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Abstract

China was one of the countries with highest esophageal squamous cell carcinoma (ESCC) incidence and mortality
worldwide. Alcohol drinking has been identified as a major environmental risk-factor related to ESCC. The alcohol
dehydrogenase (ADH) family are major enzymes involved in the alcohol-metabolizing pathways, including alcohol
dehydrogenase 1B (ADH1B) and ADH1C. Interestingly, ADH1B and ADH1C genes locate tandemly with ADH7 in a genomic
segment as a gene cluster, and are all polymorphic. Several ESCC susceptibility single nucleotide polymorphisms (SNPs) of
the ADH1B-ADH1C-ADH7 cluster have been identified previously through a genome-wide association study (GWAS). In the
study, we examined the association between five ADH1B-ADH1C-ADH7 cluster SNPs (rs1042026, rs17033, rs1614972,
rs1789903 and rs17028973) and risk of developing ESCC. Genotypes were determined in two independent case-control sets
from two regions of China. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by logistic regression. Our
data demonstrated that these ADH1B-ADH1C-ADH7 cluster SNPs confer susceptibility to ESCC in these two case-control sets,
which were consistent to results of the previous GWAS.
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Introduction

China was one of the countries with highest incidence and

mortality of esophageal squamous cell carcinoma (ESCC) world-

wide [1]. Epidemiological studies show that consumption of

tobacco and alcohol are major risk factors for ESCC [2,3].

However, only a portion of individuals exposed to tobacco and

alcohol develop ESCC, indicating the crucial role of host

susceptibility factors in ESCC. Accumulated evidences suggested

that single nucleotide polymorphisms (SNP) might explain

individual differences of susceptibility to ESCC through the

candidate gene approach or the genome-wide association study

(GWAS) approach [4–17].

Alcohol drinking has been identified as a major environmental

risk-factor related to ESCC [2,3]. Ethanol is metabolized in vivo by

alcohol dehydrogenase (ADH) family and aldehyde dehydrogenase

(ALDH), which are all polymorphic in human beings [18–19].

The total activity of ADH is significantly higher in cancer tissue

than in healthy mucosa [18]. The ALDH and ADH polymorphisms

influence individual diversity in alcohol-oxidizing capability and

drinking behavior [19]. Among the ADH family, the major

enzymes involved in the alcohol-metabolizing pathways are

alcohol dehydrogenase 1B (ADH1B) and ADH1C. ADH1B and

ADH1C exist as several homo- and heterodimers of ADH1A

subunits, exhibit high activity for ethanol oxidation and play an

essential role in ethanol catabolism. ADH7 is also a member of the

ADH family. Although less efficient in ethanol oxidation

compared to ADH1B or ADH1C, ADH7 is the most active as a

retinol dehydrogenase. Therefore, ADH7 may take part in the

synthesis of retinoic acid, a hormone important for cellular

differentiation. Interestingly, the aforementioned three genes

locate tandemly in a genomic segment as a gene cluster. Wu et

al. identified several new ESCC susceptible SNPs, including

ADH1B rs1042026 and rs17033, ADH1C rs1614972 and

rs1789903 as well as ADH7 rs17028973 through a GWAS based

on analyses of in 2031 ESCC cases and 2044 controls with

independent validation in 8092 ESCC cases and 8620 controls [4].

Considering the importance of ADH1B-ADH1C-ADH7 cluster in

ESCC, we conducted this replication case-control study to validate

the association between ADH1B rs1042026 and rs17033, ADH1C
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rs1614972 and rs1789903 as well as ADH7 rs17028973 SNPs and

ESCC risk.

Materials and Methods

Study subjects
This study consisted of two case-control sets: (a) Hangzhou set:

617 patients with ESCC from Cancer Research Institute, Zhejiang

Cancer Hospital (Hangzhou, Zhejiang Province, China) and sex-

and age-matched (65 years) 537 controls. Patients were recruited

between January 2012 and March 2013 at Zhejiang Cancer

Hospital. Control subjects were individuals who underwent a

physical examination in the same hospital during the same time

period as the patients were collected. (b) Jinan study: 540 patients

with ESCC from Shandong Cancer Hospital, Shandong Academy

of Medical Sciences (Jinan, Shandong Province, China) and sex-

and age-matched (65 years) 550 controls. Patients were recruited

between June 2009 and April 2012 at Shandong Cancer Hospital.

Control subjects were randomly selected from a pool of 4500

individuals from a community cancer-screening program for early

detection of cancer conducted in Jinan city during the same time

period as the patients were collected. The diagnosis of all patients

was histologically confirmed. Individuals who smoked one

cigarette per day for over 1 year were considered as smokers.

Subjects were considered as alcohol drinkers, if they drank at least

once per week. All subjects were ethnic Han Chinese. At

recruitment, the written informed consent was obtained from

each subject and each participant was then interviewed to collect

detailed information on demographic characteristics, such as sex

and age, and related risk factors, such as cigarette smoking, and

alcohol drinking. This study was approved by the Review Board of

Zhejiang Cancer Hospital and the Review Board of Shandong

Cancer Hospital.

SNP selection and genotyping
A total of five ADH1B-ADH1C-ADH7 cluster SNPs (rs1042026,

rs17033, rs1614972, rs1789903 and rs17028973) were included in

the current study. These SNPs are ones identified by a previous

ESCC GWAS in Chinese Han population [4]. All ADH1B-

ADH1C-ADH7 cluster SNPs were analyzed by the MassArray

system (Sequenom Inc., San Diego, California, USA). A 15%

blind, random sample of study subjects was genotyped in

duplicates and the reproducibility was 100%.

Statistical analyses
Pearson’s x2 test was used to examine the differences in

demographic variables and genotype distributions of five ADH1B-

ADH1C-ADH7 cluster SNPs between patients and controls. The

associations between genotypes of these SNPs and ESCC risk were

estimated by ORs and their 95% CIs computed by logistic

regression models. All ORs were adjusted for age, sex, smoking or

drinking status, where it was appropriate. We tested the null

hypotheses of multiplicative gene-environment interaction and

evaluated departures from multiplicative interaction models by

including main effect variables and their product terms in the

logistic regression model [4,20–23]. A P value of less than 0.05 was

used as the criterion of statistical significance, and all statistical

tests were two-sided. All analyses were performed using Statistical

Analysis System (version 9.0; SAS Institute) and SPSS 16.0 (SPSS

Inc.).

Results

In terms of median age and sex distribution, no statistically

significant differences were found between ESCC patients and

healthy controls for Hangzhou set and Jinan set (all P.0.05),

indicating that the frequency matching was appropriate (Table 1).

However, there are more smokers and alcohol drinkers were

observed among ESCC cases compared with controls in Jinan

Table 1. Distribution of selected characteristics among ESCC patients and healthy controls.

Variable Hangzhou case-control set (Discovery set) Jinan case-control set (Validation set)

Cases Controls P1 Cases Controls P1

No. (%) No. (%) No. (%) No. (%)

617 537 540 550

Age (year)2 0.737 0.167

#62(#56) 311(50.4) 276(51.4) 271(50.2) 299(54.4)

.62(.56) 306(49.6) 261(48.6) 269(49.8) 251(45.6)

Sex 0.855 0.193

Male 532(86.2) 465(86.6) 428(79.3) 453(82.4)

Female 85(13.8) 72(13.4) 112(20.7) 97(17.6)

Smoking status NC ,0.001

Yes 426(69.0) NA 354(65.5) 285(51.8)

No 191(31.0) NA 186(34.4) 265(48.2)

Drinking status NC 0.001

Yes 413(66.9) NA 300(55.6) 251(45.6)

No 204(33.1) NA 240(44.4) 299(54.4)

Note: ESCC, esophageal squamous cell carcinoma; NA, not available; NC, not calculated.
1Two-sided x2 test.
2Median ages of cases for Hangzhou case-control set and Jinan case-control set are 62 and 56 years.
doi:10.1371/journal.pone.0094096.t001
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case-control sets (both P,0.05). There are no data on smoking

and drinking status of controls in Hangzhou case-control set.

Firstly, unconditional logistic regression analysis was utilized to

detect associations between five ADH1B-ADH1C-ADH7 cluster

SNPs (rs1042026, rs17033, rs1614972, rs1789903 and

rs17028973) and ESCC risk in Hangzhou discovery set (Table 2).

All observed genotype frequencies in controls conform to Hardy–

Weinberg equilibrium in Hangzhou set. Logistic regression

analyses revealed that all five SNPs were significantly associated

with ESCC risk (ADH1B rs1042026: allelic OR = 2.02, 95%

CI = 1.66–2.47, P,0.001; ADH1B rs17033: allelic OR = 1.58,

95% CI = 1.18–2.11, P = 0.001; ADH1C rs1614972: allelic

OR = 1.65, 95% CI = 1.36–2.00, P,0.001; ADH1C rs1789903:

allelic OR = 1.77, 95% CI = 1.33–2.35, P,0.001; ADH7

rs17028973: allelic OR = 1.61, 95% CI = 1.35–1.92, P,0.001)

(Table 2). The ADH1B rs1042026 A allele, ADH1B rs17033 G

allele, ADH1C rs1614972 C allele, ADH1C rs1789903 G allele,and

ADH7 rs17028973 T allele were showed to be risk alleles.

Associations between genotypes of five ADH1B-ADH1C-ADH7

cluster SNPs and risk of ESCC were estimated in Hangzhou

discovery set (Table 3). Individuals with the ADH1B rs1042026

AG or AA genotype had an OR of 1.54(95% CI = 1.19–1.98,

P = 0.001) or 5.40(95% CI = 3.19–9.11, P,0.001) for developing

ESCC, respectively, compared with individuals with the GG

genotype (Table 3). ADH1B rs17033 AG carriers showed a 1.67-

fold increased ESCC risk compared with those carrying the

rs920778 CC genotype in two validation sets (95%CI = 1.24–2.26,

P = 0.001) (Table 3). A significantly increased ESCC risk

associated with the ADH1C rs1614972 TC or CC genotype

compared with the TT genotype was observed (OR = 1.35; 95%

CI = 1.06–1.73, P = 0.016; OR = 3.59; 95% CI = 2.19–5.88, P,

0.001). The presence of the ADH1C rs1614972 CG or GG

genotype was also associated with an increased risk of ESCC

(OR = 1.70; 95% CI = 1.26–2.30 or OR = 5.50; 95% CI = 1.21–

25.0, respectively) compared with the absence of such a genotype.

Moreover, the ADH7 rs17028973 TT genotype were significantly

associated with increased risk of ESCC (OR = 3.07, 95%

CI = 2.07–4.54, P,0.001). However, there was no such statisti-

cally significant association between the ADH7 rs17028973 CT

genotype and ESCC risk (OR = 1.25, 95% CI = 0.98–1.61,

P = 0.078).

The association of ESCC risk with five ADH1B-ADH1C-ADH7

cluster SNPs was further validated in an independent case-control

set. Genotyping results showed that all five SNP were significantly

associated with ESCC risk in Jinan Chinese population (Table 3).

Carriers of the ADH1B rs1042026 AG or AA genotype showed

significantly and consistently increased risk to develop ESCC

compared with GG carriers (OR = 1.47, 95% CI = 1.12–1.91,

P = 0.005; OR = 4.53, 95% CI = 2.65–7.72, P,0.001) (Table 3).

Similar results were found for ADH1B rs17033 AG genotype

(OR = 1.58, 95% CI = 1.16–2.16, P = 0.004) (Table 3). The odds

of having the ADH1C rs1614972 CC or TC genotype in patients

was 1.30(95% CI = 1.01–1.68, P = 0.045) or 1.30(95% CI = 1.01–

1.68, P,0.001) compared with the TT genotype (Table 3).

Although ADH1C rs1789903 CG genotype was significantly

associated with ESCC risk in the validation stage (OR = 1.58,

95% CI = 1.15–2.16, P = 0.005), rs1789903 GG genotype was not

associated with ESCC risk (OR = 3.49, 95% CI = 0.94–13.02,

P = 0.062). Additionally, ADH7 rs17028973 TT carriers showed a

2.62-fold increased ESCC risk compared with those carrying the

CC genotype in the validation set (95%CI = 1.75–3.93, P,0.001)

(Table 3).

The ESCC risk associated with the ADH1B-ADH1C-ADH7

cluster SNPs was further examined by stratifying for smoking
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status and alcohol drinking history due to the key role of these

enzymes in metabolism of ethanol and other toxics in Jinan case-

control set (Table 4 and 5). Interestingly, we found higher odds of

those five polymorphisms for developing ESCC among smokers

than those among non-smokers (Table 4 and 5). Similar results

were also observed among alcohol drinkers except ADH1B

rs17033 genetic variant (Table 4 and 5). However, no evident

gene-smoking interaction or gene-drinking interaction exists in

Jinan case-control set (Table 4 and 5). We also examined whether

there are gene-environment interaction between five ADH1B-

ADH1C-ADH7 cluster genetic variants and age and sex, but the

results were negative (data not shown).

Discussion

In the current study, we examined the association between five

ADH1B-ADH1C-ADH7 cluster SNPs (rs1042026, rs17033,

rs1614972, rs1789903 and rs17028973) and risk of developing

ESCC in a two-stage case-control design. In this replication study,

we successfully validated results of a previous GWAS that these

five SNPs confer susceptibility to ESCC [4]. However, no

significant gene-smoking interaction or gene-drinking interaction

between these ADH1B-ADH1C-ADH7 polymorphisms and ESCC

was observed in this Chinese Han population.

Several molecular epidemiological studies using a candidate

gene approach indicated a set of SNPs associated with ESCC

susceptibility, primarily variations that are related to alcohol

metabolism [24–30]. As a powerful and successful tool to identify

common disease alleles, GWAS could interrogate a large amount

of tagging SNPs that serve as surrogates for untested common

SNPs across the genome. In published GWAS of cancers of the

upper aerodigestive tract, including ESCC in individuals of

European [28,30], Japanese [9] and Chinese [4], have shown

that SNPs in the ADH genes contribute to susceptibility of ESCC.

Our results in this study are consistent to these reports and

highlight the importance of genetic variants of the ADH genes in

ESCC development.

There might be several limitations in the current case-control

study. First, because it was a hospital-based study and the cases

were from the hospital, inherent selection bias may exist. Thus, it

is important to validate these findings in a population-based

prospective study from the same geographic regions. Second, the

statistical power of our study may be limited by the sample size,

especially for statistical analyses of gene-covariate interaction.

Third, future studies will need to address the biological function of

these polymorphisms in the genesis of ESCC.

In summary, our study elucidated that the ADH1B-ADH1C-

ADH7 cluster polymorphisms were associated with risk of ESCC in

Chinese populations. Our data support the hypothesis that

multiple ADH genes are involved in ESCC etiology and highlight

the importance of genetic components in cancer development [31–

41].
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