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Abstract: Water quality is a key indicator of human health. Wuliangsuhai Lake plays an important
role in maintaining the ecological balance of the region, protecting the local species diversity and
maintaining agricultural development. However, it is also facing a greater risk of water quality
deterioration. The 24 water quality factors that this study focused on were analyzed in water samples
collected during the irrigation period and non-irrigation period from 19 different sites in Wuliangsuhai
Lake, Inner Mongolia, China. Principal component analysis (PCA) and hierarchical cluster analysis
(HCA) were conducted to evaluate complex water quality data and to explore the sources of pollution.
The results showed that, during the irrigation period, sites in the middle part of the lake (clusters
1 and 3) had higher pollution levels due to receiving most of the agricultural and some industrial
wastewater from the Hetao irrigation area. During the non-irrigation period, the distribution of the
comprehensive pollution index was the opposite of that seen during the irrigation period, and the
degree of pollutant index was reduced significantly. Thus, run-off from the Hetao irrigation area is
likely to be the main source of pollution.

Keywords: water quality; principal component analysis; cluster analysis; comprehensive assessment;
Wuliangsuhai Lake

1. Introduction

Water quality is affected by both anthropogenic activities and natural factors, with the latter
influencing surface water quality through industrial sewage, pesticides, chemical fertilizers, and
the increased exploitation of water resources [1–3]. Such influences have led to a decrease in water
quality, generating great pressure on the structure and function of aquatic ecosystems [4–6]. Therefore,
the implementation of regular water monitoring programs and reasonable assessment of chemicals
could help control water pollution and restore aquatic ecosystems.

Conventional quality classes are comprised of water quality regulations with set limits between
them, although these are inherently imprecise. Besides, not all water quality factors could be included in
a single class [7], which can lead to confusion in defining the quality of sampling sites. The application of
multivariate statistical techniques, such as hierarchical cluster analysis (HCA) and principal component
analysis (PCA), has helped identify possible sources that influence water systems, and have offered
valuable tools for use in the reliable management of water resources [8–10]. Many studies showed
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these methods could be effectively used to evaluate water quality factors and to explore similarities
among different samples [11–13].

Wuliangsuhai Lake (108◦43′–108◦57′ E, 40◦36′–41◦03′ N) is large freshwater lake [14] (Figure 1a),
with a mean water depth of less than 2 m and a surface area of 293 km2. It plays an important
role in maintaining the ecological balance of the region, protecting the local species diversity and
maintaining agricultural development. Wuliangsuhai Lake is important in terms of the aquatic plants,
fisheries, and birds that it provides habitats for, as well as the tourism resources that have developed
around it. However, it also has an important role as an ecological barrier in northern China and is a
supplemental water source for the Yellow River in Inner Mongolia during the dry season [15]. The lake
is an important part of the Hetao Irrigation area, into which >90% of the surrounding farmland is
drained. Such agricultural discharges then drain into the Yellow River; therefore, the water pollution
assessment, source analysis and water quality improvement in Wuliangsuhai have received extensive
attention, including N, P, chemical oxygen demand (COD) [16], microplastics [17], surfactants, and
heavy metals [18,19]. Previous research [20] has shown that the absence of effective drainage and
uncontrolled irrigation resulted in a rising groundwater table, the expansion of the lake, and severe
non-point-source pollution. Some researchers also evaluated the seasonal changes of nutritional status
and water quality factors [21,22] and found that the eutrophication status in spring was significantly
higher than that in other seasons, which was mainly related to transparency and COD. Wu et al. [23,24]
simulated monthly streamflow, nitrogen, and phosphorus in Wuliangsuhai watershed to evaluate the
effects of fertilization management on pollutant reduction. Besides, the effects of microorganisms,
adsorption–desorption dynamics, and irrigation strategies on the water quality factors have been
of concern in this region [25–28]. However, there are still large unknowns regarding water quality
characteristics and their influencing factors among the irrigation and non-irrigation periods. Therefore,
the comparative studies before and after irrigation could be of great help to understand the non-point
source processes and pollutant reduction of the Wuliangsuhai watershed.
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Figure 1. (a) The location of Wuliangsuhai Lake. (b) The sampling sites in Wuliangsuhai Lake.

In this study, we took Wuliangsuhai Lake as an example using multivariate statistical techniques
to assess the water quality factors. The objectives of this study are: (1) to analyze the changes of
24 hydrochemical variables, as well as to evaluate variables about the similarities and dissimilarities
among various water quality factors; (2) to identify parameters specific to analyzing the spatio-temporal
dissimilarity in Wuliangsuhai Lake; and (3) to explore the influence of pollution sources on the water
quality parameters, and assessed water quality using the Nemerow pollution exponential method.



Int. J. Environ. Res. Public Health 2020, 17, 5054 3 of 12

2. Materials and Methods

2.1. Sample Collection and Chemical Analytical Procedures

Water samples were collected from 19 sites (Figure 1b) at bimonthly intervals between June 2015
and November 2015 in Wuliangsuhai Lake. Each sample was composed of three mixed water columns
at depths of 0.5 m, 1 m, and 2 m. The samples were kept in polyethylene plastic bottles that had
been previously cleaned with metal-free soap, rinsed repeatedly with distilled water, soaked in 10%
nitric acid for 24 h, and finally rinsed with ultrapure water. All water samples were maintained
in a refrigerator at 0 ◦C during transportation to the laboratory, and then later for processing and
analysis. We measured the temperature, transparency, pH, turbidity, and dissolved oxygen (DO)
of water samples using field instruments, including an electronic thermometer, transparency meter,
digital pH meter, turbidity meter, and DO meter, respectively. Other physical and chemical parameters
analyses were carried out according to the China Nation Surface Water and Wastewater Monitoring
technology standards (HJ/T91-2002) and the National Surface Water Environment Quality Standards
(GB3838-2002) (Table 1). Reagent/procedural blanks and three control samples were analyzed for
anionic surfactant, suspended matter, cyanide, total nitrogen (TN), total phosphorus (TP), KMnO4,
petroleum, volatile phenol, sulfide, fluoride, COD, and other trace elements. All water samples were
analyzed within 24 h of collection.

Table 1. Physical and chemical parameter analysis methods and detection levels.

Item * Analysis Method Testing Instrument The Lowest Detection
Level

pH Glass electrode method pH meter 0.1
NH3–N Nessler’s reagent spectrophotometry SK-100AR Ammonia nitrogen analyzer 0.025 mg/L

DO Iodine quantity method Laboratory glassware for titration 0.2mg/L
BOD Dilution and inoculation method Biochemical incubator 2 mg/L

Turbidity Turbidity meter method Portable turbidimeter
Salinity Weight method Electronic balance 2 mg/L

Transparency Plug’s plate method Plug’s plate 10mm

Chlorophyll a Acetone
extraction—spectrophotometric method Spectrophotometer 0.04mg/L

Anionic surfactant The methylene blue spectrophotometric
method Spectrophotometer 0.05 mg/L

Suspended matter Weight method Electronic balance 4 mg/L

Cyanide The isonicotinic acid-barbituric acid
spectrophotometry Flow injection analyzer (FIA) 0.001 mg/L

TN Peroxide potassium sulfate-ultraviolet
spectrophotometry Spectrophotometer 0.05 mg/L

TP Mo-Sb anti-spectrophotometer Spectrophotometer 0.01 mg/L
KMnO4 Acid electric process Laboratory glassware for titration 0.5 mg/L

Petroleum Infrared spectrophotometry Infrared oil content analyzer 0.018 mg/L

Volatile phenol 4-aminoantipyrene spectrophotometric
method Flow injection analysis (FIA) 0.001 mg/L

Sulfide The amino dimethyl aniline
photometric method 0.02 mg/L

Fluoride Ion selective electrode potentiometry Fluoride ion selective electrode 0.05 mg/L

Cr6+ 1,5-diphenylcarbazide
spectrophotometry Spectrophotometer 0.004 mg/L

COD Potassium dichromate method Laboratory glassware for titration 30 mg/L
Se Atomic fluorescence spectrometry Atomic Fluorescence Spectrometer

(AFS) - 830
0.002 mg/L

Zn Flame atomic absorption
spectrophotometry 0.005 mg/L

Cu Graphite furnace atomic absorption
spectrometry

NovAA-400PGraphite furnace
0.01 mg/L

Pb 0.001 mg/L
Cd 0.0001 mg/L
Hg Atomic fluorescence spectrophotometry Atomic Fluorescence Spectrometer

(AFS) -830
6.00 × 10−6 mg/L

As 6.00 × 10−5 mg/L

Coliform bacteria Multi-tube zymolytic method Incubator 10 most probable
number/L

* BOD means biochemical oxygen demand; DO is dissolved oxygen; TN is total nitrogen; TP is total phosphorus;
KMnO4 means potassium permanganate index, and COD is chemical oxygen demand.

A total of 28 hydrochemical variables were analyzed; however, the concentrations of volatile
phenols, cyanide, sulfide, and Cr6+ for all samples were below detection levels (0.001 mg/L for volatile
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phenol and cyanide, 0.02 mg/L for sulfide, and 0.004 mg/L for Cr6+). Thus, only 24 variables were
analyzed further.

2.2. Multivariate Statistical Analyses

The statistical analysis and mathematical computations of water quality factors were conducted
using SPSS 22.0 (SPSS Inc., Chicago, IL, USA). Multivariate analysis of the data set was performed
using PCA and HCA, and nonparametric tests (Kruskal–Wallis H method [29]) were used when the
data collected did not meet the requirements of a normal distribution and homogeneity of variance.
The Conover–Iman test was performed as a post-hoc test to reveal which pairs of indicators were
significantly different. PCA was applied for the assessment of the irrigation effects on water quality, and
each autoscaling parameter was calculated using Equation (1) before PCA to minimize the influence of
different variables and their respective units of measurements. HCA was conducted to analyze spatial
similarity based on the PCA result for grouped sampling sites. The results from the PCA were used to
understand the differences in water quality between the different sample periods.

z =
C−Mean

σ
(1)

where C represents the water quality factors; Mean is the mean value of C; and σ is the standard
deviation of C.

2.2.1. PCA

PCA is a method of mathematical transformation that attempts to reduce the dimensionality of
datasets. The set of relevant variables is converted into another equal number of independent variables
that are not related by a linear transformation, and these new variables are then arranged in descending
order of variance [30]. Each variable is held constant in the mathematical transformation of the total
variance; the first variable that has the greatest variance is designated the first principal component,
the second largest variance of the second variable that is not related to the first variable is the second
principal component, and so on. PCA aims to determine the fewest variables that explain the majority
of the variance in the original data.

2.2.2. HCA

HCA is the process of grouping a set of physical or abstract objects into classes of similar objects.
It could divide a large number of samples into reasonable classifications according to their respective
characteristics, and the objects in the same cluster have great similarity [31,32]. The dendrogram
provides a summary of clustering processes, presenting a visual picture of the groups and their
proximity. In this study, HCA was carried out on the normalized values through Ward’s method, using
squared Euclidean distances as a measure of dissimilarity.

2.3. Improved Nemerow Pollution Exponential Method and Comprehensive Evaluation

The Nemerow pollution exponential method is one of the most commonly used comprehensive
assessment approaches, which allows the assessment of the overall degree of water pollution and
includes the contents of all analyzed water quality factors [33,34]. In traditional research, the Nemerow
comprehensive pollution index is calculated by the concentrations of pollutants and the standard
values, and then obtains the weighted averages of these indexes to get the total pollution index.
This method highlights the influence of the largest pollution factor on the results and does not consider
the disadvantage of weight factors. In this study, the factor with the largest weight (Fw max) among
all water quality factors was determined according to Equations (2) and (3). The Ci/Si ratio of the Fw

was considered in Equation (4). Then, the improved Nemerow comprehensive pollution index was
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calculated as shown in Equations (4) and (5). The average values determined for Ptotal were conducted
to assess the water quality of the lake (Table 2).

ωi = ri/
m∑

i=1

ri (2)

ri = Smax/Si (3)

Pi =

√[
Fi

2 +
(Fmax + Fw

2

)2]
/2 (4)

Fi =
Ci
Si

i = 1, 2, . . . , n (5)

where Fi represents the single factor pollution index of element i; Ci is the measured water quality
factors (mg/L, pH: dimensionless, coliform bacteria: Ind); Si represents the guideline value (Nation
Surface Water Environmental Quality standard of China) of element i; Smax represents the highest
guideline value; Pi represents the Nemerow pollution index; Fmax represents the maximum value of
the single factor pollution index; Fw represents the single factor pollution index with the largest weight
among all factors. ωi is the weight of the water quality factor, ri is the correlation ratio of the water
quality factor, and n is the quantity of the factors.

Ptotal =
1
n i

n∑
i=1

Pi (6)

where i is the number of sampling site, and Ptotal is the comprehensive pollution index of the
lake [32,33,35].

Table 2. Grading standard for water quality classification.

Grade Comprehensive Pollution Index (Ptotal) Level

I ≤0.20 Cleanness
II 0.21–0.40 Sub-cleanness
III 0.41–1.00 Slight pollution
IV 1.01–2.0 Moderate pollution
V ≥2.01 Severe pollution

3. Results and Discussion

3.1. Descriptive Statistics of Water Quality Factors in Wuliangsuhai Lake

The basic statistics calculated for the water quality of Wuliangsuhai Lake are summarized in
Table 3. The pH values of the collected water samples ranged from 7.89 to 9.31, exceeding the limit
range of 6–9 allowed by the National Surface Water Environment Quality Standards for water quality.
The suspended matter, salinity, and transparency during the sampling period showed the greatest
range, with values of 97 mg/L, 5128 mg/L, and 180 mg/L, respectively. The concentrations of heavy
metals (Cu, Zn, Cr6+, and Se), As, and anionic surfactants in most samples were below the detection
limit, whereas the maximum concentrations of Hg and Pb were close to the permissible limit of State
Environmental Protection Administration (SEPA). The average concentrations of nutrients (TN, TP,
NH3–N, and chlorophyll a) were higher than the guide levels, with the maximum over standard
multiples being 5.54, 1.11, 1.67, and 12, respectively. The concentration levels of CODmn, KMnO4,
and BOD are of important concern, because these indicators represent the degree of the biological,
chemical and physical pollution in the lake. However, the maximum values of these factors were 5.65,
2.05, and 2.87, respectively, which exceed the national water quality standards. Therefore, the study
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area has been contaminated with relatively high pollution levels at some sites. CODmn refers to the
amount of oxidant consumed in the treatment of water samples with the strong oxidant, which was
used to indicate the degree of mixed pollution. The high level of BOD is due to the development of
local fisheries and the discharge of waste from living sources.

Table 3. Descriptive statistics of water quality factors in Wuliangsuhai Lake.

Item Range Min Max Mean Median Standard
Deviation

Variation
Coefficient

Nation
Standard

pH 1.42 7.89 9.31 8.43 8.41 0.27 0.03 6–9
Turbidity 64.00 3.00 67.00 14.11 11.50 10.21 0.72 ≤19

Total Suspended
solids(TSS) 97.00 4.00 101.00 18.72 14.00 15.51 0.83 None

Salinity 5128.00 696.00 5824.00 1902.25 1849.00 853.32 0.45 None
Transparency 180.00 10.00 190.00 87.18 90.00 41.73 0.48 None
Chlorophyll a 0.12 0.01 0.12 0.02 0.01 0.01 0.94 ≤0.01

DO 6.10 2.90 9.00 5.74 5.81 1.36 0.24 ≥5
KMnO4 8.50 3.80 12.30 8.10 7.93 2.01 0.25 ≤6

BOD 9.50 2.00 11.50 3.40 2.95 1.48 0.43 ≤4
CODMn 97.00 16.00 113.00 41.12 38.7 16.21 0.39 ≤20

TN 4.57 0.97 5.54 1.72 1.54 0.78 0.45 ≤1
NH3–N 1.64 0.03 1.67 0.19 0.15 0.20 1.05 ≤1

TP 0.2050 0.0170 0.2220 0.0792 0.0076 0.0385 0.49 ≤0.2
Oil 0.0490 Ld * 0.0490 0.0037 Ld * 0.0100 2.70 ≤0.05

Fluoride 0.7800 0.3100 1.0900 0.5746 0.5505 0.1331 0.23 ≤1.0
Anionic Surfactants 0.1550 Ld * 0.1550 0.0189 Ld * 0.0391 2.06 ≤0.2

As 0.0086 0.0008 0.0093 0.0025 0.0022 0.0015 0.58 ≤0.05
Hg 0.0001 Ld * 0.0001 0.00001 0.00003 0.00001 0.40 ≤0.0001
Pb 0.0436 Ld * 0.0436 0.0038 0.0021 0.0054 1.43 ≤0.05
Cu 0.0216 Ld * 0.0216 0.0037 0.0020 0.0044 1.20 ≤1.0
Zn 0.3480 Ld * 0.3480 0.0331 0.0180 0.0528 1.60 ≤1.0
Cd 0.0010 Ld * 0.0010 0.0002 0.0002 0.0002 0.87 ≤0.050
Se 0.0030 Ld * 0.0030 0.0002 0.0001 0.0004 1.86 ≤0.01

Coliform Bacteria 328.00 2.00 330.00 46.56 20.00 67.88 1.46 ≤1000

* Limit of detection.

The coefficients of variation for NH3–N, oil, anionic surfactants, Se, Zn, coliform bacteria, Pb,
Cu, chlorophyll, Cd, and total suspended solids (TSS) values were relatively high, indicating these
water quality factors were significantly different in terms of their temporal and spatial distribution.
Thus, changes in point and non-point source pollution in the watershed may cause the water quality of
Wuliangsuhai to deteriorate significantly throughout the study.

The nonparametric test showed that significant differences (p < 0.05) were found in parameters
including pH, turbidity, salinity, transparency, chlorophyll a, DO, KMnO4, BOD, CODMn, TP, Fluoride,
As, Hg, Pb, Cu, Zn, Cd, and Se among different sampling periods (Table S1), indicating that there
was a significant difference in the temporal distribution of these variables. When the variables were
grouped in terms of the sampling sites, variables with a significant effect (p < 0.05) on water quality
were pH, turbidity, TSS, salinity, transparency, KMnO4, BOD, CODMn, TN, TP, and fluoride. Among
these eleven parameters, the Conover–Iman post-hoc test showed significant pairwise differences
(p < 0.05) between all variables. These results may indicate that sufficient variability of the data was
captured and show the significant spatial differences of these variables.

3.2. Principal Component Analysis (PCA) for Irrigation and Non-Irrigation Periods

The PCA results based on the correlation matrix in the irrigation period and non-irrigation period
are shown in Figure 2 and Tables S2–S4. The first three components of the PCA analysis explained
36.945% of the total variance. Each component was characterized by the water quality parameters
with higher-weighted values (Table S3). Thus, the first three principle components were dominated
by BOD, CODMn, and salinity (PC1); turbidity, TSS, transparency, and TP (PC2); and pH, Zn, and Cd
(PC3). Different contributions of PCA components during non-irrigation and irrigation periods were
observed in Figure 2. The measured data of irrigation periods were characterized by PC3, while those
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of non-irrigation were characterized by PC2 and PC1. Heavy metal parameters (Zn and Cd), pH, and
nutrient parameters reflected the degree of pollution during the irrigation period (Tables S4 and S5),
suggesting that eutrophication is a significant problem during this stage. This is likely to be because
the Hetao agriculture irrigation area uses a large amount of nitrogen fertilizer, explaining the high
weighting of TN during the irrigation period. Numerous studies have demonstrated that there is an
obvious positive correlation between TN and degree of eutrophication [21,22,36], with a utilization rate
of nitrogen fertilizer being less than 40%; thus, a large amount of nitrogen in farmland sewage flows
into Wuliangsuhai Lake, resulting in its eutrophication. COD pollutants comprise daily life excreta
(67.2%; 13,481.54 tones) and industry excreta (32.8%; 6572.86 tones) [37]. Given that heavy metals were
weighted more heavily during the non-irrigation period, we can conclude that these heavy metals flow
into Wuliangsuhai Lake alongside sewage [38]. TN and NH3–N were both highlighted by PCA, and
both are carried as sewage into the lake during the irrigation period and are released into the sediment
during the non-irrigation period. In general, the water parameters highlighted by PCA reflect the
degree of pollution during the non-irrigation period and irrigation period, with heavy metals and
eutrophication factors mainly resulting from the discharge of agriculture sewage.
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3.3. Hierarchical Cluster Analysis (HCA) for Irrigation and Non-Irrigation Periods

All sampling sites were divided into four groups for both the irrigation period and non-irrigation
period (Figure 3), which constructed two dendrograms (Figure S1) using Ward’s method. In the
irrigation period (Figure 3b), Cluster 1 corresponded to sites 1, 8, 9, and 16; Cluster 2 included sites 4,
14, 15, and 17, mainly located in the north and south of the lake; Cluster 4 contained sites 3, 5, 6, 7, 10,
11, 13, 18, and 19, which were located at the center and outlet of the lake. In the non-irrigation period
(Figure 3b), Cluster 1 corresponded to sites 1, 2, 3, and 4; Cluster 2 contained sites 5 and 6, which were
located at the north of the lake. Cluster 3 and Cluster 4 were located at the center and south parts
of the lake. Compared with irrigation and non-irrigation periods, the spatial variations of the four
groups were relatively large, which implied the potential impacts of non-point source pollution caused
by flood irrigation on the water quality grouping of the lake. In the non-irrigation period, the water
mainly comes from the north inlet, so the clusters are distributed regularly from south to north.

However, during the non-irrigation period, the lake receives farmland drainage mainly from
three inlets that are close to sampling sites 1, 3, and 12. Therefore, HCA revealed that the water
quality analyzed at these sites was affected by different pollutant sources in the irrigation and
non-irrigation periods.
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3.4. Possible Sources of Pollutants and Comprehensive Evaluation of Wuliangsuhai Lake

The sampling sites were divided by location during the different water periods, with a certain
differentiation seen among the sites (Figure 3), which demonstrated farmland drainage is the main
source of pollutants in Wuliangsuhai Lake, which also determines the temporal and spatial distribution
of pollutants. This conclusion of the source analysis is similar to other studies [23,35]. The water
quality of the sampling site located in the center of the lake was likely influenced by water inflow from
the inlet of the Hetao irrigation area and by the environment of the lake sediment [18,25], where three
farmland drainage channels converge. The water quality at the edge of the lake near the village was
likely to have resulted from effluents from nonpoint sources. Water quality in sites 12 and 18 was
also influenced by the many tourist attractions around these locations. The comprehensive pollution
indices of sites 1, 2, 3, and 5 indicated that these sites were only slightly polluted (Figure 4, Table S6).
During the non-irrigation period, the comprehensive pollution index results showed a similar pattern
during the irrigation period, although the degree of pollution was reduced (Figure 4). Therefore, it can
be concluded that the water inflow from the Hetao irrigation sector is the main pollutant source for
Wuliangsuhai Lake.

The comprehensive pollution levels of Clusters 2 and 3 were lower, whereas Clusters 1 and 4 were
higher during the irrigation period, and some sampling sites were seriously polluted. Accordingly,
comprehensive pollution values were better around the edges and in the northern section of the lake
than in the center or southern areas. This implies that to reduce the number of sampling points and the
related cost of the monitoring network operation, only one or two stations are needed in each group to
estimate the water quality of the whole lake. HCA could provide a reliable classification of the surface
water sampling points in the study area.
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4. Conclusions

Most of the previous studies on Wuliangsuhai Lake were focused on a small number of major
pollutants, such as COD, N, P, and relatively few sampling sites. Few studies have been concerned
with the changes of a relatively large number of water quality parameters among the irrigation
and non-irrigation periods. In this study, 24 hydrochemical variables, including heavy metals, N, P,
and COD, were obtained from 19 sampling sites between irrigation and non-irrigation periods in
Wuliangsuhai Lake. The spatial and temporal distribution of water quality in Wuliangsuhai Lake was
studied based on multivariate statistical methods. The HCA method was used to divide 19 sampling
sites into four groups, which could provide an optimal sampling strategy for the future, thereby
reducing the number of samples and related costs. The principal component analysis helped identify
the factors or sources of concentration changes of pollutants. We concluded that the main sources of
pollution were likely to be industrial and agricultural sewage from the irrigation area and the local
villages around the lake through a field investigation and data analysis. The study demonstrated
that statistical analysis methods were useful in interpreting complex data sets, identifying pollution
sources, and understanding changes in water quality. The results also showed that measures to reduce
the anthropogenic emissions of pollutants should be taken. Otherwise, high pollution levels have the
potential to affect high-quality socio-economic development. In the next step, the relationship between
pollution sources around the lake and the spatial-temporal distribution of pollutant concentrations in
the lake should be given more attention. Meanwhile, the characteristics of pollutant transports and
chemical morphological changes in the Wuliangsuhai basin should be clearly explained for providing
references for future planning and management.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/14/5054/s1,
Figure S1: CA dendrograms for the irrigation and non-irrgation periods, Table S1: nonparametric test for the
distribution of water-quality factors in Wuliangsuhai Lake, Table S2: P values for post hoc pair-wise comparisons
of indicators for sampling sites using the Conover-Iman test, Table S3: total variances explained by PCA, Table
S4: the rotated PCA component matrix, Table S5: the PCA component score, and Table S6: analysis results of
all samples.
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