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State University, University Park, PA 16802

Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved October 23, 2017 (received for review June 5, 2017)

Colloidal particles subject to an external periodic forcing exhibit
complex collective behavior and self-assembled patterns. A dis-
persion of magnetic microparticles confined at the air–liquid
interface and energized by a uniform uniaxial alternating mag-
netic field exhibits dynamic arrays of self-assembled spinners
rotating in either direction. Here, we report on experimental
and simulation studies of active turbulence and transport in
a gas of self-assembled spinners. We show that the spinners,
emerging as a result of spontaneous symmetry breaking of
clock/counterclockwise rotation of self-assembled particle chains,
generate vigorous vortical flows at the interface. An ensemble of
spinners exhibits chaotic dynamics due to self-generated advec-
tion flows. The same-chirality spinners (clockwise or counterclock-
wise) show a tendency to aggregate and form dynamic clusters.
Emergent self-induced interface currents promote active diffusion
that could be tuned by the parameters of the external excitation
field. Furthermore, the erratic motion of spinners at the inter-
face generates chaotic fluid flow reminiscent of 2D turbulence.
Our work provides insight into fundamental aspects of collective
transport in active spinner materials and yields rules for particle
manipulation at the microscale.

active turbulence | self-assembly | magnetic colloids | spinners

Turbulent fluid motion can be found across multiple length
and time scales. It has fascinated scientists for centuries

and still poses a major challenge for theoretical physics (1, 2).
The well-known high-Reynolds number hydrodynamic turbu-
lence in three dimensions is triggered by energy injection at
the macroscale and cascading of energy to smaller scales. As
an extension, the notion of active turbulence was recently intro-
duced in the context of active fluids exemplified by suspensions
of swimming bacteria, mixtures of microtubules and molecular
motors, and other nonequilibrium systems (3–10). In contrast to
hydrodynamic turbulence, the complex spatiotemporal behavior
is caused by energy injection at the microscopic scale and sub-
sequent cascading of energy toward larger scales. Active turbu-
lence formally occurs at exceedingly small Reynolds numbers,
rendering the fluid inertia negligible. Not surprisingly, statistical
properties of active turbulence appear to be different from its
classical counterpart. Active turbulence does not exhibit a wide
inertial range (4, 11), and a nonuniversal power-law behavior at
large scales was recently reported (12).

A related problem is diffusion and transport in active systems
(13–17). Active bacterial baths (13, 15), chemically propelled cat-
alysts (18), field-driven colloids (19–21), or even macroscopic
entities such as fish, insects, or birds (22, 23) are examples of
active systems where the units driving the motion generate local
forces that overwhelm the thermal agitation (if any is observ-
able in the first place). Such systems exhibit not only a wealth
of directed collective behavior but also regimes where the col-
lective motion is on average nondirectional, which gives rise to
active (self-driven) diffusion.

A predictive description of active fluids is challenging due
to the complexity of the individual building blocks (e.g., bacte-
ria, molecular motors, etc.). In this respect, a simple physical
model system, where interactions between particles are well-
characterized, is highly desirable. Suspensions of colloidal par-

ticles energized by external fields provide a unique opportunity
to model active systems in a well-controlled environment. This
was first demonstrated at the macroscopic level in a system of
magnetized disks suspended at a liquid–air interface and pow-
ered by a rotating magnetic field. Same-wise rotation of parti-
cles resulting in stable ordered phases similar to crystals (24, 25)
has been observed. Similarly, computer simulations of spinning
discs (26, 27) and dumbbells (28) in two dimensions yield vari-
ous ordered and disordered states. Studies of ferromagnetic col-
loids confined at the interfaces and energized by an alternating
magnetic field demonstrated a wealth of self-organized phenom-
ena, from the formation of dynamic clusters and self-propelled
entities (magnetic snakes, asters) (29–31) to rollers (32, 33)
and self-assembled spinners (34). Interfacial spinners gener-
ated by a uniaxial alternating magnetic field emerge as a result
of spontaneous symmetry breaking of clock/counterclockwise
(CW/CCW) rotations. The self-assembled spinners inject the
energy by a torque transfer via generation of local vortex flows.
The energy injection rate and the corresponding injection scale
can be tuned by the frequency and amplitude of the applied
magnetic field.

Here, we report on an experimental and computational study
of active turbulence and transport in a system of self-assembled
ferromagnetic spinners. We find that the spinners and added
inert particles exhibit active diffusion (diffusive motion is pro-
moted by the activity of the system), while the diffusion aris-
ing from thermal noise is negligible in our system. We show
that the active diffusion coefficient increases nearly linear with
the spinner density and is approximately independent of the fre-
quency of the driving magnetic field. We reveal a nonmonotonic

Significance

Turbulent fluid motion is widespread in nature and is observed
across diverse length and time scales, ranging from high-
Reynolds number hydrodynamics to active fluids, such as bac-
terial suspensions and cytoskeletal extracts. It is recognized as
one of the unsolved challenges in theoretical physics. Here, we
explore out-of-equilibrium magnetic colloidal particles at liq-
uid interfaces that exhibit complex collective behavior, result-
ing in emergence of an active spinner phase. Self-assembled
spinners (active spinning without self-propulsion) induce vig-
orous vortical flows, demonstrating the properties of a 2D
hydrodynamic turbulence. Our findings provide insight into
the behavior of active spinner liquids and ways to control the
collective dynamics and transport in active colloidal materials.

Author contributions: A.S. designed research; G.K., S.D., R.G.W., G.G., and A.S. performed
research; G.K., S.D., R.G.W., G.G., I.S.A., and A.S. analyzed data; and G.K., S.D., R.G.W.,
G.G., I.S.A., and A.S. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-
NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence may addressed. Email: snezhko@anl.gov or g.gompper@fz-
juelich.de.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1710188114/-/DCSupplemental.

12870–12875 | PNAS | December 5, 2017 | vol. 114 | no. 49 www.pnas.org/cgi/doi/10.1073/pnas.1710188114

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:snezhko@anl.gov
mailto:g.gompper@fz-juelich.de
mailto:g.gompper@fz-juelich.de
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1710188114/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1710188114/-/DCSupplemental
http://www.pnas.org/cgi/doi/10.1073/pnas.1710188114
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1710188114&domain=pdf


A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S

dependence of the active diffusion coefficient on the inert par-
ticle size, where Stokes–Einstein relation holds for large inert
particles (larger than a spinner) and diffusion is suppressed for
small particles. We uncover dynamic segregation and clustering
of spinners with the same sense of rotation.

Erratic motion of spinners in the container results in a
turbulent-like 2D velocity field. This field exhibits the inverse
energy-scaling k−5/3 with wave number k , consistent with high-
Reynolds number (Re) 2D turbulence (1), while Re ≈ 30 for the
flow-generating spinners in our system. The results are reminis-
cent of observations of fluid velocities in forced turbulence in
2D conducting fluid layers, surfactant films, and 2D bubbly flows
(35–38). Furthermore, our experimental observations are in
good qualitative agreement with the direct numerical simulations
of discs suspended in a 2D fluid performed in the framework
of a particle-based mesoscale hydrodynamic approach (multi-
particle collision dynamics, MPC). Overall, our findings expand
our understanding of synthetic tunable active systems with activ-
ity originating from rotations rather than self-propulsion and
provide predictive tools for active-particle manipulation at the
microscale.

Results
Out-of-equilibrium magnetic suspensions driven by a uniaxial in-
plane magnetic field exhibit a peculiar spinner phase in a cer-
tain range of driving-field parameters (34). The spinner phase is
populated by three subsystems of particles: active spinners, indi-
vidual ferromagnetic colloids, and nonmagnetic (inert) particles.
(Fig. 1A and Movie S1). Magnetic spinners are self-assembled
multiparticle chains of approximately equal length controlled by
the frequency of the excitation field (34, 39) and come in two
kinds—rotating CW or CCW. The length is determined by a bal-
ance between magnetic and viscous torques exerted on a chain
at the liquid interface and does not depend on a particle number
density. The system is dynamic by nature, and magnetic par-
ticles frequently change their dynamic states (individual parti-
cles join spinners or spinners disintegrate into individual par-
ticles). Our simulations (see Materials and Methods) faithfully
reproduced the observed phenomenology of the spinner phase
(see Movie S2). While the spinners are not self-propelling enti-
ties (activity comes from rotation only), they get advected by
the flows generated by the neighboring spinners. The motion
of the spinners induces a large-scale vortical flow field (40).
The spinners are the dominant active component in our sys-
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Fig. 1. (A) An experimental snapshot of self-assembled magnetic spinners
with an inert spherical particle. A uniaxial in-plane alternating magnetic
field Bx creates a swarm of spinners at the water–air interface. A non-
magnetic particle is used to investigate diffusion. (Scale bar, 2 mm.) Inset
shows a large inert particle and multiple CW (blue) and CCW (red) spinners.
(B) Typical inert particle (thick black line) and spinner trajectories (colored).
The magnetic field amplitude was B0 = 2.7 mT and the frequency of the field
fB = 60 Hz. The active particle number density SA = 3.5± 0.5 mm−2, and the
inert particle diameter σ= 500 ± 20 µm.
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Fig. 2. Spinner clustering and diffusion. (A) Normalized radial pair-
distribution function g(r) for all spinners (black squares). A clustering can
be observed by comparing g(r) for spinners rotating in the same direction
(green circles) and counterrotating ones (red diamonds). Inset is a blow-
up of the first two peaks. (B) The spinners’ displacement probability dis-
tribution function indicates the diffusive (t = 3 s) and the ballistic regime
(t = 0.1 s). Red lines are least square fits to exp(−x2/4Dt). The experimental
parameters:B0 = 2.7 mT, fB = 60 Hz, and SA = 3.5± 0.5 /mm−2.

tem that induces a diffusive motion of the inert particles.
Fig. 1B illustrates short-lived active-spinner trajectories (thin
colored lines) and a long-lived inert particle trajectory (thick
black line).

Dynamic Clustering of Spinners. Analysis of the spinner subsys-
tem revealed the presence of a short-range dynamic order (Fig.
2A, black squares) in the spatial spinner arrangement. A closer
inspection of the radial distribution function g(r) indicates more
pronounced peaks for spinners with the same sense of rota-
tion (Fig. 2A, green circles) compared with neighboring spinners
rotating in the opposite direction (Fig. 2A, red diamonds). This
apparent clustering is similar to that observed in simulations of
higher density microrotors (41, 42), where a macroscopic phase
separation was numerically observed. However, our system is sig-
nificantly more complex because the spinner number is not fixed
and fluctuates around a well-defined average prescribed by the
parameters of the driving field (34) (see also SI Appendix), as
they are perpetually created and annihilated with a lifetime of
the order of a second (40).

Active Transport and Diffusion. The spinners erratically move over
the water–air interface being advected by the self-generated
flows (see Movie S3). We identify two regimes of the spinner
dynamics: for short times, ballistic, and for long times, diffu-
sive motion (Fig. 2B). The ballistic motion is characterized by a
mean velocity, which we chose as root-mean-square (rms) veloc-
ity of the ensemble average over the spinners or inert particles,
respectively—that is, vrms(t) =

√
〈v2(t)〉. As displayed in Fig.

3A, vrms(t) fluctuates around an average value as a function
of time, where the displacements are larger for inert particles
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Fig. 3. Active transport and diffusion. (A) The dependence of the time-averaged velocity 〈vrms〉 on the frequency fB for spinners (squares) and inert particles
(circles). (Inset) A typical time evolution of the rms velocity vrms at fB = 60 Hz; the red line is a linear fit. (B) MSDs for spinners (squares) and inert particles
(circles). The black lines illustrate ballistic ( ∝∆t2) and active diffusion, with the same scaling as normal diffusion (∝∆t). (Inset) The spinner MSD on linear
scales. The red line is a least squares fit to Eq. 1 for the active diffusive part of the curve. (C) Radial probability density function P(r) in the active diffusive
regime for spinners (squares, t = 3 s) and inert particles (circles, t = 4 s). Red lines are least squares fits to Eq. 2. (A–C) fB = 60 Hz, SA = 3.5 ± 0.5 mm−2,
and σT = 500 ± 20 µm. (D) Frequency dependence of the active diffusion coefficient for spinners (solid symbols) and inert particles (open symbols) as
obtained from the MSD (squares) and P(r) (circles); SA = 3.5 ± 0.5 mm−2 and σT = 500 ± 20 µm. Results of simulations (violet) are shown for comparison.
(E) Active diffusion coefficient as a function of the active particle number density SA for inert particles as obtained from experiments [MSD, squares, P(r);
circles, fB = 60 Hz and σT = 500 ± 20 µm] and simulations (violet). (F) The active diffusion coefficient is a nonmonotonic function of the inert particle size
for experiments (green; fB = 60 Hz and SA = 3.0 ± 0.2 mm−2) and simulations (violet). The green line indicates the dependence ∝ 1/σT . The gray area
corresponds to the range of spinner sizes. (A–F) B0 = 2.7 mT.

(Fig. 3A, Inset). Correspondingly, the time average value 〈vrms〉
of inert particles is∼10% larger than that of spinners. In the fre-
quency range of the spinner phase, 〈vrms〉 depends only weakly
on the frequency of the applied external field.

A characteristic velocity scale can be estimated from the
Stokes flow around a spherical (disk-like) particle of diameter
Ls (spinner length), which is given by v(r̄) =πfBLs(Ls/2r̄)δ− 1

in δ dimensions. Here, the typical distance r̄ of inert parti-
cles and spinners is determined by the spinner concentration—
that is, r̄ ∼ 1/

√
SA, where SA is the colloid number density.

For the experimental parameters (see SI Appendix), this implies
v ≈ 0.13 cm s−1, in reasonable agreement with Fig. 3A. Note that
the flow field decays less rapidly in strict two dimensions opposite
to the quasi-2D experimental situation with 3D hydrodynamics,
which implies larger characteristic velocities in simulations.

To characterize activity-induced transport in the system, we
determined the diffusion coefficient D for spinners and inert par-
ticles via the mean square displacement (MSD)

〈∆r2〉= 4D∆t , [1]

from both experimental and simulation results, as well as the
probability distribution function

P(r , t)∝ r exp

(
− r2

4Dt

)
[2]

from experiments, where r is the displacement at time t . Fig. 3B
illustrates the initial ballistic motion followed by a crossover to

free diffusion. No anomalous diffusion was observed. The time
scale for the cross-over between ballistic and diffusive regime
is set by the spinner mean free time (time between a collision
with another spinner or a free particle). As discussed before, the
〈vrms〉 is larger for inert particles than spinners. Consequently,
the diffusion coefficient for inert particles is larger than that
for spinners (Fig. 3D). We attribute this to hindered spinner
motion due to their strong magnetic and hydrodynamic interac-
tions with their neighbors. Simulations yield a similar behavior
(see SI Appendix, Fig. S6). However, the lifetime of the spinners
in simulations just exceeds the crossover time between ballistic
and diffusive motion such that no pronounced diffusive regime
is obtained and no spinner diffusion coefficient can be extracted.
In contrast, a clear diffusive regime is obtained for inert
particles.

Diffusion coefficients for the spinners and inert particles are
displayed in Fig. 3D as a function of the frequency fB . D val-
ues were extracted independently from the MSD and the dis-
placement distribution functions P(r) (Eq. 2) (see also Fig. 3C).
The latter figure shows that long-time displacements are well
described by a Gaussian stochastic process. There is a good
agreement between the values extracted by the two methods and
also qualitative agreement with simulation results. We attribute
the frequency independence of the diffusion coefficient to a com-
petition between a faster rotation leading to faster fluid motion
and the decreasing spinner length with increasing frequency fB
of the field (experiments and simulation show a similar trend;
see SI Appendix, Fig. S4).
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Fig. 4. 2D turbulence. (A–C) Selected snapshots of experimental (Top) and simulation (Bottom) states. The normalized velocity magnitude v/vmax and
normalized vorticity ω/ωmax fields are visually similar for the experiment (Top) and the simulation (Bottom). ω/ωmax enables a distinction between CW
(blue) and CCW (red) rotating spinners. Streamlines are superimposed to give a sense of flow. (D) Energy spectrum E(k) of the surface flows as obtained from
experiments (black) and simulations (violet). 2D turbulent flow reverse energy cascade toward small wave numbers k (large scales) with k−5/3 scaling. The
energy injection region is broad due to a heterogeneity of spinner sizes (gray area). The experimental parameters: B0 = 2.7 mT, fB = 60 Hz, and SA = 3.91 ±
0.05 mm−2. Simulation parameters: fBσ/v = 0.16, µ= 480

√
kBTa3/µ0, and B0 = 0.8

√
kBTµ0/a3 (see SI Appendix for details).

To investigate the dependence of diffusion on activity in the
system, we analyzed the inert particle diffusion coefficient at dif-
ferent active particle number densities SA. Obtained results are
shown in Fig. 3E. The inert particle diffusion coefficient exhibits
a monotonic increase with the number density until the sys-
tem becomes too dense to sustain the spinner phase (immobile
agglomerates of magnetic particles are formed for high number
densities) (34). The observed nearly linear dependence qualita-
tively resembles previously observed enhanced tracer diffusion in
suspensions of swimming microorganisms (13, 15, 43, 44). How-
ever, we have to keep in mind that Reynolds numbers in suspen-
sions of swimming microorganisms are typically much smaller
than unity, whereas here Re ≈ 30. Furthermore, there are signif-
icant differences in the origin of the emerging flow fields: Swim-
mers usually exhibit a characteristic dipolar flow field, while spin-
ners create a rotational flow field.

To gain additional insights on activity-induced transport in
active spinner material, we explored the inert particle size depen-
dence of the diffusion. For inert particles larger than spinners
(particle diameter σT > spinner length), the inert particle diffu-
sion coefficient follows the Stokes–Einstein relation D ∝ 1/σT

(Fig. 3F). Hence, the stirred fluid appears as a random, white-
noise environment. Remarkably, for smaller particles, the trend
is inverted, and the diffusion coefficient decreases with size.
The nonmonotonic dependence indicates a change in the sta-
tistical properties of the ambient fluid. A diffusion coefficient
independent of particle size has been obtained, for example,
for particles embedded in an active fluid with temporal expo-
nentially correlated noise (45). In contrast, for larger particles,
the fluid acts as a thermal bath. Similarly, a nonmonotonic
size dependence of particle diffusion was recently observed in
bacterial suspensions (44). The monotonic dependence breaks
down once a particle size becomes comparable with a charac-
teristic fluid flows scale. In the case of our system, this scale
approximately corresponds to the size of a spinner, while in
a bacterial suspension (44), it is determined by a typical size
of self-organized bacterial flows. Moreover, our results imply
that there is an optimal passive particle size for fastest mixing
for a given active system, indicated by the maximum diffusion
coefficient. These findings clearly demonstrate that active trans-
port can be tuned. Simulations are in good qualitative agree-
ment with the observed experimental trends (Fig. 3 D–F). The
results of simulations are presented as dimensionless quanti-
ties, with σ and σ/v as relevant length and time scales. It is
important to note, however, that the flow fields in three (exper-
iment) and two dimensions (simulations) imply different veloci-

ties scales (as discussed above); therefore, a quantitative match
is not expected. Despite that, both experiments and simula-
tions yield the same dependencies of diffusion coefficients on
the frequency, active particle density, and inert particle size
(Fig. 3 D–F).

Energy Spectra. The magnitude of the hydrodynamic velocity
field, induced by the rotating spinners (Fig. 4A), illustrates that
the flows are concentrated around the spinners (Fig. 4B). To
further investigate the self-induced interface flows in the spin-
ner phase, we calculate the energy spectrum of turbulent fluc-
tuations in our system. A typical energy spectrum E(k) of the
flows as extracted from experiments is shown in Fig. 4D. It resem-
bles that of an inverse energy cascade in 2D turbulence (1). The
broad energy-injection scale (gray area in Fig. 4D) arises from
a spinner-size heterogeneity. Although the size constraints of
our experimental and simulation systems limit the values of the
accessible wave numbers k , a characteristic power-law behavior
can be clearly observed over more than an order of magnitude in
length scale. The power-law decay k−5/3 of the energy spectrum
showed no dependence on spinner density within the bound-
aries of the spinner phase (see also SI Appendix, Fig. S7) and
corresponds to that typically found in a high-Reynolds number
turbulence.

Fig. 5. Energy spectrum for monodisperse spinners from simulations.
Shown are spectra for spinners of lengths Ls/σ= 3, 4, and 6 at the spinner
packing fraction φs = 0.113. In all cases, the Reynolds number is Re≈ 38.
The top and bottom curves are shifted vertically by a constant factor with
respect to the middle curve, for better distinction.
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The self-organized spinner systems encompass various sources
of randomness, such as spinner size and life time. Moreover, the
study of particle packing fraction effects is difficult, since spin-
ners are stable in a very narrow packing fraction range only. We
shed light on the relevance of these aspects on the energy spec-
trum by performing simulations of spinners with a monodisperse
length distribution at various concentrations. We find that the
energy spectra and corresponding exponents for the monodis-
perse systems with average spinner lengths Ls = 3σ and 4σ,
shown in Fig. 5, are similar to the exponent observed in the
experiment and simulations (Fig. 4D) for the polydisperse sys-
tem, with average spinner length 〈Ls〉≈ 3.5σ. Hence, polydisper-
sity is of minor importance for active turbulence in our system.
Moreover, simulations of a polydisperse system with fixed length
of spinners and length distribution of the self-organized system
yield very similar energy spectra. Further increase in the spinner
length in simulations (Ls/σ= 4− 6) leads to the slight increase
of the magnitude of the energy exponent. Simulations reveal that
very short spinners (Ls/σ < 3) behave like white-noise sources,
and a minimal spinner length is necessary to generate turbulence
at the considered Reynolds number. In addition, at high concen-
trations, the exponent starts to deviate from the hydrodynamic
turbulence value, − 5/3 (see SI Appendix, Fig. S7), since other
interactions (e.g., steric or magnetic) become more relevant and
the system undergoes a transition to another dynamic phase
comprising nonrotating aggregates. Finally, Fig. 5 also exhibits
a crossover to a power law with exponent −3 at length scales
smaller than the energy-injection scale, the value characteristic
for enstrophy flux of hydrodynamic turbulence, both in 2D
and 3D (1).

Mesoscale Turbulence—Relation to Other Systems. Similar turbu-
lent behavior was observed for low-to-moderate Reynolds num-
bers in forced turbulence in 2D conducting fluid layers (1),
surfactant films (38), and bubbly flows (35, 36). There the turbu-
lence was forced either by a fixed grid or by a fixed array of mag-
nets (ordered or randomly positioned) beneath the films with a
typical Re number in the range of 102− 104. The existence and
robustness of the inverse energy cascade and (−5/3) scaling were
well established (1). Turbulent features have been also observed
in viscoelastic polymer solutions (elastic turbulence) at Re num-
bers as low as 10−3 (46). The turbulence there is driven by a slow
nonlinear response of the polymer solution to external shear due
to long relaxation times of the polymers, and the corresponding
exponent is believed to be close to (−1) (46). In bacterial turbu-
lence observed in dense bacterial suspensions (4, 5), an apparent
turbulent motion is associated with the onset of collective behav-
ior, and the reported experimental exponents seem to be close to
(−8/3). However, this scaling was observed only in a very nar-
row range of the wave numbers and for conditions not applicable
to our system. This scaling behavior was attributed to an appar-
ent visco-elastic response of highly concentrated bacterial sus-
pension. In a follow-up study (47), active turbulence in a model
of rigid self-propelled colloidal rods was explored by simulations,
and power-law spectra with a classical exponent −5/3 consistent
with hydrodynamic 2D turbulence in the inertial regime were
observed. Our system is relatively dilute (1%− 5% area frac-
tion), and no collective motion has been observed. A feature
of our experimental system is that it actively injects vorticity at
the microscale without self-propulsion. The injection process is
spatially and temporally random due to perpetual self-assembly,
advection, and collisions of spinners. It suggests that 2D tur-
bulence might be fully developed over a much wider range of
Reynolds numbers than in three dimensions, provided that the
driving is spatially and temporarily random.

Conclusions. We have studied in detail the transport proper-
ties of active spinner suspensions comprised of self-assembled

spinners with both CW and CCW types of rotational symme-
try, confined at a liquid–air interface. The spinner suspension
induces vigorous vortical flows at the interface that exhibit prop-
erties of well-developed 2D hydrodynamic turbulence despite
the orders of magnitude lower Reynolds number (Re ≈ 30). The
energy spectrum of generated flows shows the characteristic
k−5/3 decay. Our system presents a realization of nonequilib-
rium systems displaying active turbulence behavior. The unique-
ness of this particular system comes from the fact that activity
originates from rotations only and is not associated with self-
propulsion. Our simulation studies matched experimental obser-
vations. Moreover, embedded inert particles exhibit an unusual
diffusion behavior, a finding that illustrates that the active
transport can be tuned by external parameters. Hence, active-
particle suspension constitutes a class of materials with tunable
properties.

Materials and Methods
Experimental Setup. Ferromagnetic Ni microparticles (Alfa Aesar) with an
average diameter of σ≈ 90 µm (75 − 106 µm uniform size distribution)
were dispersed at the water–air interface in a cylindrical beaker (diam-
eter 5.5 cm, water depth 7 cm). The microparticles (magnetic moment is
about 0.01 µA ·m2 per particle) were supported by the surface tension and
remained confined at the interface throughout the experiment. The driv-
ing in-plane magnetic field [Bx = B0 sin(2πfBt), B0 = 2.7 mT] was created by
a pair of precision electromagnetic coils. The initial condition of each exper-
iment was a fully dispersed assembly of microparticles achieved by apply-
ing a static magnetic field (Bz = 16.25 mT) perpendicular to the water–air
interface. Measurements were performed after the spinner phase was equi-
librated for 30 s.

The number density of the system SA is defined as the total number of
all magnetic microparticles divided by the total area of the liquid interface
they occupy. Corresponding packing fractions in our experiments were in
the range of 0.007− 0.05.

The Reynolds number is defined with respect to spinners and rotational
flows they generate. A typical rotational velocity of the end point of a spin-
ner is ωLs/2. The rotation rate is defined by the magnetic field frequency
fB. The average spinner size Ls at fB = 60Hz is about 4 particle diameters
(∼400 µm). The Reynolds number is calculated as Re =πfBL2

s /η≈ 30; here η
is kinematic viscosity of water (bulk value).

Inert (nonmagnetic) particles for diffusion coefficient measurements
were as follows: glass (Ceroglass Technologies Inc.: GSR-10 and GSR-5;
Novum Glass LLC: U-150 and U-90) and polystyrene (Phosphorex Inc.:
2112G). The particle tracking and particle image velocimetry (PIV) were
carried out with ImageJ, MatPIV package for Matlab, and custom codes.
Hydrodynamic flows were visualized by spherical gold powder (3.0–5.5 µm,
Alfa Aesar) and rheoscopic liquid (Novostar). The energy spectrum was
calculated from a radially averaged 2D Fourier transform of the velo-
city field.

Simulation Setup. A 2D system is considered, with circular colloids embed-
ded in an explicit solvent. A colloid is comprised of 18 point particles of
mass M, uniformly distributed over the circumference of a circle of diam-
eter σ, with an additional point particle at the center. The shape is main-
tained by strong harmonic bonds, both between the nearest neighbors and
each particle with the center. Each colloid carries a magnetic dipole (see
SI Appendix, Fig. S3). The dynamics of the colloids is treated by standard
molecular dynamics simulations. The embedding fluid is modeled by the
MPC approach (48, 49), a particle-based mesoscale simulation technique that
correctly captures hydrodynamic properties (50). Here, we use an angular-
momentum conserving variant of the algorithm (51, 52) (for details, see SI
Appendix). As in experiments, an oscillating external magnetic field leads
to self-assembled spinners of average length Ls≈ 3.51σ at the frequency
fBσ/v = 0.16. Thereby, we use the field strength B0 = 0.8

√
kBTµ0/a3 and

the magnetic moment of a colloid µ= 480
√

kBTa3/µ0, where a is the length
unit (the size of MPC collision cell) and µ0 is the magnetic constant. The
detailed algorithm and the MPC parameters are described in SI Appendix.
The simulation results are presented in units of the colloid diameter σ and
the characteristic velocity v. The latter follows from the ballistic short-time
MSD of passive particles. The spinner packing fraction φs in Fig. 5 is defined
as a packing fraction considering each spinner as a disc of diameter Ls. The
value φs = 0.113 corresponds to a colloid packing fraction of 0.028, in the
range of the experimental values.
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