical null value of 0 (Supplementary Fig 1). Complete meta-

analysis results are presented in Supplementary Table 1.

Six SNPs on chromosome 3p21 were associated with major mood disorder at the p < 7.2 × 

10−8 level (Figure 1b; Supplementary Table 2). This corresponds to a genome-wide 

corrected p<0.05 in samples of European ancestry4. At the most significant marker, 

rs2251219, the C-allele was consistently less common in cases than controls (p-value = 1.12 

× 10−8; Table 2).
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Observed genotypes at rs2251219 were available in all samples except for GAIN-MDD. For 

that sample, we used imputed genotypes at rs2251219, but the imputation is expected to be 

highly reliable. Imputation methods perform well in European-ancestry samples5, and there 

was strong linkage disequilibrium (LD) among the markers flanking rs2251219 (r2 ≥ 0.98). 

One nearby SNP that was genotyped in the GAIN-MDD sample, rs2289247, returned a 

meta-analysis p-value of 8.96 × 10−7, similar to rs2251219. Random masking of 5% of 

genotypes had little effect on the imputation results (data not shown). Imputation statistics 

are presented in Supplementary Table 2.

The analysis of rs2251219 was repeated under a random effects model, with similar results 

(p=3.62 × 10−8; Supplementary Table 3). The pooled OR was 0.87 (95% CI: 0.83–0.92), 

with no evidence of heterogeneity (Q=2.93, df=3, p=ns; I2 = 0). GAIN-MDD returned a 

similar OR of 0.90 (95% CI: 0.82–0.99), consistent with a similar contribution of this locus 

to both BP and MDD.

To assess robustness, we repeated the analysis 5 times, removing one sample each time. 

Random effects p-values at rs2251219 ranged from 10−6 – 10−9, reflecting varying sample 

sizes, but the ORs remained stable. (Supplementary Table 3). Thus it appears that the results 

are not driven by any single sample.

We subsequently obtained association results at rs2251219 in an independent BP case-

control sample (n=1536) genotyped by GlaxoSmithKline (GSK)6. The C-allele of 

rs2251219 was significantly under-represented in BP cases compared to controls (p=0.002, 

OR = 0.57; Table 2), replicating our main meta-analysis result. Data from two independent 

MDD case-control samples were also obtained from GSK3: A clinical sample from Munich 

(n=1792) and a population-based sample from Lausanne (n=1349). No significant 

association with rs2251219 was found in either MDD sample, although in the larger one the 

95% CI of the OR (0.83–1.77) substantially overlapped with that of the present study (0.83–

0.92, Table 2). Additional, nearby markers also showed evidence of association in one or 

more samples (data not shown). When all 3 samples were combined with our original 

results, the evidence of association at rs2251219 increased (fixed effects p = 1.67 × 10−9; 

random effects p=4.99 × 10−9). These data provide support for our findings in independent 

samples, but the findings are more robust in BP than in MDD.

The association signals on chromosome 3p span a ≥246 kb region containing several 

annotated transcripts (Figure 1b). SNP rs2251219 is a synonymous variant in the gene 

PBRM1, which encodes polybromo-1, important in chromatin remodeling7. The nearby SNP 

rs2289247 is a non-synonymous (V → M) variant in the gene GNL3, encoding the GTP-ase 

nucleostemin, involved in proliferation of stem cells, especially in the central nervous 

system8. These genes are good biological candidates, but the LD across the locus is very 

strong (r2 > 0.9; Figure 1c), complicating efforts to localize functional marker(s) in 

individual genes by association mapping alone.

To help prioritize genes for further study, we examined gene expression in brain tissue. 

PBRM1 was over-expressed in the dorsolateral prefrontal cortex of patients with BP 

(p=0.018; Supplementary Figure 2), compared to healthy controls. This finding, not 
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confounded by linkage disequilibrium in the region, independently implicates PBRM1, at 

least in BP. We also mined 2 brain expression datasets9,10 to test 22 disease-associated 

SNPs for cis-association with expression of all known transcripts in the 3p region. Apparent 

associations between rs2251219 and expression of PBRM1 and GLT8D1 involved probes 

that overlap common SNPs, an important source of artifact11. Neither were confirmed by 

qPCR in the Stanley Brain Foundation Samples, and the GLT8D1 finding could not be 

confirmed in cDNA from the original study9 using probes that did not overlap known SNPs 

(data not shown).

This is the first psychiatric study to find genome-wide significant association on 

chromosome 3p. Previous studies have detected suggestive evidence of association in this 

region6,12. A meta-analysis of BP GWAS in samples that overlap with those in the present 

study found suggestive signals6; the most significant SNP in that study was nominally 

significant in the present study (rs1042779; p=0.001). Considering the strong local LD, all 

of these studies may have detected signals arising from the same risk allele(s).

Previous major mood disorder GWAS have highlighted several genes elsewhere in the 

genome We detected association with most of these genes (Supplementary Table 4), but our 

results are not independent replications since the samples we used overlap with those in the 

previous studies. No signal was significant after genome-wide correction for multiple 

testing. If many genes play a role in risk, signals may vary from study to study, reflecting 

small sample differences and other unmeasured factors Thus, even this large sample may be 

too small or heterogeneous to detect all important risk alleles at genome-wide significance. 

A complementary analysis is expected in the future, when the Psychiatric GWAS 

Consortium13 completes its study of fully-imputed data in these and other samples.

We report molecular support for the prior epidemiologic evidence of genetic overlap 

between BP and MDD2. These data do not explain why, among all those carrying risk 

allele(s), some develop BP, others develop MDD, and still others remain apparently well. 

This phenomenon may reflect a large number of risk alleles, few of which have been 

detected to date, environmental influences and -- perhaps -- epigenetic factors.

The genetic association findings to date seem to account for little of the inherited risk for 

mood disorders. Since GWA studies usually omit SNPs with minor allele frequencies below 

3–5%, we can say nothing about alleles in that frequency range, even if they have relatively 

strong effects. If rare alleles of large effect exist, each can account for only a small 

proportion of cases. More common autosomal alleles (frequency >20%) conferring a 

heterozygote relative risk of 1.3 would have been detected with >90% power in this sample. 

Since we found no such alleles, they probably do not exist in this sample, the largest mood 

disorder sample studied to date. Many loci may add together to confer risk, as some studies 

suggest14,15, or fewer loci may interact, but to our knowledge, strong epistasis has not yet 

been demonstrated in complex human traits.

The genetic architecture of the major mood disorders appears to be multi-genic and/or 

highly heterogeneous. As robust findings accumulate and sample sizes grow, the identified 

genes may triangulate pathways of etiologic relevance. The GWAS remains an important 
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means to that end, even though each individual finding may represent only a small step 

forward.

METHODS

Study Samples

The samples used in the meta-analysis have been described previously16–19. Details, 

including quality control procedures applied to the genotyping data and a description of the 

replication samples, is provided as a supplement to the published report (Supplementary 

Note).

Imputation

Genotype data from the NIMH-BP, GAIN-MDD, and German samples were used to impute 

data on 2.1 million HapMap Phase 2 SNPs by use of the program Markov Chain 

Haplotyping (MACH), version 1.0 20. MACH uses Markov chain haplotyping to resolve 

haplotypes, and thereby missing genotypes, from observed genotypes in unrelated 

individuals. We used the “greedy” algorithm, as recommended by the authors. SNPs that 

were flagged as having different alleles than in HapMap CEU or as monomorphic were 

reviewed, after which they were either recoded for the reverse strand (flipped) or dropped. 

SNPs that were flagged for allele frequencies that were markedly different from HapMap 

CEU were also reviewed. Palindromic SNPs whose allele frequencies were consistent with 

reversed coding were flipped. Other SNPs with unexpected allele frequencies were dropped. 

PLINK21 (vers. 1.4) was used to flip and drop SNPs as necessary. After all allele-coding, 

monomorphism, and palindrome issues were resolved, imputation was run again. SNPs in 

the results files were dropped if the MAF in cases or controls was <0.05 or if the error rate 

(as reported in the .erate output file) was >0.01. Finally, the imputed data were formatted 

into PLINK binaries for analysis.

Meta-analysis

PLINK output (.assoc) files were modified with columns for direction of association, sample 

size, and strand. For most samples, sample size equaled the sum of cases and controls 

included in the final analysis, after quality control. For the STEP-BD sample, sample size 

was set to equal the number of cases only. This was done to avoid over-weighting the results 

from the NIMH control sample, largely overlapping portions of which were included in both 

the NIMH bipolar disorder and STEP-BD samples. Modified files were loaded into Metal 

(July, 2008 version), then processed using the GENOMICCONTROL option, which applies 

a genomic control22 correction in samples where the genomic inflation factor is greater than 

1.0. Metal weights each sample based on the square root of the sample size.

Great care was taken in combining results from different samples and platforms to avoid 

confusing alleles, especially at palindromic SNPs. To check this, we inspected all SNPs 

whose range of allele frequencies in the meta-analysis was greater than 0.2, a commonly-

used threshold. Most of these SNPs were palindromes and, as expected, their minimum and 

maximum allele frequencies across the study samples added to approximately 1. Using the 

“STRANDLABEL” and “USESTRAND ON” commands in METAL, these SNPs were 
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recoded to ensure consistent allele coding across the samples analyzed. Because the German 

sample was genotyped on the Illumina platform that contains no palindromic SNPs, we used 

that sample as the gold standard. A final check identified 36 SNPs whose allele frequency 

ranges still exceeded 0.2. Most of these were not palindromes, and those that were did not 

show complementary allele frequencies. We concluded these were unreliable SNPs and 

dropped them from the analysis.

Selected results were confirmed, and heterogeneity statistics were calculated, using 

Comprehensive Meta-analysis version 2.0. This performs a random-effects meta-analysis 

that is robust to sample heterogeneity, as well as explicit tests of heterogeneity using Q and I 

statistics.23 In order to account for overlap in control samples, we grouped cases from the 

NIMH-BP and STEP-BD samples (which do not overlap), and compared them, as a whole, 

with the controls used in the STEP-BD report, as recommended by some authorities24,25.

We used a threshold of genome-wide significance (7.2 × 10−8) derived from a published, 

genome-wide simulation of common variants in samples of European ancestry4. This 

threshold is more conservative than the value of 1.6 × 10−7 that would represent a 

Bonferroni-corrected p=0.05 for the approx. 318,000 markers tested, but is consistent with 

accepted thresholds for genome-wide significance26. Although we set out to find variants 

shared in common between BP and MDD, we have considered only BP in other studies16. 

The results at rs2251219 would remain significant even if multiplied by 2 to account for 

this.

Power Analysis was done with Genetic Power Calculator27. We assumed a trait prevalence 

of 2%, minor allele frequency of 20%, an alpha of 7.2 × 10−8, and a marker-allele D’ value 

of 0.8.

Gene Expression Analysis

Brain RNA and genomic DNA samples were obtained from the Stanley Medical Research 

Institute (SMRI). This collection comprises 3 diagnostic groups, each with 35 samples: 

healthy control, bipolar disorder and schizophrenia. All experiments were done after the 

specimen code was broken and they were thus unblinded. RNA samples originated from the 

dorsolateral prefrontal cortex. Of these, 101 samples provided sufficient RNA for reverse 

transcription (Transcriptor First Strand cDNA Synthesis kit with oligo-dT priming, Roche 

Applied Science, Indianapolis, IN) and subsequent real-time PCR analysis. We amplified 

PBRM1 mRNA with a primer pair common to all known RefSeq transcript variants 

(Eurofins MWG operon, Huntsville, AL) and a FAM-labeled probe (Roche Applied Science 

Universal Probe Libraray probe # 41). No known SNPs overlapped with primer or probe 

sequences (Supplementary Figure 2). For normalization, we used a pre-designed 

endogenous control assay interrogating PGK1 (Applied Biosystems, Foster City, CA; 

catalog number 4333765F, FAM-labeled). Reactions were carried out in triplicate in a 384-

well LightCycler 480 (Roche Applied Science) in reaction volumes of 8 uL, with 5 ng of 

reverse-transcribed RNA, 1x final concentration of Roche LightCycler 480 Probes master 

mix, 450 nM of each primer, and 125 nM of fluorescent probe. Assay efficiencies were 

determined using two-fold serial dilutions of pooled cDNA. Relative expression levels for 

PBRM1 were calculated using the efficiency-corrected comparative threshold method 28. 
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We used the sample with the median PBRM1 expression level as calibrator and log2-

transformed expression levels. One hundred samples were successfully assayed. (As 

recommended by SMRI, one case sample was omitted due to a known degenerative 

neurological disorder). Of the remaining 99 samples (31 with bipolar disorder, 34 with 

schizophrenia, and 33 healthy controls), 97 were from donors of European ancestry. Ninety-

six of these samples were successfully genotyped at rs2251219 with standard exonuclease 

methods (TaqMan, Applied Biosystems, Boston, MA). Data were analyzed by ANOVA 

(Xlstat 6.0), with diagnosis as the independent, and relative expression level as the 

dependent, variable. Specific comparisons were performed with the Tukey HSD test. The 

entire data set has been uploaded to the SMRI data bank.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a. Manhattan plot of the meta-analysis results, generated by Haploview 4.0. Physical 

position is shown along the x-axis, -log (meta-p-value) is shown along the y-axis, and each 

chromosome is shown in a distinct color. The red guideline indicates the threshold of 

genome-wide significance (7.2 ×10−8). b. Detail of the associated region, generated by 

SNAP 2.0. Physical position and gene annotations (HapMap release 22) are shown along the 

x-axis, -log (meta-p-value) is shown on the left y-axis, recombination rate (CEU) on the 
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right y-axis. c. Linkage disequilibrium (r2) as estimated from HapMap 3 phased genotypes, 

generated by UCSC Genome Browser. Darker red indicates higher values.
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Table 1

Descriptive statistics for the samples analyzed. WTCCC: Wellcome-Trust Case Control Consortium bipolar 

disorder sample; GAIN Depression: Genetic Association Information Network major depressive disorder 

sample; STEP-BD: STEP-BD bipolar disorder sample; NIMH Bipolar: NIMH bipolar disorder sample; 

German: German bipolar disorder sample. Counts refer to subjects who passed all quality control filters (see 

Methods).

Sample Cases Case Diagnosis Controls Platform

WTCCC 1854 Bipolar I, bipolar II, schizoaffective bipolar 2943 Affymetrix 500K

GAIN MDD 1722 Major depressive disorder 1774 Perlegen

STEP-BD 1461 Bipolar I, bipolar II, schizoaffective bipolar 2008 Affymetrix 500K

NIMH Bipolar 1001 Bipolar I, schizoaffective bipolar 1033 Affymetrix 6.0

German 645 Bipolar I 1310 Illumina HumanHap 550

Total 6683 9068
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