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Abstract
Background Bariatric surgery can effectively treat morbid obesity; however, micronutrient deficiencies are common despite
recommendations for high-dose supplements. Genetic predisposition to deficiencies underscores necessary identification of high-
risk candidates. Personalized nutrition (PN) can be a tool to manage these deficiencies.
Methods Medline, PubMed, and Google Scholar were searched. Articles involving genetic testing, micronutrient metabolism,
and bariatric surgery were included.
Results Studies show associations between genetic variants and micronutrient metabolism. Research demonstrates genetic
testing to be a predictor for outcomes among obesity and bariatric surgery populations. There is limited research in bariatric
surgery and micronutrient genetic variants.
Conclusion Genotype-based PN is becoming feasible to provide an effective treatment of micronutrient deficiencies associated
with bariatric surgery. The role of genomic technology in micronutrient recommendations needs further investigation.
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Background

The prevalence of obesity is consistent withmore than one third
of adults having the disease of obesity [1]. Obesity is the focus
for many public health efforts in the USA with one treatment
option being bariatric surgery [1, 2]. Achieving weight loss is a
benefit from bariatric surgery; however, micronutrient deficien-
cies can occur [2]. Micronutrient deficiencies are associated
with serious consequences due to the negative effects on met-
abolic and cellular signaling pathways. Possible causes of mi-
cronutrient deficiencies after bariatric surgery are decreased
food intake, food intolerance, reduced gastric secretions, bypass
of intestinal surface area for absorption, as well as failure to
comply with recommended vitamin regimens [3, 4]. Multiple
case series have reported postoperative, malabsorptive proce-
dures to increase prevalence of iron deficiency to 20–49%,

calcium and vitamin D deficiency 25–50%, vitamin B12 defi-
ciency about 33%, and folate deficiency as high as 45% [3]. For
malabsorptive procedures, patients are recommended to take at
least double the recommended daily dose of a multivitamin
plus mineral supplement and additional 1200–2400 mg calci-
um, 3000 IU vitamin D to reach levels > 30 ng/mL, and vitamin
B12 as needed for normal levels [5]. In a cohort of adults who
underwent bariatric surgery, 73% of the patients had at least
one nutritional deficiency 5 years later even though they report-
ed taking a dietary supplement [6]. However, there are some
patients, up to 47%, that may be non-responders to supplements
even with compliance rates of about 86–93% [7]. Indeed, indi-
viduals respond differently to dietary interventions. Genetic
variation among individuals could be the root cause for varying
responses to the same regimen and explains why some individ-
uals respond better to a certain regimen than others in the same
environmental conditions [8].

Introduction

Genetic testing can be a critical tool for health and medical
diagnosis, treatment, and prevention. Predictive testing may
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be among the most useful tests regarding medical nutrition
therapy (MNT). Genetics along with environment and behav-
ior are the key to providing the best assessment, intervention,
and tailored changes for an individual [9].MNT should follow
an appropriate paradigm that encompasses prediction (early
diagnosis), prevention (intervention on healthy persons), and
a tailored therapy for patients [9]. Identifying ways for early
intervention may help develop strategies for preventing poor
nutritional status and maximizing surgery-induced metabolic
benefits later.

Sequencing of the human genome and identifying gene-
nutrient interactions are the underlying concept of PN [10].
Nutrigenomics is the study of the effect of specific nutri-
ents on gene expression [10], while nutrigenetics refers to
the study of genetic variations of an individual that can
provide some prediction to help prevent as well as contrib-
ute to personalized dietary management [11]. Both
nutrigenomics and nutrigenetics may be a strategy to im-
prove understanding of the gene-diet interaction and deliv-
er individualized MNT to prevent chronic nutrition-related
diseases [(10], [11)]. The usefulness and validity of this
type of PN are in their infancy, although some studies have
shown that individuals find dietary recommendations
based on genetics more beneficial than general dietary ad-
vice [12]. A survey conducted by the publisher Nature
showed that 27% of respondents who had their genomes
analyzed changed their diet, lifestyle, or medication based
on their genetic information [13]. However, another study
reported that genetic testing led to no short-term changes in
specific dietary or exercise behaviors [14]. Thus, increased
understanding and awareness of these tests is required to
effectively use them among public and healthcare pro-
viders [12].

Since many micronutrients control energy metabolism,
their deficiencies can result in an array of symptoms, ranging
from anemia to neurological dysfunction [15, 16].
Additionally, subclinical micronutrient deficiency can lead
to increased risks for coronary artery disease, infections,
age-related macular degeneration, and oxidative damage [17,
18]. Therefore, measuring nutritional status in the context of
pathophysiology is critical, but this is a major challenge be-
cause it is influenced by a number of factors including dietary
consumption, physical/social stressors, and infections [19].
Furthermore, the impact of nutrition could vary among indi-
viduals and specific population subgroups based on their mo-
lecular and genetic make-up [19]. Studying this complex
nutrient-gene relationship to understand the metabolic net-
works in context of health and disease should be a focus. It
can provide information on potential biomarkers of nutritional
status, disease progression, and response to interventions. This
literature review aims to summarize data from studies of genes
involved in micronutrient metabolism. Identifying these
nutrient-gene pathways and their variants can help predict

those at risk for deficiencies. This may recognize the need
for increasing consumption of essential nutrients to intervene
prior to bariatric surgery and develop strategies to prevent
micronutrient deficiency postoperatively.

Methods

Due to the limited amount of literature published on micronu-
trient deficiencies, micronutrient genetic variants, and bariat-
ric surgery, the authors conducted a narrative review. A com-
prehensive search of the literature from 1975 to 2020 was
conducted to identify articles examining the association be-
tween genetic variants of micronutrient metabolic pathways
and serum levels of micronutrients. Searches were conducted
in databases that contain research related to health and meta-
bolic outcomes, including PubMed, Medline, and Google
Scholar. The search terms that were used included genetic
variants, micronutrient metabolism, treatment of genetic de-
fects of micronutrients, precision nutrition, nutrigenomics,
and bariatric surgery. Additionally, review articles produced
through the database searches were examined for further arti-
cles that fit within the inclusion criteria and thus were included
in the results.

Inclusion/Exclusion Criteria

Criteria for inclusion in the review were [1] peer-reviewed
articles, [2] articles that included empirical data, [3] articles
published or available in English, [4] articles that included
people with low micronutrient levels, [5] articles that included
people that had micronutrient genetic variants, [6]
supplementation/treatment regimens for people with genetic
variants and low micronutrient levels, and [7] articles that
included genetic testing among obesity and bariatric surgery
populations and outcomes that were examined. Only two ar-
ticles involving micronutrient genetic variants among bariatric
surgery patients were found. Due to this limitation, studies
involving non-surgical patients and micronutrient genetic var-
iants were included. Other studies involving genetic testing
and bariatric surgery were included to demonstrate its poten-
tial as a tool for this patient population. There were also lim-
itations on studies involving treatment and supplementation
according to genetic variants. Ideally, inclusion criteria would
comprise of studies with a high number of participants, a
control group, and that used similar measures and procedures
across studies for comparison; however, using the search
methods and criteria described above, 80 articles met the in-
clusion criteria. All the authors confirmed that the articles met
the inclusion criteria and were appropriate for the review. The
articles that met the inclusion criteria focused onmicronutrient
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genetic variants and genetic testing in diverse populations
shifting to describe the findings.

Results

Of the 80 articles included, 2 were published between 1975
and 1990, 5 were published between 1991 and 2000, 25 were
published between 2001 and 2010, and 48 were published
between 2011 and 2020. Twenty-two of these studies took
place in the USA, and the rest were conducted in other coun-
tries. The articles were divided into four categories which are
used to organize the results: [1] micronutrient deficiencies
prevalent among bariatric surgery patients (19 articles), [2]
micronutrient genetic variants prevalence among different
populations (29 articles), [3] clinical trials involving supple-
mentation for micronutrient genetic variants (26 articles), and
[4] genetic testing studies in persons with obesity and bariatric
surgery populations (6 articles).

Genetic Variants and Their Effect on Vitamin and
Mineral Pathways and Response to Supplementation

Genetic variations in specific genes among vitamin and min-
eral metabolic pathways are associated with altered nutrient
homeostasis and adverse health outcomes [19]. SNPs are the
most common type of genetic variations among people [20].
In the human genome, SNPs may occur at every 1000 nucle-
otides, which means that a personmay have 4–5 million SNPs
[20]. SNPs are known to impact micronutrient status or chron-
ic diseases related to micronutrient metabolism [19, 21–23].
The ability to identify a person having genetic variants in-
volved in vitamin and mineral metabolism may reduce the
chance of developing micronutrient deficiencies that can lead
to various diseases [19]. GWAS have shown that several ge-
netic variants associated with vitamin metabolism can affect
circulating vitamin levels, which could lead to abnormal vita-
min function [24]. Most GWAS have been conducted among
healthy, Caucasian populations, which is a limitation in this
research [24]. Table 1 demonstrates recent studies that associ-
ate genetic variants and micronutrient metabolism.

Vitamin D

Vitamin D is essential for many functions of the body.
Deficiency of vitamin D is associated with many cancers,
autoimmune disorders, and cardiovascular disease as well as
significantly affects musculoskeletal function [39–41].
Obesity has been identified as a risk factor of vitamin D defi-
ciency, and those seeking bariatric surgery for obesity treat-
ment have an additional risk for low vitamin D levels post-op
[39]. One study showed that 57.4% of patients seeking bariat-
ric surgery were vitamin D-deficient preoperatively [39]. In 51

observational studies assessing vitamin D status in patients
undergoing bariatric surgery, the mean (25(OH)D) level was
less than 30 ng/ml (which is the minimum recommended level
for optimal long-term health), before and after bariatric sur-
gery, despite various vitamin D supplementation regimens
[42]. Another review of 30 studies showed vitamin D defi-
ciency prevalence to range from 13 to 90% preoperatively
which was maintained after surgery [43].

The heritability of vitamin D status is estimated to be 30%
and common variants group-specific component (GC) (also
known as vitamin D–binding protein); 7-dehydrocholesterol
reductase (DHCR7) andCYP2R1 (involved in 25-hydroxylase
production) are associated with fasting plasma 25(OH) D con-
centrations [25, 44, 45]. Nissen and colleagues have shown
that 7 prominent variants in CYP2R1 and GC genes were
significantly associated with low serum 25(OH) D concentra-
tions [26]. People who have these common genetic variations
could be treated on a more individualized basis to correct
deficiencies that occur.

One randomized controlled trial looked at older Australians
randomly assigned to monthly doses of 30,000 IU or
60,000 IU vitamin D3 for 12 months and found that genetic
variability is associated with response to supplementation,
perhaps suggesting that some people might need a higher dose
to reach optimal 25(OH) D levels [46]. Another study inves-
tigated 41 candidate single nucleotide polymorphisms (SNPs)
in vitamin D and calcium pathway genes among healthy non-
Hispanic white participants and stated that the increase in
[25(OH)D] attributable to vitamin D3 supplementation may
vary according to common genetic differences in CYP2R1,
24-hydroxylase (CYP24A1), and vitamin D receptor (VDR)
genes [27]. There is evidence from three randomized con-
trolled trials that indicate a strong association between genetic
polymorphisms and levels of serum 25(OH) D in response to
40,000 IU vitamin D/week given for 6 months [47]. However,
there is a wide variation in the response of blood 25(OH) D to
vitamin D supplementation that is associated with genetic var-
iants in vitamin D metabolism [25].

Vitamin B12

Vitamin B12 is a coenzyme, cofactor, and essential component
in vitamin B complex. It is essential for cardiac health [48] and
cognitive function [49, 50]. Deficiency of vitamin B12 can lead
to deleterious consequences including macrocytic anemia, neu-
ropsychiatric symptoms [51], cardiovascular diseases [52, 53],
and onset of different forms of cancer [54, 55]. The most com-
mon cause of vitamin B12 deficiency is loss of intrinsic factor
(IF) as absorption depends on it [56]. People who have bariatric
surgery, short gut syndrome, long-term vegetarian, or vegan
diets can potentially develop vitamin B12 deficiency [56].
While vitamin B12 level can be normal at baseline, it is often
found to be lower in individuals after bariatric surgery [57, 58].
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Nutritional parameters were compared preoperatively and at
similar periods postoperatively among patients undergoing
malabsorptive procedures [59]. Vitamin B12 abnormalities pri-
or to surgery ranged from 3.2–8.3% to 24–25% at 1 year post-
op [59]. In a study of gastric bypass surgery subjects, vitamin
B12 deficiency was observed in 33.3% at 2 years and in 27.2%
at 3 years postoperatively [60].

Genetic variants may impact the proteins involved in vita-
min B12 absorption, cellular uptake, and intracellular metab-
olism [61–63]. Genetic influence for B12 levels is estimated to
be 59% in a study usingmonozygotic and dizygotic twins [64]

and 27% in another study among Icelandic sibling pairs [65].
Variants of the transcobalamin 1 (TCN1) gene (vitamin B12
binding protein, transcobalamin I (TCI)) have been associated
with circulating B12 concentrations [29, 66]. Genetic variants
of fucosyltransferase 2 (FUT2 gene) that codes for an enzyme
in the vitamin B12 pathway are associated with B12 levels
[29]. Transcobalamin 2 (TCN2) gene is responsible for mak-
ing a B12-binding protein called transcobolamin II (TC) that
carries B12 from the intestine to blood and liver. Although TC
represents approximately 10–20% of circulating B12, the
most common variant of this gene among Caucasian

Table 1 Relevance of genetic variants associated with micronutrient metabolism

Micronutrients Genes identified
with micronutrients

Relevance in micronutrient status Reference

Vitamin D 1. GC
2. CYP2R1
3. DHCR7
4. CYP24A
5. VDR

1. GC gene encodes Vitamin D Binding Protein (DBP) which is a glycosylated
alpha-globulin that transports vitamin D metabolites from gut and skin
to target end-organs.

2. CYP2R1 gene encodes 25-hydroxylase, which converts Vitamin D to 25(OH)D.
3. DHCR7 gene provides instructions for making 7-dehydrocholesterol reductase,

an enzyme involved in the final step of cholesterol production.
4. CYP24A gene provides instructions for making 24-hydroxylase, an enzyme

that controls the amount of active vitamin D in the body.
5. VDR gene provides instructions for making vitamin D receptor (VDR) protein,

which allows the body to respond appropriately to vitamin D
>A variation in these genes may impact body vitamin D levels.

[25–28]

B12 1. FUT2
2. CUBN
3. TCN1
4. MTRR
5. TCN2
6. MTR
7. MMAA
8. MMACHC

1. FUT2 gene encodes for fucosyltransferase 2 gene and is involved in Vit B12
absorption and transport.

2. CUBN gene provides instructions for making cubilin protein which is involved
in the uptake of vitamin B12.

3. TCN1 gene encodes B12-binding protein family which facilitates the transport
of cobalamin into cells.

4. MTRR gene is responsible for maintaining adequate levels of activated vitamin
B12, which maintains methionine synthase enzyme in its active state.

5. TCN2 provides instructions for making transcobalamin.
6. MTR gene provides instructions for making methionine synthase enzyme which

needs B12 and is involved in the formation of the amino acid methionine
7. The protein encoded by MMAA gene is involved in the translocation of

cobalamin into the mitochondrion.
8. It is postulated that the protein encoded by MMACHC gene may have a role in

the binding and intracellular trafficking of cobalamin.
>SNP related to these genes can lead to insufficient B12 levels in the body.

[28–31]

Folic acid 1.MTHFR 1. MTHFR gene produces Methylenetetrahydrofolate reductase (MTHFR)
which is a vital enzyme for the folate pathway.

>SNP related to this gene may be an important marker to identify people at risk
for lower plasma folate concentrations, changes in folate form distribution,
and elevated plasma homocysteine concentrations.

[28, 32–34]

Thiamine 1.SLC19A2
2. SLC19A3
3. SLC35F3

SLC19A2, SLC19A3 and SLC35F3 genes code for thiamine transporter
protein which allow thiamine to move into the cells.

>Mutations in these gene can cause thiamine deficiency leading to thiamine
responsive megaloblastic anemia.

[28, 35, 36]

Iron 1.TMPRSS6
2.TFR2
3.TF
4. HFE

1. TMPRSS6 gene codes for the protein matriptase-2 which helps in regulation
of iron balance.

2. TFR2 gene codes for TFR2 protein which facilitates entry of iron into the cells.
3. TF gene codes for protein transferrin which is a transport protein for iron in the body.
4. HFE gene provides instruction for production of HFE protein which

determines iron absorption from diet and iron release from body stores.
>A variation in these genes together has an impact on the risk of insufficient iron

levels in the body.

[28, 37, 38]
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populations has been associated with B12 levels [29]. In a
study among Irish men, having this SNP and homozygous
CC genotype had lower vitamin B12 levels than those with
GG genotype [67]. This demonstrates that different genotypes
of transcobalamin impact the distribution of vitamin B12 and
shows an association between this genetic variant and B12
levels [67].

Vitamin B12 along with folate influences one-carbon me-
tabolism. Cubulin (CUBN) is the intestinal (IF) and polymor-
phisms of this gene have been associated with chronic dis-
eases in individuals with low B12 status [29]. A study involv-
ing a Canadian population found that many SNPs in genes
related to folate, B12, and homocysteine metabolism—
CUBN, TCN1, TCN2, methylenetetrahydrofolate reductase
(MTHFR), MUT (methylmalonyl coenzyme A mutase), and
FUT2—are possibly correlated with B vitamin-related dis-
eases [30]. Genetic polymorphisms of MTHFR, MTR,
MTRR, MMAA (methylmalonic aciduria (cobalamin defi-
ciency) cb1A type), MMACHC (methylmalonic aciduria
and homocystinuria, cblC type), and MUT have been ana-
lyzed. This research has failed to show an association between
MTHFR gene polymorphisms and B12 concentrations [29].
However, a study using a classic twin model found that com-
mon gene variants—MMAA, MMACHC, MTRR, and
MUT—were significantly associated with B12 levels and
could explain the variation in B12 levels, which might facili-
tate the prevention and treatment of B12 insufficiency/
deficiency in individuals at a higher risk of associated diseases
[68]. A cross sectional study looking at 56 SNPs of the B12
pathway among an older female population and found TCN2
to be significantly associated with elevated serum
methylmalonic acid (MMA) levels, a marker for available
B12 [69]. When using MMA levels as a marker for B12, it
is suggested that TCN2 gene variants may lead to decreased
vitamin B12 availability [69]. This review spotlights the com-
plex nature of nutrigenomics and vitamin B12. Identifying
these gene variants among people having bariatric surgery
could contribute to a more personalized nutrition plan.

Folate

Folate plays a role in one-carbonmetabolism, methylation and
DNA synthesis, and methionine regeneration [70–72]. Folate
deficiency is associated with elevated homocysteine, cardio-
vascular diseases, neural tube defects, cleft lip and palate, late
pregnancy complications, neurodegenerative and psychiatric
disorders [73–75]. Elevated homocysteine levels are a risk
marker for dementia, Alzheimer’s disease, bone fractures,
cancers, and cardiovascular diseases [76–78]. Many studies
show folate deficiency to be low due to food fortification in
America [39, 79–81]. Although preoperative deficiencies are
not alarming, prevalence of folate deficiency and elevated
homocysteine have shown to persist or worsen after bariatric

surgery despite supplementation [82, 83]. The prevalence of
abnormalities 1 year after gastric bypass were higher com-
pared to preoperative levels in 232 patients with elevated ho-
mocysteine as high as 29% and low RBC folate in 12% of 149
postoperative subjects [82]. Another study found similar re-
sults among patients undergoing bariatric surgery with 13%
having folate deficiency postoperatively [84].

Several studies have shown an association between SNPs
related to folate metabolism, folate deficiency, and elevated
homocysteine [70]. A common genetic variant in MTHFR is
known to influence blood folate and prevalent in 10% of the
population worldwide [85, 86]. Steluti and colleagues studied
polymorphism frequencies and differences in homocysteine
concentrations even in the presence of folic acid fortification
and found that homocysteine levels increased in those carry-
ing genetic variants in folate metabolism, specifically in the
MTHFR gene [87]. The prevalence of variant MTHFRTT has
been found in 25% of Americans of Hispanic origin, 10–15%
among white Americans, and only 0–1% for African
Americans [77, 87–89]. A review examining the nutritional
deficiencies, bariatric surgery, and serum homocysteine levels
found that the mutations of theMTHFR gene can be one of the
reasons for persistent elevated serum homocysteine after sur-
gery despite supplementation with B-group vitamins [76].
Knowing the presence of genetic variants of folatemetabolism
would provide a critical personalized care to those that might
benefit from the methylated form of folic acid to prevent ele-
vated homocysteine levels [76].

Thiamine

Thiamine is essential for glucose, amino acid, and energy
metabolisms [90–92]. Deficiency of thiamine can cause com-
plications including cardiovascular and neurological diseases,
including Wernicke-Korsakoff syndrome [90, 93].
Preoperative thiamine deficiency is prevalent in about 29%
of patients undergoing bariatric surgery [57]. Studies have
found that preexisting thiamine deficiency can be present in
15.5% and as high as 47% of patients; however, race plays a
role showing Hispanic patients with the highest level of prev-
alence followed by African Americans (31%) and Caucasians
(7%) [57, 79, 94]. Similarly, a retrospective study showed
33.6% of patients having thiamine deficiency pre-operatively,
suggesting that people with obesity, especially those with
many weight loss attempts, may have different needs to main-
tain adequate thiamine levels [95].

Mutations in thiamine transporter genes, SLC19A2 and
SLC19A3, have been observed in cases of thiamine deficien-
cy due to decreased absorption of thiamine that leads to neu-
rological dysfunction [91]. SLC35F3 is another thiamine
transporter gene that plays a role in cardiac health and blood
pressure. Genetic variants have been associated with thiamine
deficiency as well as hypertension [35]. Prevalence of
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mutations in these genes is largely unaccounted for despite
recent advances in GWA studies. However, studies show that
thiamine deficiency and cardiac dysfunction associated with
these genetic variants are alleviated with thiamine supplemen-
tation [96–99]. Literature reviews have shown that treatment
for thiamine deficiency vary according to the genetic defect of
thiamine metabolism and that supplementation results in ade-
quate thiamine levels and improved clinical outcomes [100,
101]. The best responses to thiamine therapy were associated
with early referral for genetic testing and early initiation of
thiamine treatment. This evidence demonstrates that early di-
agnosis of these mutations can be beneficial. It may also im-
plicate the hereditability of thiamine deficiency and that ther-
apeutic doses of thiamine vary according to the genetic defect.

Iron

Iron is essential for metabolic processes like oxygen transport,
deoxyribonucleic acid (DNA) synthesis, electron transport, as
well as cellular functions can affect one’s well-being [102]. In
individuals with obesity, the chronic inflammatory state relat-
ed to obesity might be a possible risk factor for iron deficien-
cy, which is also called the anemia of inflammation [57,
103–105]. Studies have shown that the prevalence of iron
deficiency in adults with obesity is remarkable, and a decrease
in serum iron and transferrin saturation levels is inversely
associated with an increase in body mass index [103,
106–108]. A study involving bariatric surgery candidates
showed 86.2% of females and 80% of males to be iron defi-
cient prior to surgery [109]. A retrospective analysis of pa-
tients undergoing RYGB surgery showed that 43.9% were
iron-deficient pre-operatively, which may be associated with
higher complication rates as well as worsening of iron defi-
ciency after surgery [57, 110, 111]. These findings reaffirm
the need to assess and possibly intervene tomanage deficiency
in bariatric surgery candidates preoperatively.

Considering the results of several GWAS, there is strong
evidence of genetic regulation of iron metabolism, and muta-
tions in transmembrane serine protease 6 (TMPRSS6) gene
that encodes for an enzyme that regulates hepcidin involved in
iron homeostasis, iron carrier transferrin (TF), and transferrin
receptor-2 (TFR2) genes have been associated with iron defi-
ciency [112]. A GWAS concluded that identifying mutations
in the TMPRSS6 gene has broad applications in understand-
ing clinical disorders of iron metabolism, and polymorphisms
in TMPRSS6 gene may contribute to iron deficiency anemia
(IDA) in individuals even in absence of other predisposing
factors for IDA [112]. Studies have shown a common
TMPRSS6 gene variant to be prevalent in 45% of the individ-
uals without iron deficiency and clinically relevant inflamma-
tory conditions [104] and 36.5–41.7% in a group of non-
pregnant women [113]. TF and human hemochromatosis
(HFE) genes are involved in genetic regulation of

maintenance of iron homeostasis [37]. Mutations in the HFE
gene can lead to hereditary hemochromatosis, an iron over-
load disorder [114]. These factors should be considered to
possibly affect iron absorption and thus response to treatment.

TMPRSS6 mutations have been associated with refractori-
ness to oral iron and studies confirm the role of TMPRSS6 in
predicting oral iron response [114, 115]. One study evaluated
subjects with persistent IDA to poorly respond to oral iron,
indicating that TMPRSS6 polymorphisms are more frequent
in subjects with persistent IDA [115]. Identifying mutations of
these iron-related genes can help with providing personalized
iron supplementation for a common deficiency post bariatric
surgery.

Association Between Genetic Defects and
Micronutrient Supplementation

The vitamin and mineral supplementation studies that focus
on treating genetic disorders are mainly case studies.
Supplementation studies for vitamin D-related genetic vari-
ants have been conducted in populations that are overweight
and have obesity. Limited data is available on micronutrient
supplementation according to genetic variants in bariatric sur-
gery populations. Table 2 shows studies involving micronu-
trient supplementation according to genetic defect in diverse
populations.

Bariatric Surgery, Genetic Testing, and Gene
Expression Profiles

Genetic expression patterns can be a predictive tool for re-
sponsiveness to nutritional treatments. Some studies have in-
dicated that surgery-induced weight loss was associated with
remodeling of the epigenome that helps regulate metabolic
gene expression [125, 126]. One study found that 1366 genes
were differentially expressed after bariatric surgery and sub-
sequent weight loss, which are associated with gene transcrip-
tion and energy metabolism [127]. Knowing the impact of
bariatric surgery on the vitamin/mineral metabolic pathways
can lead to successful prevention and treatment of micronutri-
ent deficiencies. A study that specifically assessed the mRNA
of genes within B12 degradation pathway after gastric bypass
found that the intestine reprogrammed its genetic phenotype
to compensate for the changes in B12 metabolism. The au-
thors also found decreased expression of TCN1 but an in-
creased production of CUBN, which reflects adaptive genetic
reprogramming [128]. However, research on the role of vita-
min metabolism genes and their adaptation after bariatric sur-
gery is scarce. We do know that healthy individuals and peo-
ple with obesity have different gene expression profiles and
bariatric surgery further modifies the epigenome [129, 130].
Genetic testing is a useful tool for applying personalized med-
icine in bariatric surgery patients as demonstrated by
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Table 2 Supplementation trials according micronutrient defect

Reference Micronutrient Defective or
mutated
gene

Dosage and monitoring No. of patients Summary

[116] Thiamine SLC19A2 75 mg thiamine/day Case study of 1
female patient

Patients with this defect present with diabetes
mellitus, megaloblastic anemia, and
sensorineural deafness. Thiamine
supplementation improved blood glucose
and insulin requirements decreased.

[117] SLC19A3 100 mg thiamine 2×/day along with
10 mg biotin 2×/day for 5 months

Case study of 1
female patient

This genetic defect causes ophthalmoplegia,
ataxia and confusion. Oral biotin and
thiamine improved the symptoms
dramatically the next day.

[100,
118]

TPK1 500 mg thiamine/day 2 patients with
homozygous
TPK1mutation-
s

Early thiamine supplementation prevented
encephalopathic episodes and improved
developmental progression. Evidence
suggests that thiamine supplementation
may rescue TPK enzyme activity.

[119] Vitamin D GC 50,000 IU vitamin D3 per week for
8 weeks, followed by daily
maintenance of 1000 IU vitamin D3 for
4 months

234 participants
with vitamin D
deficiency

Carriers of GC mutation showed the lowest
baseline 25(OH)D levels and lowest
response to vitamin D supplementation.
Mutations in GC gene can predict
response to vitamin D supplementation.

[27] CYP2R1,
CYP24-
A1, VDR

Vitamin D3 (1000 IU/day) and/or calcium
carbonate (1200 mg/day elemental
calcium)

1787 healthy
participants

The increase in [25(OH)D] attributable to
vitamin D3 supplementation may vary
according to common genetic differences
in CYP2R1, CYP24A1, and VDR genes.

[120] Folic acid
(FA)

MTHFR Each treatment taken once daily for
8 weeks.

1. Enalapril only (10 mg, control group)
2. Enalapril-FA tablet (10 mg enalapril

combined with 0.4 mg of FA)
3. Enalapril-FA tablet (10 mg enalapril

combined with 0.8 mg of FA)

480 subjects with
mild or
moderate
essential
hypertension

MTHFR mutation can affect homocysteine
concentration at baseline and post-FA
treatment as well as can modify
therapeutic responses to various dosages
of FA supplementation.

[121] MTHFR
677C→
T
genotype

3 random dietary interventions (4 months
each):

1. Exclusion diet (avoidance of
FA–fortified foods)

2. Folate-rich diet (folate-rich foods to
achieve 400 mcg folate/d)

3. Supplement (exclusion diet plus a folate
supplement of 400 mcg/day)

126 healthy
subjects (42
TT, 42 CT, and
42 CC
genotypes)

The TT homozygotes tended to have low
plasma folate and high plasma
homocysteine levels. Folate intervention
on plasma folate was observed across
genotypes. However, the TT homozygotes
required higher supplement intervention to
achieve similar effects observed in other
genotypes suggesting a need for
supplementation with at least 400–600
mcg/day for individuals with the TT
genotype.

[122] Vitamin B12 MTHFR
677C→T
genotype

One vitamin tablet consisting of 2 mg of
folic acid, 25 mg vitamin B6, and
400 μg of vitamin B12 daily for
6 months

52 patients with
migraine with
aura.

Vitamin supplementation lowered
homocysteine and reduced migraine
disability in a subgroup of patients. In this
patient group the treatment effect on both
homocysteine levels and migraine
disability was associated with MTHFR
C677T genotype; carriers of the C allele
experienced a greater response compared
to TT genotypes concluding that TT
genotypes require a larger dosage of
vitamins to exhibit the same effect as C
alleles.

[123] Iron HFE,
TMPRS-
S6, TF

Iron supplementation with autrin capsules
(ferrous fumarate; 98.6 mg elemental
iron) once a day for 20 weeks from the
time of diagnosis

181 pregnant
women with
anemia

The HFE variant had a positive effect with
significant improvement in hemoglobin,
iron and ferritin. This shows an association
of genetic variants and iron absorption and
thus response to treatment. The TMPRSS6
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Bandstein et al. that showed presurgery vitamin D levels may
impact the size of genotype effects of FTO rs9939609 on
weight loss among gastric bypass surgery patients [131].
Nutritional genomics may provide the path for precise nutri-
tion recommendations to provide high-risk individuals with
personalized treatment and to prevent micronutrient
deficiencies.

Discussion

From the review, it is evident that the deficiencies of the stud-
ied micronutrients are influenced by genetic mutations.
Postbariatric surgery, patients frequently have these deficien-
cies and knowledge of these mutations may have bearing on
its management. Additional research is needed to establish
this association. This review confirmed the scarcity of re-
search that has been conducted in the area of bariatric surgery
and micronutrient genetic variants, with only two articles be-
ing found in this search. This limitation should be considered
when interpreting the findings in this discussion. Furthermore,
the treatment regimen for those who have micronutrient ge-
netic variants and undergoing bariatric surgery should be an
area of future research.

Personalized dietary and supplement advice derived
from genetic testing should be based on appropriately de-
signed studies. Utility of data from GWAS in providing
dietary advice is limited because it is not known what diet
and supplement intakes are required to prevent and treat
the deficiencies that might be caused by micronutrient
genetic variants. Identifying how a genetic variant mod-
ifies the response to supplementation on the micronutrient
status and possibly identify responders and non-

responders will be required to understand this population
and area of research. Genotype along with micronutrient
blood levels would be the initial step in applying PN
among bariatric surgery patients. Genetic marker is only
one factor that influences improvements related to micro-
nutrient status [132].

Future work should focus on genotyping for multiple var-
iants in the micronutrient metabolic pathways and their addi-
tive and interactive effects to get a complete understanding of
the influence of genetic factors on micronutrient metabolism.
Then, utilizing genomic technology to understand this influ-
ence on the responses to micronutrient supplementation is also
important. This would involve micronutrient status, genetic
variations, and genetic interactions within metabolic pathways
involving the micronutrient, its molecular targets, and envi-
ronmental stressors [133].

Furthermore, studies should focus to understand the role of
the gut microbiome and its influence onmetabolism and phys-
iology. The human gut microbiota (which has its own ge-
nome) can modulate signaling pathways and regulate gene
expression [134]. Diet, lifestyle, medications, and environ-
mental exposure can increase inflammation within the gut,
causing dysbiosis, which can contribute to chronic diseases
and other illnesses [135]. Interestingly, gut microbial contri-
bution to vitamin metabolism has been recognized in whole-
genome metagenomic studies, suggesting microbe-mediated
vitamin metabolism [136, 137]. Pre- and probiotics as well as
diet can alter the gut microbiome in a manner that improves
human health [138]. Investigating how the gut microbes can
positively influence vitamin metabolism is warranted.

Techniques used for genetic testing will determine the cost.
Methods being used in healthcare and research to identify
genetic variations are known as next-generation sequencing

Table 2 (continued)

Reference Micronutrient Defective or
mutated
gene

Dosage and monitoring No. of patients Summary

mutation was significantly associated with
higher serum iron and hemoglobin. The
presence of variants in STEAP3,
TMPRSS6, SLC11A2, SLC40A1, HAMP
and TF genes indicate a probable genetic
association with iron status.

[124] TMPRSS6 Intravenous iron gluconate
(1.3 mg/kg/day) for 5 days as first
course and same dosewas repeated after
5 months

Followed by different supplementation
therapy in which the patient received
liposomal oral iron at a dose of
10 mg/day for 3 months

Case study of 1
female patient

A comprehensive assessment that includes
sequence analysis of TMPRSS6 can help
to confirm the genotype-phenotype
association of genes involved in iron
metabolism and may also be useful for
predicting the patient’s response to iron
treatment.
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(NGS) [28]. Sequencing costs have rapidly decreased, which
has increased NGS applications in the clinical setting. There
are 3 NGS approaches used: targeted gene panels (TGP),
whole-exome sequencing (WES), and whole-genome se-
quencing (WGS) [139]. WGS implies the determination of
the sequence of the entire genome of an individual; WES is
a component of the genome; and TGP analyze specific muta-
tions in a given set of genes or gene regions [140]. Per sample
costs of diagnostic NGS applications, that include the total
cost (in euros) of processing and analysis are estimated at
€333 (TGP), €792 (WES), and €1669 (WGS) [139].
Another study showed cost analysis for cancer diagnosis using
NGS. From the pre-analytical phase to delivery of results, cost
per patient for TGP ranged from €376 to €968 [141]. Costs for
NGS have declined and will continue to decline with innova-
tions in genome-sequencing technologies and strategies [142].
In the area of bariatric surgery research, TGP could be utilized
with the specific genes involved in micronutrient metabolic
pathways, thus facilitating a more cost-effective and easy-to-
interpret analysis.

Concerns and limitations involved in genetic testing in-
clude [1] the rapid growth of direct-to-consumer (DTC) ge-
netic testing services with non-evidenced based testing, [2]
potential ethical dilemmas, and [3] applications to the broader
community [143]. Clinicians will be critical in providing ge-
netic counseling regarding health decisions based on genomic
information [144]. Many issues must be addressed prior to
genetic testing such as informed consent, sample and data
storage, return of results, and privacy and confidentiality to
minimize these risks that can be introduced with such testing
[145]. As mentioned previously, the majority of GWAS are
conducted among Caucasian/European subjects. However, it
is difficult to extrapolate from these studies to other popula-
tions. Sex differences also must be considered to improve the
application of genetic tests to the broader community [143].
Addressing these areas and concerns are critical to implement
genome sequencing in clinical practice. This type of analysis
is likely to be cost-effective, especially in specific populations
such as patients with bariatric surgery.

Conclusion

PN is the delivery of dietary advice at an individual level and
future work should verify if this targeted nutrition can change
behaviors and have an impact on health outcomes. Dietitians
currently provide PN advice based on diet and phenotype;
however, genotype-based PN advice is not so readily avail-
able. One review, involving a variety of populations such as
patients with a history of weight loss failures, people with
obesity, as well as healthy men and women of various ages,
examined the evidence for genotype-based personalized infor-
mation on motivating behavioral change, and factors which

may affect the impact of genotype-based personalized advice
[146]. The researchers reported that PN advice resulted in
greater dietary changes compared with general healthy eating
advice [146]. Analyzing biochemical markers for vitamins/
minerals as well as defining a person’s “nutrigenomic profile”
for those undergoing bariatric surgery will open the door to
implement more personalized recommendations for micronu-
trient supplementation.
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