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Innate immune memory was first described for monocytes and other myeloid cells. This
memory is designated Immune Training, in which the host animals that had experienced
pathogen infection earlier acquire improved resistance to a second infection. Innate
immune memory is mediated by an epigenetic mechanism traced to transcriptional
memory that is conserved throughout evolution and has been selected for the ability to
mount an adaptive response to shifting environments. Accumulating evidence shows that
not only peripheral myeloid cells but hematopoietic stem/progenitor cells (HSCs/HSPCs)
can acquire epigenetic memory upon pathogen exposure. Systemic pathogen infection
causes HSCs to exit from quiescence and facilitate myeloid-biased differentiation that
leads to efficient host defense. This sequence of events is common in HSC memory
generation, which is triggered by different stimuli. Recent studies show that not only
pathogens but other stimuli such as metabolic stress can generate memory in HSCs. This
review summarizes recent publications relevant to HSC memory. We discuss the current
understanding of initial sensors, soluble mediators/cytokines involved in memory
formation, including Type I and Type II interferons along with future implications.
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INTRODUCTION

Epigenetic traits, such as histone modifications and certain gene expression programs are inherited
through somatic cell divisions, allowing for the maintenance of phenotypic attributes across cell
generations. The inheritance of epigenetic traits is largely attributed to transcriptional memory, an
evolutionarily conserved mechanism known from bacteria to plants, and mammals (1). Typically, in
transcriptional memory, certain sets of genes that had been expressed earlier in response to external
cues, mount a faster and greater transcriptional response when these genes are induced again.
Enhanced transcriptional response in turn provides the capacity to adapt to a shifting environment
which can improve survival (1–4). Faster and greater response, however, does not represent the
entire range of transcriptional memory, as in some cases, a previous induction renders the gene(s)
unresponsive to the subsequent stimulus, illustrating a dual feature of memory. Innate immune
memory/trained immunity shares these features.
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Hematopoietic Stem Cells (HSCs)
Adult hematopoietic stem cells (HSCs) reside in the bone
marrow (BM) and hierarchically give rise to all lineages of
immune cells, which subsequently migrate into peripheral
blood and tissues to perform various physiological functions
(5–7). HSCs are heterogeneous with respect to self-renewing and
differentiation activity (8, 9). Long-term HSCs (LT-HSCs) are
capable of self-renewal and full-range lineage differentiation.
Short-term HSCs (ST-HSCs) and multipotent progenitors
(MPPs) are generated from LT-HSCs. While they maintain
multipotency, these progenitors no longer have the self-
renewal capacity. MPPs give rise to downstream progenitors,
i.e., common lymphoid progenitors (CLPs), common myeloid
progenitors (CMPs), megakaryocyte-erythroid progenitors
(MEPs), which generate functional lymphocytes and myeloid
cells (10, 11).

When encountered with systemic infection, inflammation,
blood loss, or other forms of hematopoietic stress, HSCs exit
from a dormant state, undergo proliferation, and then
differentiation to facilitate efficient myelopoiesis (12, 13). This
process is accompanied by peripheral production of hematopoietic
growth factors and cytokines, such as granulocyte-macrophage
colony-stimulating factor (GM-CSF), Interleukin-6 (IL-6), IL-1,
and Type I and Type II interferons (IFNs), which activates new
signaling pathways (14–20). Furthermore, HSCs/HSPCs express
pattern recognition receptors (PRRs), such as Toll-like receptors
(TLRs), and recognize pathogen components, which could then
induce cytokines themselves to facilitate emergency myelopoiesis
(21–24).

After acute HSC proliferation and myeloid cell differentiation
subside, a new homeostasis is established in HSCs which possess
a new chromatin landscape and epigenetic traits. This epigenetic
modification is thought to provide a basis of innate immune
memory/trained immunity, which typically confers enhanced
myelopoiesis and greater pathogen clearance (25). Conversely, in
other cases, initial priming causes an unresponsive state,
resulting in a reduced response upon secondary stimulus, as
typified by bacterial lipopolysaccharides (LPS) from gram-
negative bacteria (26–29). In either case, innate immune
memory is dependent upon epigenetic mechanisms, and as
such differs from the classical immunological memory in B
and T lymphocytes, which involves genetic changes in the
immunoglobulin, and T cell receptor genes, respectively.
Unlike adaptive immune memory, innate immune memory
created in peripheral myeloid cells is thought to be short-lived,
since these cells are turned over relatively rapidly. However,
memory in HSCs/HSPCs, if formed, could persist longer, and
produce greater downstream consequences.
PATHOGEN COMPONENT-INDUCED
INNATE IMMUNITY

A broad range of microbial infections results in alterations in the
BM compartment, involving rapid proliferation and
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differentiation of HSCs as well as progenitor cells, and the
subsequent mobilization to the site of infections (30).
Escherichia coli infection leads to enhanced granulopoiesis and
mobilization of progenitor LK (Lin-ckit+Sca-1-) cells into the
peripheral circulation (31). In addition, in the Pseudomonas
aeruginosa induced sepsis model, the infection causes HSC
expansion that permits rapid compensation to cover the loss of
mature immune cells (32). Extensive alterations in the HSPCs
compartment have also been observed after other forms of
systemic infection (33–35). As summarized in Figure 1,
systemic pathogen exposure can afford improved protection
against secondary infection by related or unrelated pathogens
(25, 36–40).

Toll-Like Receptor 4 (TLR4) -Induced
HSC Activation and Acquisition
of Innate Immune Memory
TLRs (10 in humans, and 13 in mice known) detect pathogen-
associated molecular patterns (PAMPs) from invading microbes
(23, 24).HSCs/HSPCs express a number of TLRs, including TLR1-
4, andTLR6-9 (41), allowing the cells to recognize various formsof
PAMPs and to stimulate proliferation and differentiation into
myeloid cells. It is reported that HSPCs (Lin-IL-7Ra-ckit+Sca-1+

(LKS+) cells, LKS+Flk2− long-term stem cells (LT-HSCs),
LKS+Flk-2+ multipotent progenitors (MPPs) are capable of
responding to LPS through TLR4 or Pam3CSK 4 via TLR2. The
downstream adaptor, MyD88 is shown to be required for HSPC
activation (21). Another study, on the other hand, reported that
LPS induced TLR4 activation depends on TRIF, an alternate
adaptor in the TLR signaling cascade (22). Although seemingly
inconsistent, these results may not be contradictory, since TLR4
employs both MyD88 and TRIF (23, 24).

Recently, de Laval et al. reported that upon LPS exposure,
HSCs undergo expansion and myeloid differentiation and
gaining epigenetic memory, which provided an increased
protective response to Gram-negative bacteria, Pseudomonas
aeruaginosa by reducing bacterial burden and increasing
survival rate (38). Although LT-HSC populations returned to a
steady-state (cell number) 4 weeks following LPS priming, the
LT-HSCs, conferred protection against p. aeruaginosa infection
when transferred into naïve mice. The LT-HSCs retained the
self-renewal and lineage differentiation capacity along with the
transcriptome profile of quiescent HSCs, in which LPS induced
inflammatory gene expression was transiently seen earlier. LPS
induced a number of transcription factors known to promote
myelopoiesis, including members of the C/EBP, ATF, and IRF
families, which correlated with a sustained change in chromatin
accessibility with an increase at PU.1 and RUNX1 motifs.
Consistent with this, open chromatin regions correlated with
enhancer marks such as H3K3me1 and H3K27ac and are linked
to genes involved in myeloid cell development and activity.
These observations indicate that LPS induced transcription
factors set a new epigenetic mark in chromatin that leads to
the establishment of innate immune memory. Accordingly,
HSCs without C/EBPb were unable to alter chromatin
March 2021 | Volume 12 | Article 621333
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accessibility and failed to provide memory. Other transcription
factors expressed in HSCs and regulated by LPS may also
modulate these processes (42, 43). Thus, persistent alteration
of epigenetic landscape is likely to reflect the state and duration
of HSC innate immune memory. In line with this study, another
paper reported that LPS priming improved bacterial clearance
and survival of mice when challenged with P. aeruginosa (37). In
addition, increased granulocyte monocyte progenitors (GMP)
were also found in an LPS mediated sepsis model (38, 44).

Besides these studies, LPS is known to cause a profound
unresponsive state known as LPS tolerance after a single
administration (26–28). Thus, LPS tolerance can leave the host
more vulnerable to a secondary infection in some cases.
Tolerance is the opposite side of innate immune memory/
trained immunity, in which many proinflammatory cytokines,
including IL-1, TNFa, and IL-6 remain uninduced after a second
LPS stimulation as observed in vivo and in vitro (45, 46).

The Role for TLR3 in HSC Training
Poly (I: C), synthetic ds RNA, used as an RNA virus mimic is a
ligand of TLR3 (31–34). de Laval showed that when injected into
mice, Poly (I: C), like LPS, led to increased resistance to P.
aeruginosa, showing that TLR3 signaling activated following
RNA virus infection could give rise to trained immunity (38).
Frontiers in Immunology | www.frontiersin.org 3
In addition, Ribes et al. showed that intraperitoneal pre-injection
of Poly (I: C) protects mice from the intracranial E.coli infection,
which is known to cause meningoencephalitis (47). Although
this study does not present data for HSCs, it indicates that Poly
(I: C) is capable of generating some forms of innate immune
memory, as it produced broad effects, including those on NK cell
mobility and microglia phagocytic activity. Taken together, given
that many RNA viruses are major pathogens that afflict all
animals, further investigations are warranted to elucidate TLR3
mediated innate immune training, not only in HSCs but
peripheral myeloid cells. In this context, RIG-I and MDA5 that
also sense viral dsRNA may also play a role in training (48).

b-glucan Induced Trained Immunity in
HSCs
b-glucans are a group of polysaccharides that represent key
components of the skeletal cell wall of fungi (such as Candida
albicans), bacteria, and some plants (such as grain and seaweed)
(49, 50). The ability of b-glucans in modulating immune
response has been well established. The first evidence for the
role of b-glucan in trained immunity was shown in a study of C.
albicans infection where preinfection with the fungus protected
mice from the second, lethal C. albicans infection (36). This
protection was dependent on monocytes, not lymphocytes,
FIGURE 1 | Molecular cascades that create epigenetic memory in HSCs. Top row: Microbial Training Agents and Non-Microbial Training Agents recognized by
PRRs and other sensors. Images underneath are subsequent events occurring in descending order. (1): Activation of signaling pathway involving transcription factors
and kinases. (2): This then globally alters chromatin accessibility, which leads to building new transcriptome profiles. Open chromatin regions (OCR) can persist
longer than transcriptome changes, providing a basis of lasting epigenetic marks. Shown in the bottom two rows are (3): Duration of memory and (4): Phenotypic
manifestation of memory. In all cases, HSC memory acquisition involves exit from quiescence, proliferation, and myeloid-biased differentiation of LT-HSC and
progenitor cells.
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unraveling a novel training effect in monocyte in vivo (36).
Cellular response to b-glucans is initiated mostly by the
binding to dectin-1, studied extensively in macrophages (50–
52). In these studies, the long-term epigenetic reprogramming
afforded by C. albicans or b-glucans exposure was shown to be
mediated by dectin-1 and through the noncanonical Raf-1
pathway (36, 53).

Mitroulis et al. showed that b-glucan, when injected
intraperitoneally, induces a dynamic change in the proportion
of HSCs and MPPs (39). Gene expression analysis illustrated
induction of proliferation and differentiation of LT-HSCs
towards myeloid lineage-biased CD41+ LT-HSCs subsets, along
with an increase in myeloid-biased MPPs. b-glucan injection also
led to an increase in CMP, GMP, and granulocytes
(Gr1+CD11b+). The authors performed adoptive transfer of
LT-HSCs from b-glucan injected mice into naïve mice and
showed that LT-HCSs from b-glucan injected mice provides
sustained myelopoiesis. In addition, b-glucan training afforded a
protective response to LPS induced DNA damage in HSCs. Also,
b-glucan training led to improved resistance to cytotoxic drugs,
5-fluoracil (5-FU), and cyclophosphamide, resulting in a marked
increase in the survival rate (54–56). Importantly, the authors
found that IL-1b is produced upon b-glucan injection, and this
cytokine is responsible for HSC expansion and myeloid biased
progenitor differentiation. IL-1 was also responsible for a
metabolic shift towards glycolysis. Verifying these results,
pharmacological inhibition of IL-1 by IL1RA (anakinra)
abrogated HSC expansion, myelopoiesis, metabolic change and
immune training. Presumably relevant to these findings, it is
reported that SHIP1 signaling is involved in b-glucan induced
myeloid cell training, suggesting the role for the phosphatase in
this process (57).

Extending the observations of Mitroulis et al., Moorlag et al.
recently demonstrated that b-glucan dependent immune
training offers a broad anti-pathogen protection, not only in
mice, but in human against virulentMycobacterium. tuberculosis
(M.tb) (58). Human monocytes pre-exposed to b-glucan in vitro
followed by M.tb infection had lower bacterial load than those
without b-glucan preexposure. RNA-seq and ChIP seq analyses
showed that some IL-1 family cytokines/chemokines were
upregulated in b-glucan trained monocytes, which correlated
with increased the H3K27ac mark that indicates enhancers.
Preinjection of b-glucan in mice conferred longer survival in
mice in response to the secondaryM.tb infection. As reported by
Mitroulis et al, b-glucan increased LT-HSCs and myelopoiesis in
an IL-1 dependent manner. Corroborating the critical
requirement of IL-1 signaling, IL-1RA treatment increased
M.tb burden in the lung. These reports provide substantive
evidence that b-glucan educates HSCs through IL-1 pathways.

Bacillus Calmette-Guérin (BCG) Induced
Trained Immunity in HSCs
BCG vaccine is a live, attenuated strain of Mycobacterium bovis,
used for protection against M. tb. Epidemiological studies on
BCG vaccination support its efficacy and the role of innate
immunity (59). BCG vaccines are also shown to give cross-
Frontiers in Immunology | www.frontiersin.org 4
protection against different pathogens, even cancers (60). Based
on the cross-protective activity of BCG, O’Neill and Netea
proposed the possibility that BCG vaccination may be
beneficial for boosting host resistance against coronavirus,
including Covid-19, pandemic at the time of this writing (61).
It is reported that peripheral monocytes acquire trained
immunity in volunteers who received BCG vaccine. These
monocytes expressed higher levels of proinflammatory
cytokines, including IFNg, TNFa, and IL-6 than those without
BCG (62, 63). Also, BCG is reported to provide increased
resistance against experimental yellow fever in human
monocytes (64), which coincides with a shift towards glycolytic
metabolism, important for BCG induced training (65). It is
known that HSCs are refractory to direct bacterial infection,
including BCG and Mycobacterium avium, as HSCs do not take
up the bacteria (19, 40, 66, 67).

Kaufmann et al. showed that i.v. injection of BCG in mice
causes long term innate immune memory in HSCs, conferring
improved resistance to second infection by the virulent M.tb
(40). The authors found that BCG injection facilitates HSC
expansion and development of myeloid lineage dominant
multipotent progenitor (MPP3) (19, 40). BM derived
macrophages from BCG injected mice gave enhanced
protection against M. tb compared to those from naïve mice.
Moreover, in cell transfer experiments, naive mice given BM
HSCs (LKS) from BCG injected mice demonstrated lasting
protection against M.tb, verifying that memory took place in
the HSCs. BCG education of HSCs and enhanced resistance to
M. tb was dependent on IFNg (Type II IFN), in which Ifngr-/-
mice lacking IFNg signaling failed to provide anti-M.tb
protection. Bulk and single-cell (sc) RNA-seq revealed that this
memory correlated with changes in the transcriptome programs
in HSCs and MPPs. At the epigenome-level, the transcriptome
profiles were associated with the appearance of key enhancer
elements marked by acetylation of H3K27.

More recently, Khan et al. asked if the virulent M.tb strain,
H37Rv generates trained immunity and report the results
startlingly different from those observed with BCG (67). M.tb
infection by i.v. injection or aerosol, weakened host’s ability to
mount resistance against the subsequent M.tb infection. The
weakened resistance was mediated by Type I IFN signaling, and
lasted at least a year. While M.tb and BCG both expanded LT-
HSCs and MPPs, unlike BCG, M.tb suppressed myelopoiesis
leading to a dramatic reduction of neutrophils and Ly6Chi

monocytes in periphery. RIPK1 dependent necroptosis
accounted for the neutrophil deficiency. BM derived
macrophages from naïve mice which adoptively received HSCs
from M.tb infected mice were lower in cell yield and deficient in
clearingM.tb in vitro. Type I IFN signaling was found critical for
the increased susceptibility, as Ifnar1-/- mice (lacking type I IFN
receptor), but not Ifngr-/-mice showed better survival afterM.tb
infection than WT mice and displayed reduced phenotypes. The
inhibitory role of type I IFNs in M.tb infection is partly in line
with some of previous clinical/epidemiological studies. Together,
M.tb trains HSCs somewhat paradoxically to diminish host’s
own innate resistance.
March 2021 | Volume 12 | Article 621333
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NON-MICROBIAL AGENTS INDUCED
TRAINED IMMUNITY

PRRs recognize not only pathogen-derived molecular patterns,
but non-pathogen derived patterns, produced endogenously or
exogenously. Some of these can lead to trained immunity with
extensive phenotypic changes.

Western Diet-Induced Trained Immunity
Western-style diet (high calorie, high cholesterol), combined
with a sedentary lifestyle are prone to cause obesity, type II
diabetes, and other health risks. Inflammation in myeloid cells is
a major factor for these health problems. Christ et al. reported
that Western diet leads to the generation of trained immunity
similar to that produced by pathogens described above (68, 69).
The authors examined an atherosclerosis model with Ldlr-/-
mice, and found that Western diet prompted the expansion of
HSPCs and increased myeloid cell outputs as well as the
recruitment of myeloid cells to the site of inflammation. In
BM, the proportion of HSPCs, MPPs, and GMPs was
increased after consumption of the Western diet. Prolonged
myeloid prone changes are associated with low-grade
inflammation, also seen in aging. In LPS rechallenge
experiments, Western diet-fed mice displayed increased
monocyte activation and hyper-inflammation, similar to the
reported impacts of innate immune training. Analogous effects
were previously reported for rabbits fed with cholesterol-rich
diets (70). Supporting an epigenetic mechanism, the Western
diet altered overall chromatin accessibility with open chromatin
regions associated with IL-6 gene expression and the JAK/STAT
pathway activity. Moreover, the NLRP3 inflammasome pathway
was involved in Western diet-induced trained immunity, in that
the diet-induced effects were reversed in Ldlr-/-/Nlrp3-/- double
knock-out mice, which exhibited a reduction in systemic
inflammation, excessive hematopoiesis, and reprogramming of
GMPs. A prolonged Western diet is known to cause cholesterol
overloading in HSCs, leading to an increase in the production of
growth factors/cytokines, such as GM-CSF and IL-3. Together
these studies suggest that prolonged Western diet promotes
formation of immune memory in HSCs. However, underlying
processes by which Western diet regulates transcription and
epigenome programs in HSCs remain to be elucidated.

Heme-Induced Trained Immunity in HSCs
Heme, a key prosthetic group of hemoproteins or enzymes, is
composed of protoporphyrin IX and a ferrous ion (71). Free
heme can accumulate excessively during sterile and infectious
hemolysis, including hemolytic anemias, ischemia-reperfusion,
and malaria, once heme scavengers are over-saturated (72, 73).
Heme accumulation increases oxidative stress and systemic
inflammatory response (72). Somewhat paradoxically, sickle-
caused heme accumulation provides protective effects against
Plasmodium Infection, partially through the NR2 2/heme
oxygenase-1 (HO-1) pathway (74). Moreover, heme can induce
IL-1b production in LPS primed macrophages through
activation of NLRP3 inflammasomes (72, 75).
Frontiers in Immunology | www.frontiersin.org 5
Jentho et al. reported that heme administration increases
myeloid-biased LT-HSCs (CD41+LT-HSC), and myeloid-biased
MPPs (MPP3,Flt3−CD48+CD150−LSK) with a concomitant
decrease in lymphoid-biased MPP4 cells (Flt3+CD48+CD150−

LSK) (76). In addition, heme-primed mice were more sensitive to
LPS induced acute inflammation, leading to an increase in
mortality. Conversely, heme-primed mice showed a protective
response to smoldering bacterial sepsis induced by peritoneal
contamination and infection. ATAC-seq analysis revealed that
heme induces a dramatic change in chromatin accessibility,
consistent with myeloid cell-prone development. Heme
mediated immune training shared common features with b-
glucan driven training, such as upregulated glycolytic
metabolism, and enrichment of AP-1 motif in accessible
chromatin sites. These findings indicate that labile heme
mediates training in LT-HSCs facilitating long-term
myelopoiesis with varying outcomes in host defense. It remains
to be explored how HSCs sense heme and then reprogram
myeloid-biased training in vivo.
ROLE OF IFNs IN INNATE IMMUNE
MEMORY: IFN ACTION IN LT-HSCs

IL-1 and GM-CSF, cytokines produced by b-glucan priming play
a role in HSC immune training (39). IFNs are another class of
cytokines that take part in generating innate immune memory in
HSCs and peripheral myeloid cells.

Expression and Function of IFNs
There are three types of IFNs, Type I (IFNa/b), Type II (IFNg),
and Type III (IFNl). Type I and Type II IFNs are shown to be
involved in innate immune memory (see below). However, to
date, the role of Type III IFN in memory formation has yet to be
deciphered. Type I IFNs are encoded by a cluster of related genes
(one Ifnb gene, many Ifna genes), and synthesized mostly in DCs
and macrophages in response to PRR signaling, but other non-
immune cells such as fibroblasts and epithelial cells also produce
Type I IFNs. Type II IFN is encoded by a single gene and
synthesized in NK and T cells in response to cytokines such as
IL-12 and TCR activation (77, 78). Type I IFNbinds to the
surface receptor, IFNAR, and signals through a JAK-STAT
pathway, leading to activation of the STA1/STAT2/IRF9
complex. This prompts transcriptional induction of more than
2,000 IFN stimulated genes (ISGs), which collectively confer
anti-viral and anti-microbial activity on the host cells (79). Type
II IFN binds IFNGR and signals through a similar, but distinct
JAK-STAT pathway which activates STAT1 dimers. Type II IFN
also induces over 2,000 ISGs, many overlapping with ISGs
induced by Type I IFN (79, 80). Together, these IFNs provide
innate resistance against all types of pathogens, from viruses
(DNA and RNA viruses) to bacteria, fungi, and even parasites, a
trait that distinguishes them from other cytokines (81). There is
an extensive crosstalk between IFNs and NFkB induced
inflammatory responses. For example, IFNb is activated not
only by IRFs but by NFkB, which in turn creates an IFNb
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen and Ozato Trained Immunity in Hematopoietic Stem/Progenitor Cells
feedback loop. Thus, ISGs and NFkB-induced factors are often
co-expressed during infection and inflammation.

Both Type I and Type II IFNs are involved in regulating HSC
activity and play a role in forming innate immune memory (18,
38, 40). It is reported that the injection of IFNa and Poly (I: C), a
Type I IFN inducer, prompts LT- HSCs to exit quiescence
prompting their proliferation (18). This process is dependent
on IFNAR and JAK-STAT1 signaling.

Convincing evidence has been presented for the requirement
of IFNg in BCG mediated HSC immune training: Kaufmann
et al. showed that priming mice with BCG trains HSCs to form
memory, which provided enhanced protection against M.tb and
that this training was dependent on IFNGR (40). In addition,
IFNg creates innate immune memory in peripheral myeloid cells
(82, 83).

Baldridge et al. showed that injection of recombinant IFNg
activates LT-HSCs, triggering the cell cycle entry, and the
subsequent mobilization to the spleen (19, 84). Infection with
Mycobacterium avium which induces IFNg also stimulated LT-
HSC expansion. A later study by Matatall et al. showed that
LCMV infection, also inducing IFNg, triggered LT-HSC
proliferation, and directed myeloid-biased differentiation along
with an increased expression of C/EBPb (85). Furthermore,
myeloid-biased HSCs expressed IFNGR at higher levels than
lymphoid biased HSCs, thus were more sensitive to IFNg
signaling than lymphoid biased HSCs. The differential IFNGR
expression reinforced the selective expansion of myeloid-biased
progenitors and their differentiation. Furthermore, IFNg primed
myeloid-biased HSC were preferentially mobilized to periphery
upon Mycobacterium. avium infection (85). These observations
support a significant role of IFNg for HSC memory and provide a
clue to the mechanism of IFNg action.

IFN Stimulation Creates Classical
Transcriptional Memory
In a separate line of approach, our group reported that Type I
and Type II IFNs generate transcriptional memory in somatic
cells (83). When NIH 3T3 cells, mouse embryonic fibroblasts,
and BM macrophages were treated with IFNb or IFNg,
respectively in advance, the cells mounted a faster and greater
ISG response upon the second IFN stimulation, a typical feature
of transcriptional memory. Supporting the biological significance
of this memory, IFN pretreatment led to improved protection
against EMCV viral infection. This memory was inherited
through generations, as the memory response was retained
after cycles of fibroblast proliferation, another hallmark of
transcriptional memory. Transcriptome analysis revealed that
memory has a dual quality. While some ISGs exhibited enhanced
transcription, other ISGs became unresponsive (or less
responsive) to the second IFN stimulation. A similar dual
feature has been documented for LPS induced memory, in that
LPS pre-administration enhanced expression of some LPS
response genes, but repressed other genes (26–28, 38, 45). GO
analysis indicated that this duality has a functional meaning,
since ISGs showing enhanced expression in the second response
were associated with anti-viral, anti-pathogen responses, whereas
Frontiers in Immunology | www.frontiersin.org 6
ISGs with reduced second response were enriched with terms for
cell growth, metabolic regulation, etc, unrelated to host defense.
The memory response was accounted for by accelerated
recruitment of STAT1 and RNA polymerase II to ISGs for
ISGs with the enhanced second response. On the other hand, a
block in transcriptional elongation was observed for ISGs
tolerized in the second response. Epigenome analysis showed
that memory coincides with the deposition of the histone H3.3, a
conserved histone variant implicated in memory (86). H3.3 and
its specific chaperon HIRA, which is responsible for genic H3.3
deposition are expressed highly in murine adult BM HSCs. Our
subsequent study with conditional Hira-/- mice demonstrated
that HIRA is essential for the generation and maintenance of BM
LT-HSCs. In the absence of HIRA, the number of BM LT-HSCs
were dramatically reduced, along with the reduction in
immediate (MPPs) and downstream progenitors (CMPs,
GMPs), leading to a marked paucity in mature, functional
myeloid and lymphoid cells. These observations support the
possibility that the histone H3.3 and its chaperon HIRA play a
substantial role in shaping the development and function of
HSCs, and may contribute to their memory formation.

Trained Immunity and DNA Damage
in HSCs: Unsolved Questions
Although a limited number of IFN stimulation can generate trained
immunity, repeated IFN exposure is shown to exhaust HSC pools
by an internally controlled process, not fully understood (84, 87, 88).
Transcription factor families including the IRF family appear to play
a role (84, 87). HSC attrition is presumably a result of DNA damage
that occurs during HSC proliferation and associated replication
stress (88). In addition to IFNs, Poly I: C and LPS are shown to
cause DNA damage in HSCs even after a single exposure, as
evidenced by phosphorylation of H2AX and nuclear foci
formation (39, 88). Similarly, chronic exposure to IL-1, a
proinflammatory cytokine involved in b-glucan mediated HSC
training is shown to exhaust HSC pools (17). Since HSC
activation and resultant proliferation leads to DNA damage, it is
possible that HSC training is in some way linked to DNA damage.
On the other hand, excessive HSC activation/proliferationmay have
a negative consequence on HSC’s self-renewal capacity and lifespan.
It remains unclear how HSC exhaustion affects immune training
and vice versa.

There is evidence suggesting that DNA damage activates
another signaling pathway, STING, and influences innate
immune memory in HSCs. STING is a cytoplasmic adaptor for
a DNA sensing signaling pathway (89). Canonical STING ligands,
cyclic di-GMP/AMP are produced by various pathogens, which
activate TBK and IRF3, resulting in Type I IFN and ISG induction
(86). The STING pathway is functional in LT-HSC since they are
activated and mobilized by a canonical STING ligand (90). It is
now evident that not only cyclic di-GMP/AMP, but DNA breaks
produced by genotoxic, chemotherapy drugs activate the STING
pathway (91). STING is also activated in mice defective in DNA
repair (92). DNA damage-induced STING pathway is reported to
chronically activate ISGs and NFkB mediated inflammatory
cytokines in some cell types (91, 92).
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It is noteworthy that chronic ISG expression and STING
activation is a hallmark of Aicardi-Goutieres Syndromes (AGS)
and related retinal vasculopathy with cerebral leukodystrophy
(RVCL), which produce complex inflammatory diseases often
involving neurological defects (93, 94). It may be of interest to
study how HSC DNA damage and immune training intersect
with AGS and related chronic inflammatory disorders.
CONCLUDING REMARKS

Innate immune memory is an emerging concept that opened a
radically new perspective on infection and inflammation.
Convincing evidence has been presented demonstrating that
HSCs form epigenetic memory in response to pathogens and
other stress, which confers adaptive responses to the subsequent
stress upon the host. HSC memory coincides with the induction
of proliferation and myeloid-biased progenitor differentiation,
the process driven by IFN, IL-1 and other inflammatory
cytokines. Many questions regarding molecular mechanisms,
signaling pathways, and epigenome landscapes leading to HSC
innate immune memory remain to be elucidated further.
Frontiers in Immunology | www.frontiersin.org 7
In addition, relationships between HSC immune training,
DNA damage, and hematopoietic aging are subjects of
future investigation.
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