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Summary. We propose a framework for general Bayesian inference. We argue that a valid up-
date of a prior belief distribution to a posterior can be made for parameters which are connected
to observations through a loss function rather than the traditional likelihood function, which is
recovered as a special case. Modern application areas make it increasingly challenging for
Bayesians to attempt to model the true data-generating mechanism. For instance, when the
object of interest is low dimensional, such as a mean or median, it is cumbersome to have to
achieve this via a complete model for the whole data distribution. More importantly, there are
settings where the parameter of interest does not directly index a family of density functions
and thus the Bayesian approach to learning about such parameters is currently regarded as
problematic. Our framework uses loss functions to connect information in the data to function-
als of interest. The updating of beliefs then follows from a decision theoretic approach involving
cumulative loss functions. Importantly, the procedure coincides with Bayesian updating when
a true likelihood is known yet provides coherent subjective inference in much more general
settings. Connections to other inference frameworks are highlighted.

Keywords: Decision theory; General Bayesian updating; Generalized estimating equations;
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1. Introduction

Data sets are increasing in size and modelling environments are becoming more complex. This
presents opportunities for Bayesian statistics but also major challenges, perhaps the greatest
of which is the requirement to define the true sampling distribution, or likelihood, for the
data generator f0.x/, regardless of the study objective. Even if the task is inference for a low
dimensional parameter, Bayesian analysis is required to model the complete data distribution
and, moreover, to assume that the model is ‘true’.

In this paper we present a coherent procedure for general Bayesian inference which is based
on the updating of a prior belief distribution to a posterior when the parameter of interest is
connected to observations via a loss function. Briefly here, and in the simplest scenario, suppose
that interest is in the θ minimizing the expected loss

Address for correspondence: C. C. Holmes, Department of Statistics, University of Oxford, 24–29 St Giles,
Oxford, OX1 3LB, UK.
E-mail: c.holmes@stats.ox.ax.uk



1104 P. G. Bissiri, C. C. Holmes and S. G. Walker

L.θ/=
∫

l.θ, x/dF0.x/, .1/

for some loss function l.θ, x/, e.g. l.θ, x/ = |θ− x| for estimating a median, where F0.x/ is the
unknown distribution function from which independent and identically distributed observations
arise. If π.θ/ represents prior beliefs about this θ, and x is observed from F0, then we argue that
a valid and coherent update of π.·/ is to the posterior π.·|x/, where

π.θ|x/∝ exp{−l.θ, x/}π.θ/: .2/

The argument for this is given later in the paper and to some extent relies on the idea that an
update of beliefs must exist. For we have a well-defined parameter of interest θ, an initial belief
distribution about the location of the parameter,π.θ/, and gain further independent information
about θ via x coming from F0.x/. To update, it is clear for some function ψ that we must have

π.θ|x/=ψ {l.θ, x/,π.θ/}:
That the form for ψ is expression (2) is detailed later and a coherence property plays a key role:

ψ[l.θ, x2/,ψ{l.θ, x1/,π.θ/}]≡ψ{l.θ, x1/+ l.θ, x2/,π.θ/}: .3/

This ensures that we end up with π.θ|x1, x2/ as the same object whether we update with .x1, x2/

together or {.x1/, .x2/} one after the other.
A special case is when it is known that F0.x/ = F.x; θ0/ for some parametric family of dis-

tributions F.·; θ/, with corresponding density function f.·; θ/, and l.θ, x/=− log{f.x; θ/}. For
minimizing L.θ/ here yields θ0 and the update (2) is the usual Bayesian update. It is important to
note that the general Bayesian update using loss functions should not to be seen as an approx-
imation to anything; rather, it is targeting the parameter of interest, employing the necessary
loss function with a valid coherent update of beliefs.

Classical inference based on the likelihood function can be regarded as using the ‘negative log-
likelihood function’ as a loss function; for example, in the case of independent and identically
distributed observations, we can regard

l.θ; x1, : : : , xn/=−
n∑

i=1
log{f.xi|θ/}

as a loss function connecting data .xi/ with a parameter θ indexing the family of density functions
f.x|θ/. And, in this setting, we do not even need to assume the correctness of the model; we are
merely expressing interest in the parameter θ0 minimizing

−
∫

log{f.x; θ/}dF0.x/

which is the parameter minimizing the Kullback–Leibler divergence between the unknown f0.·/
and the family f.·; θ/.

1.1. The idea
Here we provide further elaboration on the outline of the idea given previously. Let θ denote
a parameter or functional of interest, e.g. the mean or median of a population F0.x/, and let
x denote an observation from F0.x/, with F0 unknown. We are interested in a formal way to
update prior beliefs π.θ/ to posterior beliefs π.θ|x/ given x.
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Bayesian inference proceeds through knowledge of a complete and true model for f0.x/. This
is often parameterized via a sampling distribution f.x; θ/ and a prior π.θ/, and defines the
marginal likelihood

m.x/=
∫

f.x; θ/π.θ/dθ:

Then (see for example Bernardo and Smith (1994)), inference for θ can occur via Bayes theorem

π.θ|x/=f.x; θ/π.θ/=m.x/:

However, the statement ‘inference for θ’ is meaningless unless the true parametric family f.·; θ/
is known. In this case, following the Savage axioms (Savage, 1954), the Bayesian update can be
shown to be the rational way to proceed. However, f0.x/ may be unknown and, even if f.·; θ/ is
correct, θ might be ultrahigh dimensional mainly made up of nuisance parameters relative to a
low dimensional subset of the parameters of interest. Taken altogether, these points can make
the Bayesian approach cumbersome.

We are interested in the rational updating of beliefs under more general and less stringent
conditions. To do so we make use of loss functions to connect information in data to parameters
of interest. Informally for now, we write such loss functions as l.θ, x/, and we shall discuss specific
types later in the paper. We shall consider the reporting of subjective beliefs π.θ|x/ as an action
made under uncertainty and use decision theory to guide the optimal action. See, for example,
Hirshleifer and Riley (1992).

To outline the theory, let ν denote a probability measure on the space of θ. We shall construct
a loss function to select an optimal posterior distribution ν̂.θ/ given a prior π.θ/ and data x.
(We use ν̂ to denote optimality rather than an approximation or estimate.) To achieve this we
construct a loss function L.ν;π, x/ on the space of probability measures on θ-space, and then
present

ν̂=arg min
ν

L.ν;π, x/

as the representation of beliefs about the unknown value of θ given the prior information,
represented via the belief distribution π, and data x. As it is widely assumed that data x are
an independent piece of information to that which gave rise to the prior, it is appropriate to
consider an additive, or cumulative, loss function of the form

L.ν;π, x/=h1.ν, x/+h2.ν,π/, .4/

where h1 and h2 are themselves loss functions on probability measures, representing fidelity to
data and fidelity to prior respectively. See, for example, Berger (1993) for more about ideas on
uses of loss functions within decision theory.

The question is whether we can claim a probability measure selected as the solution to a
decision problem, i.e. minimizing a loss function, can be viewed as representing beliefs about a
parameter. To answer this, given the aim (1), we would clearly prefer probability measure ν1 to
ν2 as representing beliefs if∫ ∫

l.θ, x/dF0.x/ν1.dθ/�
∫ ∫

l.θ, x/dF0.x/ν2.dθ/: .5/

Indeed, it would be incoherent to select ν2 rather than ν1 when condition (5) holds. Thus the
answer is affirmative. Though we are not minimizing or comparing condition (5), since we do
not have F0, we can substitute the expression
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L0.ν; F0/=
∫ ∫

l.θ, x/dF0.x/ν.dθ/ .6/

with the Bayesian finite sample expression of the form (4). We now discuss the choices of h1 and
h2 which give equation (4) as a Bayesian finite sample version of equation (6).

Under this approach the analyst needs to specify h1 and h2 in such a way that they proceed
in an optimal, rational and coherent manner. Somewhat remarkably, as proved in the on-line
supplementary material, for coherent inference (3), h2 must be the Kullback–Leibler divergence
(Kullback and Leibler, 1951), and given by

h2.ν,π/=dKL.ν,π/=
∫
ν.dθ/ log{ν.dθ/=π.dθ/},

where, with a slight abuse of notation, we also use π.dθ/ to denote the probability measure
version of π, i.e. π.dθ/=π.θ/dθ.

Regarding h1, since ν.θ/ is a probability measure representing beliefs about θ, the only choice
here is to take the loss to data h1.ν, x/ as the expected loss (see von Neumann and Morgenstern
(1944)) of l.θ, x/, i.e.

h1.ν, x/=
∫

l.θ, x/ν.dθ/,

with the particular types of the loss function on the parameter of interest l.θ, x/ to be discussed
later.

Substituting in h1 and h2, the cumulative loss function is then given by

L.ν;π, x/=
∫

l.θ, x/ν.dθ/+dKL.ν,π/: .7/

This then, i.e. equation (7), is our finite sample version of equation (6), and note that equation
(7) becomes, under mild regularity conditions, equation (6) as n→∞. The solution to equation
(7) provides the ν̂ which the statistician believes best minimizes equation (6). This is, according
to our approach, done by using the empirical distribution function as a substitute for F0 and
using a penalty term which prevents the answer from being too far from the prior in a Kullback–
Leibler sense; the Kullback–Leibler appearing here for the necessary coherence property of the
answer. Of interest, as discussed later on, is the provably approximately correct (PAC) Bayes
solution to the problem (Langford, 2005) that finds an approximation which minimizes an upper
bound for equation (6); see Section 3.

Surprisingly, but quite easy to show, the minimizer of L.ν;π, x/ is given by

ν̂.θ/=arg min
ν

L.ν;π, x/

= exp{−l.θ, x/}π.θ/∫
exp{−l.θ, x/}π.dθ/

: .8/

This can be seen by observing that∫
l.θ, x/ν.dθ/+dKL.ν,π/=

∫
ν.dθ/ log

[
ν.θ/

exp{−l.θ, x/}π.θ/

]
:

So equation (8) has the form of a Bayesian update using exponentiated negative loss in place
of the likelihood function. We stress again that equation (8) is not an approximation, or pseu-
doposterior, but rather a valid coherent representation of subjective uncertainty in the mini-
mizer of expression (1). As is usual in decision problems involving the use of loss functions, it is
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incumbent on the decision maker to ensure that solutions exist. So l.θ, x/ needs to be constructed
such that

0 <

∫
exp{−l.θ, x/}π.dθ/<∞:

Whereas the Bayesian approach requires the construction of a probability model for all possible
outcomes conditionally on all unknown states of nature, the general Bayesian approach requires
the construction of loss functions given the outcomes for only the parameter of interest. This
allows the decision maker to concentrate on modelling only those quantities that are important
to the task at hand.

1.2. On equation (3) implying equation (2)
We shall now go into the details of how equation (3) and some other natural assumptions imply
equation (2). We are asking for the unique ψ which provides the update for all Θ, i.e. is Θ
invariant? This is a reasonable requirement since how we update should not depend on Θ. In
fact we show that equation (3) uniquely implies equation (2) for |Θ|= 3, i.e. the cardinality of
Θ is 3, and hence the update is the only unique update that applies for all Θ. So consider the
following assumptions.

Assumption 1. Condition (3) holds true.

Assumption 2. For any set A⊂Θ,

ψ{l.θ, x/,π.θ/}∫
A

ψ{l.θ, x/,π.θ/}dθ
=ψ{l.θ, x/,πA.θ/}, .9/

where πA is π restricted and normalized to A, i.e. πA.θ/=π.θ/1.θ∈A/=
∫

Aπ.θ/dθ. This condi-
tion says that whether we update the prior restricted to the set A, or update the prior and then
restrict to the set A, we obtain the same update.

Assumption 3. Lower evidence (larger loss) for a state should yield smaller posterior probabil-
ities under the same prior. So, if for some A⊂Θ, l.θ, x/>l.θ, y/ for θ∈A⊂Θ and l.θ, x/= l.θ, y/

for θ∈Ac, then ∫
A

ψ{l.θ, x/,π.θ/}dθ<

∫
A

ψ{l.θ, y/,π.θ/}dθ:

Assumption 4. If l.θ, x/≡ constant, then ψ{l.θ, x/,π.θ/}=π.θ/, i.e., if the observation pro-
vides no information about θ, since the loss function is a constant, then the posterior is the same
as the prior.

Assumption 5. If l̃.θ, x/= l.θ, x/+ c for some constant c, then

ψ{l̃.θ, x/,π.θ/}=ψ{l.θ, x/,π.θ/}:

Theorem 1. If assumptions 1–5 hold, then for |Θ|=3 equation (3) uniquely implies equation
(2).

The proof is given in Appendix A. It is quite straightfoward to extend the uniqueness argu-
ment to all countably infinite Θ, which would replace the uniqueness argument for all Θ.
However, we would need more work to extend separate uniqueness to general Θ.
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Clearly Sections 1.1 and 1.2 are different derivations of the same result, i.e. the support of
update (2).

1.3. Connections with related work
There is a large literature on procedures for robustly estimating a parameter of interest by
minimizing the cumulative loss

L.θ; x/=
n∑

i=1
l.θ, xi/: .10/

This is clearly the finite sample version of

L.θ/=
∫

l.θ, x/dF0.x/:

Our claim is that equation (7) is the general Bayesian version of equation (10), where interest is
on probability measures on θ-space rather than single states θ.

Hüber (2009) provided examples of equation (10), where we note that the primary aim is not
modelling the data but rather estimating a parameter. This is an advantage when a probability
model for the data is too difficult to formulate. We are presenting a general Bayesian extension
of this idea. Since we are interested in a belief distribution for θ given data, and we have further
information provided by π, we claim that the appropriate Bayesian version is given by equation
(8).

Some of the ideas that are presented in the paper have been considered by Zhang (2006a, b)
and Jiang and Tanner (2008). In Zhang (2006a) an estimation procedure, named information
risk minimization, also known as a Gibbs posterior, which has the same form as equation (8),
is described in section IV of his paper. Zhang then concentrated on the properties of the Gibbs
posterior. Further theoretical work was done in Zhang (2006b).

In Jiang and Tanner (2008) a Gibbs posterior was studied in comparison with a true Bayesian
posterior where the model is assumed to be misspecified. The claim is that posterior performance
of a Bayesian model can be unreliable when misspecified, whereas a Gibbs posterior which targets
points of interest can have better performance. The comparison involves variable selection for
high dimensional classification problems involving a logit model.

Here we show that solutions of the form (8) are the only coherent, decision theoretic represen-
tation of posterior beliefs under model misspecification. We also provide a principled approach
to scale the relative information in the data to information in the prior (see Section 3); that was
left as an arbitrary free parameter in Zhang (2006a, b) and Jiang and Tanner (2008).

Bissiri and Walker (2010) used equation (7) with Bernoulli observations and found sufficient
conditions on l.θ, x/ for the sequence of posteriors, based on equation (8), to be consistent. This
result for consistency was extended to more general independent and identically distributed
observations in Bissiri and Walker (2012a). In Bissiri and Walker (2012b), it was shown starting
from the class of g-divergences (Ali and Silvey, 1966), for a coherent sequence of updates, that
we need the Kullback–Leibler divergence as the loss between prior π and ν. In the on-line
supplementary material, we present an updated proof that is simplified and more intuitive to
that appearing before now.

A similar construct to L.ν;π, x/ was provided by Zellner (1988), who presented what is essen-
tially a loss function for the posterior distribution by using ideas of information processing from
prior to posterior. The motivation is different and relies on notions of information present in
log-probabilities and log-likelihoods, which may not be compatible as noted by J. M. Bernardo
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in the discussion of Zellner (1988). Furthermore, our derivation of the loss function allows a
broader interpretation of the elements, which does not require the existence of a probability
distribution for the observation; see Section 4.

Concerns that the specification of a complete model for the data-generating distribution is
unachievable date back to de Finetti (1937) and the notion of ‘prevision’. In his work de Finetti
considered conditional expectation as the fundamental primitive, or statistic, of interest on which
prior beliefs are expressed and updated. Recently other researchers have further developed this
approach under the field of Bayesian linear statistics; see Goldstein and Wooff (2007).

There has been increasing awareness of the restrictive assumptions that formal Bayesian
analysis entails. Royall and Tsou (2003) described procedures for adjusting likelihood functions
when the model is misspecified. More recently, Doucet and Shephard (2012) and Müller (2012)
considered formal approaches to pseudo-Bayesian methods using sandwich estimators to up-
date subjective beliefs, motivated by robustness to model misspecification; see also Hoff and
Wakefield (2013). Cooley et al. (2009) considered pseudo-Bayesian approaches with composite
likelihoods. More generally there is increasing recognition that formal Bayesian analysis can be
restrictive for example through computational issues, such as arise in the area of approximate
Bayesian computation (see, for example, Marin et al. (2012)).

Several researchers have considered issues with Bayesian updating by using proxy models
f.x; θ/ (for example, see Key et al. (1999)), when .xi/ are known not to arise from f.x; θ/ for
any value of θ, i.e. there is no θ conditional on which x is from f.x; θ/. This is referred to as the
M-open case in Bernardo and Smith (1994). One suggested solution is to use methods based on
approximations and Key et al. (1999) described one such idea using a cross-validation approach.
Although this may be pragmatic it does have some shortcomings. Most serious is that there is lit-
tle back-up theory and this has repercussions in that the update suffers from a lack of coherence.

Another approach is to ignore the problem, i.e. to assume that the observations are coming
from f.x; θ/ even though it is known that they are not. According to Goldstein (1981), ‘there is
no obvious meaning for Bayesian analysis in this case’. The disaster of making horribly wrong
inference can be protected to some extent by model selection, i.e. postulating a number of
models for f0.x/, say fj.x; θj/, with corresponding priors πj.θj/, and model probabilities pj,
for j =1, : : : , M. But, as Key et al. (1999) pointed out, how do we construct πj.θj/ and pj when
we know that none of the postulated models are correct? So the Bayesian update breaks down
in that nothing has any interpretation.

Finally, and we acknowledge the contribution of the reviewers for pointing this out, we discuss
connections with PAC Bayes methods; see, Shawe-Taylor and Williamson (1997), Langford
(2005), Alquier (2008) and McAllester (1998). PAC Bayes is an interesting emerging field in
machine learning concerned with techniques for bounding the generalization error (empirical
risk) of a Bayesian model. The motivation behind PAC Bayes methods is to find an upper bound
for the empirical risk of a probability measure ν on a model L.ν; F0/ in equation (6), which is
termed generalization error in the PAC Bayes literature. Given observation x and prior π, the
upper bound will be written as U.ν; x,π/, i.e. for all ν

L.ν; F0/�U.ν; x,π/:

See Catoni (2003) where the form of U is provided. Then it can be shown that an upper bound
U.ν; x,π/ is provided by equation (8). The PAC Bayes approach is complementary to our work.
The motivation and construction are very different. We are interested in a framework for the
rational updating of beliefs, rather than seeking bounds on the empirical risk of a probability
measure on models. The minimizer of an upper bound is interesting but does not justify using
ν̂ as an update of a belief distribution for Bayesian style inference, and hence whether ν̂ forms
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a coherent sequence of belief distributions is not discussed in the PAC Bayes formulation of U;
the requirement of coherence is central to Bayesian style learning. Moreover the scaling of the
loss to data h1 to the loss to prior h2 enters as a constant in the margin of the error bound in
PAC Bayes methods, whereas here it has explicit meaning in the relative weight of information
provided by the two sources, prior and data (see Section 3).

The general Bayesian approach also coincides with the prediction-motivated approach of
Cesa-Bianchi and Lugosi (2006) and is known as aggregation with exponential weight, which
does not rely on stochastic information; see also our Section 4.1.

This said, there are clear synergies and the operational characteristics of PAC Bayes methods
are similar; they must be since we gather the same answer. However, the motivation and conse-
quences are different. Moreover, as we shall see later, the derivation here provides insights into
the necessary calibration of loss functions h1 and h2.

1.4. Layout of the paper
The layout of the remainder of the paper is as follows. In Section 2 we discuss types of loss
function. When the self-information loss function is used then the update is the traditional
Bayes update. With other loss functions there is a calibration issue between the two styles of
loss function used, i.e. the loss to the data and the loss to the prior. This calibration problem is
discussed and potential solutions provided in various ways in Section 3. In Section 4 we discuss
forms of information other than the usual data arising from some unknown distribution func-
tion. This includes non-stochastic information and also partial information. Section 5 provides
some numerical illustrations including inference based on partial information and a clustering
problem. Section 6 concludes with a discussion on various points.

The programs that were used to analyse the data can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Types of loss function

In this section we shall consider the form of h1 in equation (4) that connects information in
the data to the value of the unknown θ. We shall consider three broad situations: first, when
the analyst believes that they know the complete family of distributions from which the .xi/

arose, the so called M-closed scenario; second, when f0.x/ is unknown but where a complete
likelihood f.x; θ/ is being used as a proxy model; finally, when there is no sampling distribution
or proxy model for x and the parameter of interest is connected to x via a loss function l.θ, x/.

2.1. M-closed case and self-information loss
When the analyst knows the family from which .xi/ arose, the so-called M-closed view, then
the Bayesian approach to learning is fully justified, well known and widely used as a statistical
approach to inference; Bernardo and Smith (1994) is comprehensive. To see how Bayes arises in
our framework, we would need to construct a loss function for l.θ, x/ with the knowledge that
x came from f.x; θ/. It is well known that the appropriate and sole loss function in this case is
the self-information, or logarithmic loss function, given by

l.θ, x/=− log{f.x; θ/}:

Indeed, the cumulative loss version of this is the log-likelihood function. See Bernardo (1979)
and Merhav and Feder (1998) for more on the self-information loss function. This amounts to
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the use of proper scoring rules when the parametric family f.x; θ/ is known, and under which
our approach coincides with the Bayesian updating rule.

2.2. M-open case and the use of proxy models
Issues with the Bayesian rule arise when the form of f.x; θ/ is not known; for example, see Key
et al. (1999). Equivalently, there is no θ conditional on which x is from f.x; θ/; more bluntly,
there is no connection between any x and any θ via f.x; θ/. This is referred to as the M-open
case in Bernardo and Smith (1994). In many situations, the correct sampling density f0.x/ is
unknown or unavailable or too complex to work with.

Under a general Bayesian approach we may proceed by considering θ0, the value of θ that
minimizes the Kullback–Leibler divergence between a proxy model f.x; θ/ and the true density
function f0.x/, i.e. θ0 minimizes

dKL{f0.·/, f.·; θ/}=
∫

f0.x/ log{f0.x/=f.x; θ/}dx:

Then prior beliefs π.θ/ will be expressed on this unknown value. It is possible to learn about this
θ0 since an infinite collection of .xi/ yields θ0. Then we would wish the sequence of ν.θ/ to ac-
cumulate about θ0. The appropriate loss function in this case is still l.θ, x/ = − log{f.x; θ/}.
The standardized cumulative loss based on a sequence of observations .xi/

n
i=1 is given by

−n−1 Σn
i=1 log{f.xi; θ/} → − ∫

log{f.x; θ/}dF0.x/ almost surely for all θ, which is minimized
by θ0.

So although the Bayesian approach has foundational issues to deal with whether the M-open
or M-closed view holds, for the approach here it is irrelevant. If we adopt θ0 as the parameter
value taking the family closest to f0.·/ then we do not need to worry if we are in the M-open
or M-closed scenario, since if f.·; θ/ is the true family then obviously θ0 reverts to the true
parameter value. This point is crucial, since for the Bayesian being in the M-open or M-closed
state forces us to adopt different inference approaches; see Bernardo and Smith (1994). Moreover
our approach supports the use of the relevant partial information in the data for updating beliefs
on the parameter of interest, an example of which is shown in Section 5.1. This can be especially
important when the data are high dimensional. Such updates have no formal justification from
a Bayesian perspective.

2.3. Parameter minimizing a loss function
In the most general scenario the parameter of interest minimizes a loss function of the type (1).
In the classical literature, this type of estimation problem is in the area of robust statistics and
specific loss functions can be found in the literature, pertaining to M-estimation and estimating
equations. See, for example, Hüber (2009).

An important class of loss functions is provided by the M-estimators for a location parameter;
Hüber (1964). So, rather than using the loss function − log{f.xi; θ/}, a ρ.xi; θ/ is used in an
attempt to obtain robust estimation, rather than the traditional maximum likelihood estimator,
which can be suspect if the model is incorrect. This idea has been generalized to the class of
estimating equations, whereby the estimate of θ is obtained by minimizing

n∑
i=1

ρ.xi; θ/:

Our approach, which mirrors this classical robust procedure, would use the loss function

L.ν; x1, : : : , xn,π/=
∫

n∑
i=1

ρ.xi; θ/ν.dθ/+dKL.ν,π/
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with solution provided by
ν̂.dθ/∝ exp

{
−

n∑
i=1

ρ.xi; θ/
}
π.dθ/:

The θ0 of interest is implicitly assumed to be the limit of the sequence of minimizers of the
cumulative losses. This would be the minimizer of

∫
ρ.x; θ/dF0.x/ and hence the prior beliefs

are being expressed about this unknown value. Then the loss function l.θ, x/=ρ.x; θ/ is ensuring
that the updates are indeed ‘moving towards’ θ0. To complete the picture, it would have been that
the decision maker would be happy to make a decision given the minimizer of

∫
ρ.x; θ/dF0.x/.

3. Calibration of relative losses

This section deals with the important aspect of specifying the relative information in the data to
the information in the prior in general settings. In the M-closed and M-open, including partial
information, settings the use of the self-information loss l.θ, x/=− log{f.x; θ/} results in a fully
specified form for equation (8). However, in the setting of Section 2.3 there is an issue about the
scale of the loss function h1 which is a consequence of the apparent arbitrariness in the weight
of h1.ν, x/ relative to h2.ν,π/, in that we are free to multiply either by an arbitrary factor. So,
equivalently, we are interested in a loss function w l.θ, x/ for some w > 0. The question is how
to select w, noting that w controls the relative weight of loss to data to loss to prior.

Of course, such an issue does not arise in general in the classical literature on parameter
estimation since there is typically no combining with different styles of loss function. A notable
exception is the class of regularized regressions, such as the lasso, where one minimizes

L.β/=w
n∑

i=1
l.β, yi, xi/+|β|:

Note the substantial difference in that this loss is for a parameter, whereas the losses that we
consider are for a measure.

The calibration of different types of loss is not a unique problem to us or to the lasso. It arises
in many applied contexts; possibly the most well known are in health economics where losses
pertaining to costs need to be balanced against losses pertaining to health benefits.

The most common ideas for assigning w in the Gibbs posteriors and PAC Bayes literature
typically involve cross-validation and subjective choices. As mentioned above, in PAC Bayes
methods the weighting w is a constant that enters the margin of the error bound. Here we
discuss some ideas in the context of a general Bayesian update intended to help the analyst.
We do not claim to be exhaustive in the approaches, or to be prescriptive in advocating one
approach over another. Our intention is to provide tools and suggestions for elicitation of the
relative loss to data to loss to prior.

3.1. Annealing
In the literature on Gibbs posteriors, the weighting parameter is labelled as a ‘temperature’ and
selected subjectively. There are clear connections here with the use of ‘power priors’ (Ibrahim
and Chen, 2000) where

ν.dθ/∝
n∏

i=1
f.xi; θ/wπ.dθ/:

Such an idea has also been discussed in Walker and Hjort (2001). It is evident what w achieves;
if 0 < w < 1 then the loss to prior is given more prominence than in the Bayesian update and
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the data will be less influential. In the extreme case when w =0 we retain the prior throughout.
In contrast, when w > 1 the loss − log{f.x; θ/} is given more prominence than in the Bayesian
update and in the extreme case when w is very large the ν is accumulating about the maximum
likelihood estimator for the model, i.e.

ν.dθ/≈ δθ̂.dθ/,

where θ̂ maximizes Πn
i=1f.xi; θ/.

3.2. Unit information loss
Here we discuss a procedure for default subjective assignment based on a prior evaluation of the
expected value of l.θ, x/. The idea originates from work in the specification of reference priors
and ‘objective Bayes’ methods; see for example Kass and Wasserman (1996).

To begin it helps to ensure that both losses are non-negative for all θ. Hence we write the prior
loss function with an additional term log{π.θ̂/}, which is a constant, and where θ̂ maximizes
π.θ/, so that the cumulative loss becomes

L.ν; x,π/=
∫

[w l.θ, x/+ log{π.θ̂/=π.θ/}]ν.dθ/+
∫
ν.dθ/ log{ν.θ/}:

and we would additionally standardize l.θ, x/ such that minθ l.θ, x/=0 for any x. Hence, we can
regard

L.θ; x,π/=w l.θ, x/+ log{π.θ̂/=π.θ/}
as a loss function for θ with information provided by x and π. So, assuming that l.θ, x/> 0, we
want to calibrate the two loss functions given by

w l.θ, x/

and

log{π.θ̂/=π.θ/}:

These are two loss functions for θ and to adhere with the notion that, before we have any
data, there is a single piece of information, we can calibrate the two losses by making the joint
expected losses, taken over θ and x, to match, i.e. whether someone takes a θ and is penalized
by the loss

log{π.θ̂/=π.θ/},

or takes a .θ, x/ and is penalized by the loss w l.θ, x/, at the outset, the expected losses should
match. They are confronted by two choices of loss with one piece of information and thus the
losses can be calibrated by ensuring that their expected losses coincide. The connection between
expected information and expected loss can be found in Bernardo (1979).

Thus w can be set by ensuring that

wEθ,x{l.θ, x/}=Eθ[log{π.θ̂/=π.θ/}]:

Here E is with respect to a joint belief distribution in x and θ; say m.x, θ/, the marginal for θ of
which is π.θ/. So

w =

∫
log{π.θ̂/=π.θ/}π.dθ/∫ ∫

l.θ, x/m.dθ, x. /
: .11/



1114 P. G. Bissiri, C. C. Holmes and S. G. Walker

Let us consider an example, where l.θ, x/ = .θ− x/2 with π.θ/ = N.θ|0, τ2/ with m.x|θ/ being
any density with mean θ and variance σ2. Then we can evaluate∫

log{π.θ̂/=π.θ/}π.dθ/= 1
2

and ∫ ∫
.θ−x/2 m.dx, dθ/=σ2,

so w= 1
2σ

−2: Hence, this calibration idea yields the ‘correct’ value of 1
2σ

−2 in this case. This con-
struction requires the user specification of a joint density m.dx, dθ/ which in some circumstances
may prove difficult. Here we propose an empirical expression for this.

Now x−i = .x1, : : : , xi−1, xi+1, : : : , xn/ should predict xi and the best θ-value to achieve this
would minimize ∑

j 	=i

l.θ, xj/:

Denote the minimizer as θ̂−i. Then we would empirically estimate the denominator of equation
(11) by

E{l.θ, x/}=n−1
n∑

i=1
l.θ̂−i, xi/:

To see this more easily, we relate it to a standard Bayesian cross-validation idea. So assume that
we wish to estimate

E[log{f.x|θ/}] .12/

empirically. Given x−i we would predict xi by using the plug-in density f.xi|θ̂−i/, where θ̂−i

maximizes Πj 	=i f.xj|θ/. Hence, we would estimate expectation (12) via

n−1
n∑

i=1
log{f.xi|θ̂−i/}

based on the idea that .θ̂−i, xi/ represent an empirical sample from m.θ, x/.
If we illustrate this on a toy example, for which l.θ, x/= .x−θ/2 and π.θ/ is normal with zero

mean and variance 1=τ , then it is easy to show that

w = 1
2

n
n∑

i=1
.xi − x̄−i/2

which asymptotically becomes 1
2σ

−2, with σ2 the variance of the data.
It is interesting to note in the above that if it is thought that the appropriate choice for π.θ/ is

flat, which is possible if the θ-space is bounded, then clearly we have log{π.θ̂/=π.θ/}=0. Thus,
to be coherent, we would equally believe that

∫
l.θ, x/m.dx|θ/ does not depend on θ, where

m.·|θ/ is a belief distribution for x given θ. This is a condition which would be difficult to justify,
as it would then be also for the uniform prior for θ. If one is used, then we only recommend that
the value of w is not assigned in the above way.

3.3. Hierarchical loss
Another way to proceed is to extend the loss function to include w as an unknown parameter.
Standard ideas here would suggest that we take
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L.θ, w; x,π/=w l.θ, x/+ ξ l.w/− log{π.θ, w/}
for some ξ> 0. We would appear to be making no progress since we now have a ξ to assign.
However, this is akin to the hierarchical Bayesian model where uncertainty is propagated via hy-
perprior distributions to robustify the ultimate prior choice at some level. Hence, the allocation
of a ξ would not be as crucial as the assignment of a w.

For example, as w is a scale parameter on loss to data, taking l.w/ = log.w/ the solution is
given by

ν̂.θ, w|x,π/∝wξ exp{−w l.θ, x/}π.θ, w/

and given that wξ can be absorbed in the prior π it is reasonable to assess ξ subjectively, i.e. it
seems unreasonable to accept that π can be chosen subjectively but that ξ cannot.

3.4. Operational characteristics and subjective calibration
The idea here is to set w so that the posterior quantiles are calibrated at some level of error to
frequentist confidence intervals based on the estimation of θ via minimizing the loss

n∑
i=1

l.θ, xi/:

So, if Cα.w, x1, : : : , xn/ is the 100.1 −α/% level confidence interval for θ, then we could select
the w such that the posterior distribution of θ, with parameter w, is such that

P{θ∈Cα.w, x1, : : : , xn/|x1, : : : , xn}=1−α:

See, for example, Datta and Sweeting (2005) for references to probability matching priors and
posteriors, and Cooley et al. (2009) for ideas in pseudo-Bayesian approaches with composite
likelihoods.

More generally we can consider the subjective setting of w where knowledge of the frequentist
sampling statistic of Σn

i=1 l.θ, xi/ can assist. To begin note that w is explicitly related to the Bayes
factor quantifying the posterior-to-prior odds,

log
{
π.θ|x/

π.θ′|x/

/
π.θ/

π.θ′/

}
=−w{l.θ, x/− l.θ′, x/}

where w{l.θ, x/− l.θ′, x/} measures the update in beliefs in favour of θ from θ′ on observing x.
Clearly the larger the difference l.θ, x/− l.θ′, x/ is the greater the relative evidence in favour of
θ, with w determining the scale for unit change. It is interesting to note that, should the Bayes
factor be known for any three points {θ, θ′, x} in the joint parameter sample space, Ωθ2 ×ΩXn ,
then w would be fixed. The idea here is that the analyst is free to contemplate any specific values
{θ, θ′, x} for which the distribution of the statistic S = l.θ, x/ − l.θ′, x/ may be known, and to
use this knowledge in turn to help to elicit a Bayes factor and therefore setting w. A concrete
example will help.

Suppose that θ0 denotes the unknown mean of a population with prior N.0, v/ and loss
function l.θ, x/=Σn

i=1.θ−xi/
2. Consider the design points {θ= x̄, θ′ =0, x} so that the statistic

S is then

S =
n∑

i=1
x2

i −
n∑

i=1
.x̄−xi/

2,

the difference in the sum of squares to the sum of squares around the mean, with log-Bayes-factor
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log
{
π.θ|x/

π.θ′|x/

/
π.θ/

π.θ′/

}
=−wS:

The analyst is free to contemplate any value of n and any x={x1, : : : , xn} to help in the elicitation.
Let n be chosen large and contemplate x such that the .1 −α/% confidence interval for the
unknown mean touches θ′ =0. In this case, for large n, we know that S =F−1

1,n−1.1−α/, where
F denotes the F -distribution. If the analyst is prepared to say how their prior beliefs would be
updated on observing x in knowledge of this symmetric confidence interval for θ0 then the w
can be set via

w =− log.Bayes factor/=S:

We give a concrete illustration of this approach in Section 5.

3.5. Conjugate loss prior
If prior beliefs about θ can be expressed in the form

π.θ/∝ exp{−λ l.θ,μ/}

for given parameters .λ,μ/, then the posterior has a conjugate-type property, i.e.

π.θ|x/∝ exp{−w l.θ, x/−λ l.θ,μ/}:

Thus the prior has interpretation of prior observationμwith precision λ. Thusμ and λwould be
standard objects for a Bayesian to specify. If the prior can then be established as the equivalent
of m observations, then we obtain w via w=λ=1=m.

If the prior is thought not to be able to be specified in such a way, then a good approximation
to any prior can be found with choices of .M, .μj/, .λj// such that

π.θ/∝ exp
{

−
M∑

j=1
λj l.θ,μj/

}
:

If we now write

π.θ|x/∝ exp
{

−w l.θ, x/−Λ
M∑

j=1
.λj=Λ/ l.θ,μj/

}
,

where Λ=Σ1�j�M λj, then we see that now w=Λ=1=m.
Thus there is an apparent new concept here in that the experimenter is required to think about

how much information, in the form of the number of prior observations, is available. However,
this is not completely new, since in some conjugate problems there are parameters which do
have the interpretation of a prior sample size; the exponential family, for example.

4. General forms of information

In this section we discuss more general forms of information x rather than assume that it arises
from some unknown F0.x/. The argument is that provided that l.θ, x/ has been specified then an
update of a belief distribution about θ is available. Clearly this does not rely on any assumption
about where x came from or indeed how it became known.
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In particular, we provide a definition of conditional probability when non-stochastic infor-
mation is available. This allows for updating or refinement of prior beliefs to be applied in much
more general settings than Bayesian models, which require a stochastic x.

4.1. Conditional probability distributions and non-stochastic data
The theory of conditional probability distributions is a well-established mathematical theory
which provides a procedure to update prior probabilities taking into account new information.
Such a procedure is available only if the information which is used to update the probability
concerns stochastic events, i.e. events to which a probability is preassigned. In other words, such
information needs to be already included in the probability model. In this section, we shall show
how the updating approach can be used to define conditional probability distributions based
on non-stochastic information.

Information about θ may arrive in the form of non-stochastic data, such as if an expert
declares that

I = ‘θ is close to 0’: .13/

This type of information has been discussed by various researchers and is known to be prob-
lematic for the Bayesian especially when such information arises after or during the arrival
of stochastic observations .xi/. We cite Diaconis and Zabell (1982) and in particular refer the
reader to the example in section 1.1 of their paper.

We denote by I a piece of information for which no probability model for each θ is assigned;
in other words I is not and cannot be considered stochastic in any way. So we cannot represent
equation (13) by using a probability model whereby we could reasonably assume I ∼ F0.·/ in
any meaningful sense.

Although a probability model cannot connect equation (13) and θ, they can be connected via a
loss function without much difficulty. For example, l.θ, I/=wθ2 for some w >0 could be deemed
appropriate. Note here that we use I to denote information now, replacing the stochastic x. The
update ν̂.θ/ based on I and π can then be considered as a means of defining an operational
conditional probability distribution in the presence of non-stochastic information, given by

ν̂.θ|I/= exp{−w l.θ, I/}π.θ/∫
exp{−w l.θ, I/}π.dθ/

:

So, the general Bayesian approach provides a general definition of conditional distributions
based on non-stochastic information, which may also be useful in the construction of priors
from multiple information sources.

For literature on paradoxes related to forcing non-stochastic events into a probability model
with a determination of all the alternatives to I we refer the reader to Freund (1965), Gardener
(1959), Bar-Hillel and Falk (1982) and Hutchison (1999, 2008).

4.2. Partial information
As noted in Section 2, although the parameter of interest is θ, the information I that is collected
may be more informative, i.e. there is within I information which does not assist with the learning
about θ, for which it is possible to identify Iθ ⊂ I which provides all the information about θ.
We are therefore interested in constructing the loss function l.θ, IΘ/, leading to

ν̂.dθ/∝ exp{−l.θ, IΘ/}π.dθ/: .14/
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The partial likelihood, or partial self-information loss, that is used in proportional hazards
models is one such example. Whereas Bayesian practitioners may have adopted such a procedure
in the past it would be regarded as lacking motivation. However, our point is that expression
(14) represents a valid update of beliefs. We illustrate this approach in Section 5.

5. Illustrations

In this section we discuss the application of our approach to important inferential problems.
The first problem is one from survival analysis where we have a well-motivated proxy likelihood
based on partial information, and hence it is natural to use w = 1 in this setting. The second
example is from model-free clustering where we have a general loss function so that calibration
of w is important. A third example, which is to be found in the on-line supplementary material,
is for joint inference on a set of quantiles. In all cases we claim that the choice of loss function
is well founded (and unique) and that there is no traditional Bayesian interpretation of the
updates that we are implementing. Yet the updates that we employ do allow us to learn about
the specified parameters of interest. All of the models that are used to generate results are
available as open-source code in R or MATLAB.

5.1. Colon cancer genetic survival analysis
Colon cancer is a major worldwide disease with increasing prevalence particularly within western
societies. Exploring the genetic contribution to variation in survival times following incidence
of the cancer may shed light into the disease aetiology and underlying disease heterogeneity.
For this collaborators at the Wellcome Trust Centre for Human Genetics, University of Oxford,
obtained survival times on 918 cancer patients with germline genotype data at hundreds of thou-
sands of markers genomewide. For demonstration we consider only one chromosome previously
identified as holding a potential association signal containing 15608 genotype measurements.
The data table X then has n=918 rows and p=15608 columns, where .X/ij ∈{0, 1, 2} denotes
the genotype of the ith individual at the jth marker. Alongside this we have the corresponding
n × 2 response table of survival times Y with a column of event times, yi1 ∈ R+ and a column
of indicator variables yi2 ∈ {0, 1}, denoting whether the event is observed or right censored at
yi1.

To explore association between genetic variation and time to event we employ a loss func-
tion derived under proportional hazards, treating the loss to the baseline hazard as a nuisance
parameter. This is based on the Cox proportional hazards model, which has been one of the
most widely used methods in survival analysis since its introduction in Cox (1972). In this log-
linear model the hazard rate at time t for an individual with covariate x={x1, : : : , xp} is defined
as

h.t|x/=h0.t/ exp
(

p∑
j=1

xjβj

)

where h0.t/ is a baseline hazard function. In the seminal work of Cox (1972), h0.t/ is treated as
a nuisance parameter (or process) that does not enter the partial likelihood for estimating the
parameters of interest β.

In contrast, a Bayesian approach to the Cox model necessarily involves the baseline hazard
function. There is a limiting argument for the use of the partial likelihood but this is rarely, if at
all, used. Most common is the finite partitioning of the time axis and using a piecewise constant
baseline hazard function. Though typically regarded as a nuisance parameter, the Bayesian must
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specify a full probability model for it. See Ibrahim et al. (2001), chapter 3, for details, where
they noted that the proportional hazards model is obtained under a limiting improper prior on
the baseline, but it is not known what effect this has on marginal quantities of interest such as
marginal model choice probabilities.

Using a general Bayes construction we can consider only the order of events as partial infor-
mation relevant to the regression coefficients β, via the cumulative loss function,

l.β, x/=
n∑

i=1
log

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
(

p∑
j=1

xijβj

)

∑
l∈Ri

exp
(

p∑
j=1

xljβj

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, .15/

where Ri denotes the risk set, i.e. those individuals alive or not censored at time yi1, and in this
way obtain a conditional update. We assume that βj ∼N.0, vj/ and set vj = 0:5 for our study,
reflecting beliefs that associated coefficients will be modest, and we note that one advantage of
our approach is that subjective prior information can be integrated into the analysis.

Initially we consider each marker in turn for evidence of effects, i.e. βj 	=0, within a univariate
regression and we can calculate the general Bayes factor of association at the jth marker,
assuming equal prior probability in there being an effect or not, as,

gBF.j/ =

∫
βj

exp{−l.βj|xj/}π.βj/dβj

exp{−l.βj =0|xj/}
which involves a one-dimensional integral that we calculate via importance sampling.

We calculated the general Bayes factors for each marker and in Fig. 1(a) we plot the log-
general-Bayes factors over the chromosome. Although there is considerable variation we observe
strong evidence of association around marker 10000. It is interesting to compare the evidence
of association that is provided by the Bayes factor Fig. 1(a) with that obtained by using a
conventional Cox proportional hazards partial-likelihood-based test. In Fig. 1(b) we plot the
log-general-Bayes factors against − log10(p-values) obtained from a conventional likelihood
ratio test at each marker. We can see general agreement especially at the markers with strongest
association as we would expect for a large sample size. Interestingly there appears to be greater
dispersion at markers of weaker association as highlighted in Fig. 2 where we plot the standard
error against log-general-Bayes factors. Markers with high standard error relate to genotypes of
rarer alleles and the attenuation reflects a greater degree of uncertainty for association at these
markers that contain less information.

Returning to the ‘hit region’ showing strongest association around marker 10000, owing to
high collinearity between markers it is not clear whether the signal of association arises from
a single effect correlated with others, or from multiple independent association signals. To
investigate this we developed multiple-marker methods.

We consider a model using potentially all 800 markers in the region and phrase the problem
as a variable selection task under a partial likelihood (loss), in which the user suspects that some
of the p=800 recorded covariates (15) may not be relevant to variation in survival times.

In the non-Bayesian paradigm, variable selection can proceed by defining a cost function, such
as the Akaike information criterion AIC or Bayesian information criterion BIC, that adjusts
the fit to the data by the number of covariates in the model. Inference proceeds by using an
optimization algorithm, such as forward or stepwise selection, to find a model that minimizes
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(a)

(b)

Fig. 1. (a) log-Bayes-factor versus marker index and (b) log-Bayes-factor versus log10(p-value) of asso-
ciation
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Fig. 2. Standard error in maximum likelihood estimate versus log-Bayes-factor

the cost. More recently, penalized likelihood methods have proved popular (Tibshirani, 1997;
Fan and Li, 2002).

Despite the enormous influence of Cox proportional hazards models and the importance of
variable selection, the Bayesian literature in this area is limited. This is because of the lack of
a theoretical foundation to treat h0.t/ as a nuisance parameter, leading to either approximate
methods or the full specification of a joint probability model (Faraggi and Simon, 1998; Volinsky
et al., 1997). Volinsky et al. (1997) took BIC as an approximation to the marginal likelihood and
they used a branch-and-bound algorithm to find a set of models with differing sets of covariates
with high BIC-scores. The difficulty here is that, although the methods are important and well
motivated, they are ultimately ad hoc. Moreover, prior information on π.β/ does not enter the
calculation of BIC, meaning that an important aspect of the Bayesian approach is lost.

In contrast, Ibrahim et al. (1999) considered variable selection within a full joint model using
a prior specification of a gamma process for the baseline hazard (see also Ibrahim et al. (2001)).
This provides a formal Bayesian solution but inference is then conditional on, and sensitive
to, the specification of the prior on h0.t/, which is something that the partial likelihood model
explicitly avoids.

Here we use the partial information that is relevant to the regression coefficients β via the
cumulative loss function (15). We assume proper priors π.β/ on the regression coefficient,

π.βj/=
{

0 if δj =0,
N.0, vj/ otherwise,

where δj ∈ {0, 1} is an indicator variable on covariate relevance with π.δj/ = Bin.aj/ and we
now treat {δ1, : : : , δ800} as a vector in a joint model. In this way the posterior π.δ|x/ quantifies
beliefs about which variables are important to the regression. We use Markov chain Monte Carlo
(MCMC) sampling to draw samples approximately from π.β, δ|x/ from which the marginal
distribution on δ can be examined. In particular we make use of an efficient joint updating
proposal, q.δ′, β′|δ/, within the MCMC algorithm as q.δ′, β′|δ/=q.δ′|δ/q.β′|δ′/ where q.δ′|δ/

proposes a local move to add, remove or swap one variable per MCMC iteration in or out
of the current model indexed by δ, and q.β′|δ′/ is a joint independence Metropolis update
proposal, q.β′|δ′/=N.β̃δ′ , Ṽδ′/ where {β̃δ′ , Ṽδ′} are the maximum a posteriori and approximate
information matrix obtained from the combination of log-partial-loss and normal prior. The
joint proposal is then accepted with probability

α=min
[

1,
exp{−l.β′|x/}π.β′|δ′/π.δ′/q.β, δ|δ′/
exp{−l.β|x/}π.β|δ/π.δ/q.β′, δ′|δ/

]
:
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Fig. 3. Posterior marginal inclusion probability from the multiple-marker model using 800 markers around
the peak of association

We ran our MCMC algorithm for 100000 iterations with prior parameter settings, {vj =0:5, aj =
1=800}, for all j = 1, : : : , p, equivalent to a prior assumption of a single associated marker. In
Fig. 3 we show the marginal inclusion probability, after discarding 10000 samples as a burn-in.
The algorithm showed an overall acceptance rate of 8% for proposed moves. The model suggests
overwhelming evidence for a single marker in the region of index 10200 but also weaker evidence
of independent signal in a couple of other regions.

5.2. Bayesian model-free clustering
Cluster analysis is one of the most widely used and important areas of applied statistics (Hastie
et al., 2009). In cluster analysis, a primary objective is to identify self-similar groups within data
such that observations within a group are deemed more closely related to one another than
observations between groups, K-means clustering being arguably the most popular clustering
method in use today.

The clustering problem is interesting from a formal Bayesian perspective as it raises several
challenges. The object of interest is the cluster partition mapping S, which allocates observations
to clusters. However, the partition S as it stands is not a generative model (a sampling distribution
for observables). To implement clustering the Bayesian analyst is forced to define a sampling
distribution for observations within a cluster, f.x|Cj/, where Cj denotes parameters that are
associated with the jth cluster, with an associated prior probability of cluster membership pj.
This leads to the well-known marginal mixture representation

f.x|C/=
K∑

j=1
pj fj.x|Cj/,

the canonical example being with Gaussian mixture components, f.x|Cj/ = N.μj, Σj/, which
necessitates a further layer of hierarchical priors π.μj, Σj/. Cluster membership can be sensitive
to the choice of sampling distribution and hierarchical prior, both of which are nuisance to the
task, and computation is complicated by the well-known label switching problem (Jasra et al.,
2005).

Non-Bayesian model-free segmentation methods have a distinct advantage in allowing the
analyst to concentrate on the object of interest, namely the clustering S, typically defined through
the specification of a pairwise dissimilarity score between observations d.xi, xj/. An optimization
algorithm is then used to find the optimal partition Ŝ which minimizes the score over pairs within
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Fig. 4. Voting of southern states, illustrating the percentage of the Republican vote for Presidential elections
every 4 years beginning in 1900: AL, Alabama; AR, Arkansas; DE, Delaware; FL, Florida; GA, Georgia;
KY, Kentucky; LA, Louisiana; MD, Maryland; MS, Mississippi; MO, Missouri; NC, North Carolina; SC, South
Carolina; TN, Tennessee; TX, Texas; VA, Virginia; WV, West Virginia

and/or between clusters. However, quantifying uncertainty in Ŝ, even assuming that the global
minima can be found, is far from trivial as we typically have only a single realization of dependent
multivariate data x, although see Seldin and Tishby (2001), who used PAC Bayesian ideas to
consider uncertainty in a predictive regression model when clustering the covariates.

We define a prior distribution directly on the partition,π.S/, and a loss function l.S, x1, : : : , xn/

and we use general Bayesian updating. To illustrate this we consider uncertainty analysis of a
classic data set considered in Hartigan (1972), illustrated in Fig. 4, in his highly influential paper
that introduced biclustering. Biclustering refers to the simultaneous clustering of observations
and covariates (rows and columns) of a data matrix and has proved extremely useful in modern
application areas, particularly in genomics (Cheng and Church, 2000; Tanay et al., 2002; Heard
et al., 2005).

Hartigan (1972) considered the percentage Republican Presidential vote of 16 southern states
in the USA over 18 elections covering the years 1900–1968. Hartigan treated the time series as
independent covariates in his co-clustering approach. Here, for simple illustration, we maintain
the time series ordering, so that the co-clustering is akin to clustering multiple-change-point
time series with common but unknown change points. We assume that the cluster memberships
are constant over time, but the time series change at specific break points. Our loss function is
defined as in Hartigan (1972) using a sum-of-squares decomposition,

l.S, x1, : : : , xn/=w
∑

Ck∈S

∑
ij∈Ck

.xij − x̄Ck
/2,

where i denotes state and j denotes time, Ck denotes the kth grouping of states over a particular
time period and x̄Ck

denotes the mean over all .i, j/∈Ck. The posterior distribution is therefore

P.S|x/∝π.S/exp{−l.S, x/}:
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The setting of the loss parameter w is a crucial part of the model specification. Following the
procedures that were discussed in Section 3, it is difficult to consider a conjugate specification
or a unit information prior on the discrete structures. We instead propose to use a frequentist
calibration approach in the following manner. Recall that under a flat prior on S we can set w
via a subjective assessment of the posterior ratio at a reference point,

P.S|x/

P.S′|x/
= exp[−w{l.S, x/− l.S′, x/}],

and where we can solve for w if all the other elements are given. In elicitation of w we propose
to make use of classical results from analysis of variance. We take as our first reference point
the null partition using a single global cluster, so that the loss l.S, x/=ΣiΣj .xij − x̄/2 is simply
the sum of squares around the mean. Then consider a randomized data partition {x, S′} that
allocates the data uniformly at random to k clusters. Under this scheme we expect that

{l.S, x/− l.S′, x/}=k −1
l.S, x/=.n−k/

∼Fk−1,n−k

where F denotes the F -distribution. We can then use the F -distribution to help in the calibration.
For example, if we consider a point in the tails of F , such that fÅ

α =F−1
k−1,n−k.α/ with α∈ .0, 1/,

and specify

l.S′, x/= l.S, x/

1+fÅ.k −1/=.n−k/

then l.S′, x/ represents the value of loss such that a randomized allocation has probability 1−α
of producing a smaller loss. Equivalently, with probability α a random allocation would lead to
a reduction in loss as high as 1+fÅ

α .k −1/=.n−k/ relative to the single cluster. When α is large
we can be confident that a partition achieving a loss of l.S′, x/ represents a significant clustering.
The analyst can then calibrate w in the following way.

(a) Define a reference value for R = P.S|x/=P.S′|x/ under a uniform prior, setting R small,
say R=0:001, relative to the global cluster S.

Table 1. Average loss of partitions across MCMC samples (and
log-posterior probabilities in parentheses)†

Number of state Average loss ×104 for the following numbers of
clusters ks change points in time kt (groups =kt +1)

kt =0 kt =1 kt =2

1 7.98 (−14:49) 6.82 (−14:34) 6.72 (−14:73)
2 5.36 (−13:69) 5.13 (−13:65) 3.19 (−13:58)
3 5.09 (−13:64) 3.92 (−13:38) 2.36 (−13.28)
4 4.99 (−13:91) 3.32 (−13:50) 2.02 (−13:41)

†The average loss is T −1 ΣT
i=1 l.Si, x/ with Si ∼π.S|x, ks, kt/, where ks

denotes the number of clusters of states and kt denotes the number
of time series change points. Log-posterior-probabilities are shown in
parentheses using a Poisson(3) and Poisson(2) prior on the number of
groups and number of time clusters kt + 1. The maximum posterior
clustering is shown in italics.
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(a)

(b)

Fig. 5. Time change point locations for the two-change-point, kt D2, model and ks D3 groups: (a) change
point 1; (b) change point 2

(b) Define a tail area value α such that, should a partition S′ achieve a relative reduction in
loss of 1+fÅ

α .k −1/=.n−k/, then you would assign relative posterior beliefs of R.
(c) Set w =− log.R/ l.S, x/fÅ

α .k −1/=.n−k/.

For the election data we found that w is quite stable to the calibration choice of {α, R}; for
example with k=3 we find w=0:0036 for {α=0:99, R=0:01} and w=0:0012 for {α=0:999, R=
0:01}. We choose w=0:0012 and ran an MCMC algorithm for 100000 iterations using a burn-in
of 50000. The iteration numbers were chosen after experimentation to deliver stable results over
multiple runs. The MCMC algorithm was rerun for differing numbers of partitions of states and
differing number of time series change points. Table 1 presents the results of the average loss
achieved over each run alongside the estimate of the posterior probability for each configuration
shown in parentheses by using a Poisson(3) prior on the number of groups and a Poisson(2)
prior on the number of time groupings, which is the number of change points plus 1. Note that
the first column in Table 1 equates to standard clustering of the states with zero change points
in time, whereas the first row represents a multivariate change point model. Table 1 suggests
strong evidence for clustering in both time and across states. The maximum posterior probability
favours the model with three groups of states and three time groupings.

We investigated uncertainty in the partitions and in the cluster allocation of the maximal
posterior model. To illustrate this we plot in Fig. 5 the distribution of the location of time
series change points for the {ks = 3, kt = 2} model. We can see strong evidence that the change
points occur late in the series, which is visually supported by the data in Fig. 4. The pairwise
co-clustering probabilities of this model are shown in Fig. 6, where each element represents
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Fig. 6. Pairwise co-clustering probabilities across three groups and two time change points: AL, Alabama;
AR, Arkansas; DE, Delaware; FL, Florida; GA, Georgia; KY, Kentucky; LA, Louisiana; MD, Maryland; MS,
Mississippi; MO, Missouri; NC, North Carolina; SC, South Carolina; TN, Tennessee; TX, Texas; VA, Virginia;
WV, West Virginia

the pairwise probability events ΣS P.S|x/1[CI.xi/=CI.xj/|S], where CI.xi/ is the cluster index
for the ith state. The cluster blocks show strong concordance with the single co-cluster that
was reported by Hartigan; see Fig. 6(a) in Hartigan (1972). However, our method highlights
considerable uncertainty in the pairing of Virginia and North Carolina, which is something that
we can quantify by using our general Bayesian approach.

6. Discussion

We have provided a basis for general Bayesian learning and the updating of information by using
belief probability distributions. Loss functions constructed on spaces of probability measures
allow for coherent updating. Specifically, information is connected to the parameter of interest
via a loss function and this is the fundamental concept, replacing the restrictive connection
based on probability models. We can recover precisely the traditional updating rules such as the
Bayes rule when we select the self-information loss function, when it is appropriate to do so.

The assumptions that we make are minimal: that information can be connected to unknown
parameters via loss functions and that individuals then act rationally by minimizing their ex-
pected loss. If information is assumed to come from some probability model then we can accom-
modate this within our framework by appealing to the self-information loss function equivalent
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to the negative log-likelihood and so we can argue that loss functions are sufficient for learning
mechanisms that are currently in use.

More generally, we can use loss functions that are currently employed in a classical context for
robust estimation, e.g. generalized estimating equations. We can also deal with partial informa-
tion where it is only a part of some observed information that is useful or relevant for learning
about the decision-making process based on a particular relevant parameter of interest.

We have developed a rigorous approach to updating beliefs where we are required only to
think about which is the best parameter from a chosen model needed to make a decision rather
than have to think about a non-existent true model parameter which coincides with the true
data-generating mechanism.

We believe that it is fundamental to identify parameters of interest through loss functions.
The alternative route through a probability model is, we argue, highly restrictive and leads to
narrow types of Bayesian updating. The necessary supporting theory for us is minimal (the
construction and minimization of loss functions), whereas for the use of probability models it
is more intricate and restrictive.
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Appendix A: Proof of theorem 1

In the two-point case, say Θ= {0, 1}, the prior π is determined by a real number z in the unit interval,
and the loss l.θ, x/ takes only two values, say l0 and l1. By condition 5, we can replace the pair .l1, l0/ with
.l1 − l0, 0/. Therefore, the posterior is a function of l= l1 − l0 and z, say ψ̄.l, z/. To proceed, it is convenient
to think in terms of odds rather than probabilities. So, if z is the prior for 0, we can consider t = z=.1− z/
and z = t=.1 + t/. We can do the same with the posterior. The posterior odds are a function of the loss
difference l and the prior odds t, which we denote by φ.l, t/.

Dealing with the odds, equation (3) becomes

φ.l+h, t/=φ{l,φ.h, t/}, .16/

where h is a replication of l with a possibly different x. Moreover, with a constant loss, the posterior is
equal to the prior (condition 4), i.e.

φ.0, t/= t, .17/

for every t> 0.
At this stage, we consider a prior with more than two mass points, say three and given by {1, 2, 3}; the

prior is given by {z1, z2, 1− z1 − z2}, with loss functions {l1.x/, l2.x/, l3.x/}. The loss can be 0 at one point
without loss of generality (condition 5), so it takes values .l1, l2, 0/. Let us consider the updating rule φ for
priors with just two mass points. We can use this to update the conditional probability of 1 given {1, 3},
i.e. z1=.z1 + z3/.

For this, we update the prior with masses z1=.z1 + z3/ and z3=.z1 + z3/ considering just the loss values
.l1, 0/, i.e. disregarding the point 2 with its loss l2. In other words, we aim at the right-hand side of equation
(9).

Denote by t1,3 the odds corresponding to the conditional probability of 1 given {1, 3}, i.e. t1,3 = z1=z3.
We update t1,3 on the basis of the loss values l1 and 0, i.e. with φ.l1, t1,3/. Similarly, we can define t1,2 =z1=z2
and t2,3 = z2=z3. We update t1,2 on the basis of l1 and l2, i.e. with φ.l1 − l2, t1,2/ and t2,3 with φ.l2, t2,3/.
Clearly, t1,3 = t1,2t2,3, and this factorization of conditional odds must hold also after updating, i.e.
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φ.l1, t1,3/=φ.l1 − l2, t1,2/φ.l2, t2,3/, .18/

where t1,3 = t1,2t2,3. Formally, this identity is a consequence of condition 2, i.e. updating the conditional
probability is the same as conditioning the updated probability. Since equation (18) must hold for every
t2,3, t1,2 > 0 and for every l1, l2 ∈R we have that

φ.l1, ts/=φ.l1 − l2, t/φ.l2, s/,

for every t, s> 0 and l1, l2 ∈R. If in particular l2 =0, and say l1 = l, recalling equation (17), we have that

φ.l, ts/=φ.l, t/s,

for every t, s> 0 and every real l. Letting t =1, we find that

φ.l, s/=φ.l, 1/s, .19/

for every s>0 and every l∈R. A combination of equations (16) and (19) yields φ.l+h, 1/=φ{l,φ.h, 1/}=
φ.l, 1/φ.h, 1/, for every h, l∈R, which in turn, it is known, implies that φ.l, 1/= exp.−wl/ for some w∈R,
provided that φ.l, 1/ is a monotone function of l owing to condition 3. Hence,

φ.l, t/= exp.−wl/t, .20/

for every l∈R and every t> 0. In this way, we are basically done with the two-points case.
Let us now consider the three-point case: we want to update the prior with mass points at {1, 2, 3} given

by {z1, z2, 1− .z1 +z2/}, where z1 and z2 are non-negative and their sum is less than or equal to 1, and it is
convenient to set z3 :=1− .z1 +z2/. In terms of odds, the prior is given by the pair .t1, t2/ (being ti =zi=.1−
zi/, or equivalently zi = ti=.1 + ti/= 1 − 1=.1 + ti/, i= 1, 2) where t1, t2 � 0 and t1=.1 + t1/+ t2=.1 + t2/� 1.
Here, it is convenient to set t3 := [{1− t1=.1+ t1/+ t2=.1+ t2/}−1 −1]−1. In this setting, we consider the loss
values .l1, l2, 0/. Moreover, we consider an R2-valued function φ.l, t/= .φ1.l, t/,φ2.l, t//, where l = .l1, l2/
and t = .t1, t2/. Now the question is how we could recover φ from φ, where the latter gives the updating
rule for the two-points case. Recall the notation that we have used for the conditional odds, i.e. ti,j = zi=zj

are the odds corresponding to the conditional probability of i given {i, j}, for distinct i, j =1, 2, 3. We can
see that t1 = z1=.z2 + z3/ = .t2,1 + t3,1/

−1. By condition 2, this identity will have to be satisfied also by the
updated odds. Since we update t2,1 with φ.l2 − l1, t2,1/ and t3,1 with φ.−l1, t3,1/, we must have

φ1.l1, l2; t1, t2/={φ.l2 − l1, t2,1/+φ.−l1, t3,1/}−1,

which by equation (20) becomes

φ1.l1, l2; t1, t2/= exp.−wl1/{exp.−wl2/t2,1 + t3,1}−1: .21/

As t2,1 = z2=z1 and t3,1 = z3=z1, equation (21) becomes

φ1.l1, l2; t1, t2/= exp.−wl1/z1

exp.−wl2/z2 + z3
,

and the updated probability of 1 will be

1−{1+φ1.l1, l2; t1, t2/}−1 = exp.−wl1/z1

exp.−wl1/z1 + exp.−wl2/z2 + z3
:

This is what we must obtain updating z1 on the basis of the loss values l1, l2 and l3 with l3 = 0. Similarly,
we can see that updating z2 we must obtain

exp.−wl2/z2

exp.−wl1/z1 + exp.−wl2/z2 + z3
:

In this way we have shown how to extend our coherent updating rule from the two-points case to the
three-points case.
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