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Abstract

It has been repeatedly acknowledged that age-at-death estimation based on dental

cementum represents a partial and time-consuming method that hinders adoption

of this histological approach. User-friendly micrograph analysis represents a grow-

ing request of cementochronology. This article evaluates the feasibility of using a

module to accurately quantify cementum deposits and compares the module's per-

formance to that of a human expert. On a dental collection (n = 200) of known-age

individuals, precision and accuracy of estimates performed by a developed pro-

gram (101 count/tooth; n = 20,200 counts) were compared to counts performed

manually (5 counts/tooth; n = 975 counts). Reliability of the software and agree-

ment between the two approaches were assessed by intraclass correlation coeffi-

cient and Bland Altman analysis. The automated module produced reliable and

reproducible counts with a higher global precision than the human expert. Although

the software is slightly more precise, it shows higher sensitivity to taphonomic dam-

ages and does not avoid the trajectory effect described for age-at-death estimation

in adults. Likewise, for human counts, global accuracy is acceptable, but underestima-

tions increase with age. The quantification of the agreement between the two

approaches shows a minor bias, and 94% of individuals fall within the intervals of

agreement. Automation gives an impression of objectivity even though the region of

interest, profile position and parameters are defined manually. The automated system

may represent a time-saving module that can allow an increase in sample size, which

is particularly stimulating for population-based studies.
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1 | INTRODUCTION

Age at death is a fundamental feature of the biological profile but also

one of the most challenging parameters for physical and forensic

anthropologists to estimate. The search for reliable osseous or dental

indicators has been ongoing for decades. Popularization of histology

and interactions with zoologists has opened the door to a marker that

is increasingly considered as an unequivocal age predictor: the dental
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cementum. Cementum refers to the avascular and not innervated min-

eralized connective tissues covering the root surface. Various types of

cementum have been described according to their specific structures

and adaptive properties (Schroeder, 1986; Yamamoto et al., 2016) and

each shows a layered structure separated by incremental lines under

light microscopy. However Acellular Extrinsic Fiber Cementum (AEFC)

receives the highest attention due to its constant growth rate

(Sequeira et al., 1992). Age estimation by cementochronology is

achieved by adding the average counts of cementum annuli per-

formed on cross sections to the age of the first acellular cementum

deposit of the specific tooth. Even if there are still ongoing debates

regarding the protocol (Bertrand, 2013; Colard et al., 2015; Gualdi-

russo et al., 2022; Petrovic et al., 2021), the impact of periodontal dis-

ease (Broucker et al., 2016; Kagerer & Grupe, 2001) and the impreci-

sion ranges and mean error (Bertrand et al., 2019; Dias et al., 2010;

Meinl et al., 2008; Wittwer-Backofen et al., 2004), most of study dem-

onstrate that cementum deposits are highly correlated with age-at-

death in known age samples.

Since the first publications related to cementochronology (Charles

et al., 1986; Stott et al., 1982), authors have warned about the time

and cost required for the acquisition of cementochronology data. These

questions have become recurring concerns and unquestionably contrib-

ute to the nonadoption of histological investigations of cementum in

favor of user-friendly and inexpensive techniques (Cunha et al., 2009).

The standard procedure for cementum analysis involves three major

steps: (i) histological processing of dental tissues, (ii) exploration of the

cross-section and investigation of a region of interest (ROI) under light

microscopy, and (iii) counting of acellular cementum deposits. The first

step cannot be time-compressed. Indeed, even if standardizations of

the protocol improve productivity, only a reduction of the number of

dental cross-sections would be time- and cost-saving. However, we

previously demonstrated that five slides per tooth in the middle third of

the root allows access to the variability of this dental tissue and ensures

the location of an appropriate ROI (Bertrand et al., 2019). The explora-

tion of dental preparation has benefited from the progress of digital

camera systems over the last two decades. This development is far

from anecdotal since it led to the abandonment of counts from rudi-

mentary projections (Condon et al., 1986), even if counting through the

eyepiece had persisted for a long time (Gocha & Schutkowski, 2012;

Wittwer-Backofen & Buba, 2002). Since the 1980s, the third step,

cementum annuli counting, has been performed manually, making the

studies tedious and subjective. Therefore, this work's effort focuses on

experimenting with a semiautomated counting module. The willingness

to move away from human counts has already led to efforts in design-

ing automated tools based on different algorithms (Czermak

et al., 2006; Klauenberg & Lagona, 2007). However, 15 years after

these publications, none of these tools have been integrated into

cementochronological studies. Experiencing inconsistencies in their

results, Czermak et al. (2006) concluded that the reproducibility of such

an approach would only be accessible if the preparations were derived

from a standardized procedure. The standardization of our previously

published protocol prompted us to experiment with a computerized

procedure.

Since periodic structures similar to alternating opaque and trans-

lucent zones in dental cementum are widely used for age determina-

tion in sclerochronology for the interpretation of incremental

structures such as scales, bones, fin rays, and otoliths (Fablet & Le

Josse, 2005; Fisher & Hunter, 2018), we have chosen to take on

board some of the developments successfully adopted in marine biol-

ogy. The software platform selected for this work (Visilog–Thermo

Fisher Scientific Inc., formerly Visualization Sciences Group, formerly

Noesis) supported specific developments for age estimation in biology

by the French Research Institute for Exploitation of the Sea

(IFREMER) (Troadec & Benzinou, 2002). To design this software to

the requirements and challenges of dental histological micrographs, a

specific cementochronology module has been developed in coopera-

tion with engineers from Noesis. This article aims to evaluate the fea-

sibility of adopting a semiautomated module to discriminate and

count cementum alternating deposits and aims to compare the soft-

ware's performance to that of a human expert.

2 | MATERIALS AND METHODS

2.1 | Dental reference sample

The dental material used in this study comprises permanent healthy

canines processed in the validation study performed by the authors of

this research article (Bertrand et al., 2019). For each individual, chro-

nological age was known, as well as sex and postmortem interval.

Teeth originating from five different sources are summarized in

Table 1. The first source represents the anatomy laboratory of Lille

University (France) and consists of 48 canines of individuals of both

sexes curated at the Forensic Taphonomy Unit of the University of

Lille (France). The second represents the “Colecção de l'Esqueletos

Identificados du Século XXI,” curated at the Laboratory of Forensic

Anthropology of the University of Coimbra (Portugal) (Ferreira

et al., 2014, 2020), and consists of 99 canines. The third represents

the Schoten collection curated at the Royal Belgian Institute of Natu-

ral Sciences (Belgium) (Orban et al., 2011; Orban & Vandoorne, 2006)

and consists of 26 canines. The fourth source represents the Châtelet

collection curated at the Royal Belgian Institute of Natural Sciences

(Belgium) (Orban et al., 2011; Orban & Vandoorne, 2006) and consists

of six canine of individuals of both sexes. The last represents identi-

fied soldiers fromWWI (Haut-Rhin, France) and consists of 21 canines

of males curated at the Forensic Taphonomy Unit of the University of

Lille (France). Age and sex distributions of the reference sample are

reported in Figure 1. The distribution by five-year age classes shows

that even if most age classes are represented, individuals under 45 are

underrepresented and consist mainly of males.

2.2 | Histological preparation and counting phases

To ensure that the performances of the semiautomated and manual

approaches can be compared, each histological preparation was

BERTRAND ET AL. 315



processed according the ISO-9001 certified protocol (Bertrand, 2013;

Colard et al., 2015). Nondecalcified 100-μm cross-sections derived

from 200 teeth of known age (five cross-sections per tooth in the

middle third of the root) were observed under a light microscope

using a Leica® DMEP, and regions of interest showing acellular

cementum layering structure were captured as 16-bit JPEG micro-

graphs (1280 � 1024) at 400� magnification with a Leica® DFC280

digital camera and using Leica Application Suite software. All cross-

sections were manually assigned an index graded on a five-point rat-

ing scale (0: Unreadable; 1: Considerable unreadability; 2: Reasonable

readability; 3: Good readability; 4: Clear and unambiguous). This index

assesses the distinctness of acellular cementum structure and not

preparation artifacts or taphonomic modifications.

For the manual protocol, hand-operated counts performed by an

operator on five cross-sections obtained from each tooth were

tracked using the mouse click counter functionality in Adobe® Photo-

shop CS5. This procedure traditionally adopted by cementochronol-

ogy users has been repeated on each tooth. A total of 975 counts

were manually performed.

For software investigation, we selected one micrograph per

individual according to the readability and favoring images graded

with the best index. This methodological choice was motivated by

TABLE 1 Curation and age, sex distributions of the dental reference sample

Collection Dental sample Age range Sex

Laboratory of Anatomy n = 48 54–90 52.1% M [n = 25] - 47.9% F [n = 23]

(Lille University, France) 60.4% UC [n = 29] 39.6% LC [n = 19] x = 74.5; σ = 9.3

Colecção de l'Esqueletos Identificados

du Século XXI

n = 99 25–97 63.6% M [n = 63] - 36.4% F [n = 36]

(Coimbra University, Portugal) 24.2% UC [n = 24] 75.8% LC [n = 75] x = 69.8; σ = 16.3

Schoten n = 26 19–82 57.7% M [n = 15] - 42.3% F [n = 11]

(Royal Belgian Institute of Natural

Sciences, Belgium)

11.5% UC [n = 3] 88.5% LC [n = 23] x = 53; σ = 21.3 years

Châtelet n = 6 44–83 50% M [n = 3] - 50% F [n = 3]

(Royal Belgian Institute of Natural

Sciences, Belgium)

16.7% UC [n = 1] 83.3% LC [n = 5] x = 61.2; σ = 15 years

Carspach n = 21 19–38 100% M [n = 21]

(Archéologie-Alsace, France) 38.1% UC [n = 8] 61.9% LC [n = 13] x = 30.6; σ = 6.1 years

Total n = 200 19–97 63.5% M [n = 127] �36.5% F [n = 73]

32.5% UC [n = 65] 67.5% LC [n = 135] x = 64.4; σ = 19.8 years

Abbreviations: F, female; LC, lower canine; M, male; UC, upper canine.

F IGURE 1 Bar chart showing the distribution
by age and sex of the dental reference sample
grouped by five-years intervals
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the perspective to lighten the sample preparation by reducing the

number of cross sections if the software allows it. The selected

micrographs were imported in Visilog, which includes a database

allowing the storage of processed and to-be-processed images. In

the software, each micrograph was identifiable through thumbnails,

and metadata associated with the individual can be entered through

a form on a windowpane. This solution allows for each file to be

filled, for example, name of the image file, name of the site/collec-

tion, identification of the individual, sex, age, type of tooth, descrip-

tion, keywords, date of the image processing, and counts if the

photograph has been processed (number of cementum rings, mean

and standard deviation). These records also allow examination of the

library by keyword and allow exportation of all fields or a selection

of fields from the search result or the entire data in a Microsoft

Excel-compatible file. For each image file, picture quality was auto-

matically assessed. This operator-independent criterion was evalu-

ated in two steps. The first evaluation determined whether the

presence of alternating rings was detectable by the software, and

the second evaluated the image contrast. The processing steps for

quality evaluation are as follows: (1) extraction of the user selection

and separation of the three color channels to work only on the green

channel; (2) correction of the background by a median filter; (3) cal-

culation of the volume of a gradient oriented in a direction varying

by 5� from 0� to 180�; and (4) attribution of a quality grade (quality

was assigned to D if the maximum volume value was low; in other

cases, the contrast of the image with the highest gradient value was

calculated to refine the quality assessment between A and C). This

quality estimation allowed the automatic selection of threshold

parameters for cementum rings recognition. On the ROI of each

micrograph, a set of segments was drawn (Figure 2). The lines traced

manually are represented by a central segment surrounded by two

external segments and are a simplified representation of a set of par-

allel invisible segments. It was up to the human operator to choose

the origin and end of the central segment. The number of segments

and the distance between them (step) were set manually. Additional

tools such as noncontiguous segments were available. Along each

segment, a command was used to integrate the 10 orthogonal neigh-

boring pixels for each pixel of the current line. The minimum and

maximum peak intensity values were determined along the profiles,

and visual markers on the main segments allowed the operator to

weigh the relevance of automatic detection (Figure 2). The number

of annuli detected corresponding to the number of minimums identi-

fied along the intensity profile were saved as a Microsoft® Excel file.

The image plot and counts were saved for future use. A command

allowed the image to be reset to start plotting and processing again.

Although the threshold parameters were automatically selected

according to the image file quality, these parameters could be set

manually to adjust detection through visual markers on the main

segments. For each analysis, steps between segments followed the

same configuration. Consequently, for each micrograph, 101 counts

were performed (1 central segment and 50 lateral and symmetrical

segments). A total of 20,200 counts were performed by the

software.

2.3 | Performance indicators and statistical
analysis

The reproducibility of the software, in other words its aptitude to pro-

duce equal results under identical conditions, was assessed. A randomly

selected subsample of 50 micrographs (corresponding to 50 individuals)

was imported into the software and blindly reassessed 6 months after

the initial automated evaluation. This subsample corresponds to 25% of

the dental reference sample and represents according to Buikstra and

Ubelaker (1994) a reasonable amount for assessing intraobserver error.

The software counts variability between T0 and T + 6 months was

assessed using the intraclass correlation coefficient (Elie &

Colombet, 2011; Shrout & Fleiss, 1979) and the Bland–Altman graphical

method (Bland & Altman, 1986; Giavarina, 2015). During this interanaly-

sis evaluation, the ROI and profile positions were selected manually.

Regarding the precision of the counts, we adopted absolute and

relative indicators. For software-assisted counts as well as for human

counts, the dispersion of annuli counts was evaluated with the stan-

dard deviation (σ) and with the help of the coefficient of variation.

The standard deviation assesses the annuli counts dispersion in rela-

tion to the mean in considering the maximum numbers of counting

phases (up to five for the human, 101 for the software). The coeffi-

cient of variation defined as the ratio of this standard deviation to the

average counts. This relative indicator expressed as a percentage is of

special interest since an error of five counts is more consequential

when a cross-section displays 20 annuli as opposed to 60 annuli.

Regarding the accuracy, and after having achieved age estimation

by adding the mean annuli counts to the age of the 3/4 root comple-

tion (AlQahtani et al., 2010; Bosshardt & Schroeder, 1996), we

assessed absolute accuracy (Δage) by computing the difference

between the estimated age and the chronological age. A value equal

zero meant the estimate is perfectly accurate, while a negative or pos-

itive value respectively suggested an underestimation or overestima-

tion of age-at-death. We also calculated the relative accuracy (Δ%age)

by studying the relative error defined as the ratio of the difference

between the estimated age and the chronological age relative to the

chronological age. This relative approach is also important since a

10-year accuracy does not have the same weight depending on the

subject's age.

In addition to the graphical representations of these indicators,

we described the general distribution of each indicator in computing

skewness and kurtosis values. Kolmogorov–Smirnov tests were used

to explore the distribution of precision and accuracy indicators within

the whole sample. For both precision and accuracy indicators, we

computed Pearson correlations to examine relationships with known

chronological ages.

Performances of the software were compared to that of the

human previously established by means of identical methods

(Bertrand et al., 2019). Global precision of the counts and accuracy of

the estimates were compared between the two approaches as well as

the general distribution of each indicator. Finally, the level of agree-

ment between automated and manual approaches was examined

using the Bland–Altman graphical method.

BERTRAND ET AL. 317



F IGURE 2 Micrograph imported in the image analysis software for automated detection of cementum deposits. The group of parallel
segments is drawn by the operator and symbolizes the central segment surrounded by two external segments. Detection can be performed along
a single group of segments (a) or from concatenated profiles (b). Intensity profile achieved from one profile along cementum width (c). The scale
is 100 μm
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Significance was set at p < 0.05, and statistical analysis was performed

using IBM SPSS Statistics Pack V24.0 (SPSS Inc., Chicago, IL, USA).

3 | RESULTS

3.1 | Reproducibility

The intraclass correlation coefficient was considered to be excellent

(ICC = 0.928; 95% CI [0.876–0.958], n = 50/200). The Bland–Altman

plot examining the extent of disagreement according to the number of

annuli shows that the differences between measures are within the x

±2σ limits of agreement (Figure 3) and are congregated around the

mean difference estimated at 2.49 annuli. The impression of an accre-

tion around the mean is accentuated by the adaptation of the y-axis

scale range to two outliers. This problem was not encountered for the

human count, and the reasons may be varied. We investigated whether

these two outliers corresponded to any particular age-class or any qual-

ity scored by the software and the operator, but we could not find any

rational reason. One individual is 41 years and showed an average dif-

ference of 25.05 annuli in a positive sense between T0 and T+ 6months

while the second is 75years and showed an average difference of

38.96 annuli in a negative sense between T0 and T + 6.

We must bear in mind that during semiautomated investigations

profiles locations were positioned manually. Without mentioning any

malfunction or inadequate settings, a heterogeneous tissue or an arti-

fact at the place where the profiles were repositioned may be the

cause of dissimilar interpretations.

A Kolmogorov–Smirnov test performed on the distribution of differ-

ences between the automated counts at T0 and T + 6 months indicates

that the distribution does not follow a normal distribution (p > 0.001).

This result mirrors the bias caused by the two outliers representing 4%

of the measures (n = 2/50). By comparison, this mean difference

between T0 and T + 6 months for an human operator has been esti-

mated at 1.63 annuli. The dispersion series of points observed on the

right of the Bland–Altman plot for human counts is much less obvious

for automated counts but is still noticeable. This subtly reveals that the

software agreements weaken with the number of annuli to be counted.

3.2 | Precision

Regarding the absolute precision, a Kolmogorov–Smirnov test was

performed and established that the distribution of standard deviations

follows a normal distribution (p = 0.200). The negative kurtosis coeffi-

cient of the standard deviation distribution (Kurtosis = �0.450) con-

firmed the observed slight flattening of the distribution, and the low

skewness coefficient (Skewness = 0.093) reveals the central position

of the distribution peak (Figure 4a). The standard deviations of the

software range from 1.34 to 6.42 annuli (95%CI: 3.45–3.72), and the

mean is 3.58 annuli, whereas this mean reached 4.85 annuli for a

human expert (Bertrand et al., 2019).

To assess the relative precision, we conducted a normality test.

This test expresses that relative precision indicates a nonnormal distri-

bution (p = 0.000). The positive kurtosis (kurtosis = 30.385) and

skewness coefficients (skewness = 4.216) indicate that recurring pre-

cision values are approximately 8% (Figure 4b).

As observed for the manual counts, we are far from reaching a

symmetrical distribution. This pattern reflects the tendency of a

distribution oriented toward low values of the coefficients of vari-

ation, thus toward high precision. Automated relative precision

ranges from 4.74 to 31.97% (95%CI: 7.6–8.3), but the average

coefficient of variation is 7.93%. This average for manual proce-

dure reached 10.13%.

F IGURE 3 Bland–Altman plot showing the concordance between annuli automated counts with an interval of six months (a) compared to an
identical approach for manual counts (b) (Bertrand, 2019). The solid line represents the mean difference, and the dotted lines represent the 95%
limits of agreement
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3.3 | Accuracy

Regarding the absolute accuracy, a Kolmogorov–Smirnov test showed

that the distribution of the absolute error (in years) does not follow a

normal distribution (p > 0.001). The kurtosis coefficient of the

distribution (kurtosis = 4.158) reflects a peak, and the skewness coef-

ficient indicates that this peak is shifted toward “high” values

(skewness = �1.923). As seen with the human counts, the skewness

of the distribution indicates a tendency for underestimation and a ten-

dency for the distribution to reach zero value (Figure 5a). The absolute

F IGURE 4 Descriptive statistics of the absolute precision and the relative precision of the counts for the automated approach in
cementochronology. a-b: Histograms representing the distribution of the global precision; c-d: Scatter plots displaying the relationship between
precision and chronological age; e-f: Error-bar charts indicating 95% confidence intervals of precision by age classes.
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error ranges from �51.75 years to +16.48 years (95%CI: �7.01 to

�3.87) and the average is �5.44 years (�4.53 years for the human

expert).

For relative errors (in %), the Kolmogorov–Smirnov test indicates

a non-normal distribution (p > 0.001). The positive kurtosis coefficient

(kurtosis = 2.230) and the high skewness coefficient (Skewness =

12.152) indicate that the distribution peak shifts to low values of

approximately 2% (Figure 5b). The relative error ranges from 0.20% to

54.90% (95%CI: 9.54–12.93), and the average is 11.23% (9.19% for

human counting).

F IGURE 5 Descriptive statistics of the absolute accuracy and the relative accuracy of ages estimates for the automated approach in
cementochronology. a-b: Histograms representing the distribution of the global accuracy; c-d: Scatter plots displaying the relationship between
accuracy and chronological age; e-f: Error-bar charts indicating 95% confidence intervals of accuracy by age classes.
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3.4 | Effect of chronological age on the
performance of automated estimates

The absolute precision (Figure 5c) shows that the plots draw a linear

relationship, suggesting that the older the individual is, the greater the

standard deviations of the automated annuli count. This relationship

has been demonstrated for human counts. Pearson correlation con-

firms the strength and statistical significance of this association

(r = 0.721; p > 0.001; n = 200). Interestingly, this association is stron-

ger than for human counts (r = 0.541; p > 0.001; n = 199). We inves-

tigated the relation between age and imprecision of counts in

exploring means and 95%-CI for age classes by means of error bar

chart. This graphical representation particularly shows that absolute

imprecision of counts increases with age (Figure 5e).

Pearson correlation also confirms the association between chro-

nological age and relative precision (r = �0.619; p > 0.001; n = 199).

However, a negative value indicates that the younger the individual is,

the lower the precision (higher values of %). This is noticeable on the

scatter plot (Figure 5d), where relative precision can reach values

above 10% for young individuals. Error bar chart (Figure 5f) shows

consistency between age classes but confirms higher imprecision for

individuals in the <20 and [20;30] classes and the large dispersion for

individual >20.

Regarding the absolute accuracy, the relationship between auto-

mated count accuracy and known age is represented by the scatterplot

diagram (Figure 4c). Likewise, to human counts, this graphic represen-

tation clearly shows that for younger individuals (lower part of the

scatterplot), points are stacked along the vertical axis passing through

the origin of the x-axis. This diagram also clearly displays that, for older

individuals, points spread to the left toward the negative values, indi-

cating underestimation of the estimation. The Pearson correlation test

between chronological age and absolute accuracy shows a negative

linear relationship (r = �0.430; p > 0.001; n = 200) and confirms, like

for the human counts, that the accuracy of the estimates is related to

the age of the individual. Graphical representation of 95% CI

(Figure 4e) shows a clear decrease of the absolute accuracy for individ-

uals over 60. Higher accuracy for subjects older than 90 is most likely

due to underrepresentation of these individuals in the sample.

The diagram illustrating the relationship between the relative

accuracy and chronological age estimates (Figure 4d) shows a densi-

fication of the scatterplot toward low values. As with the human

counts, older individuals are characterized by high values of per-

centage errors. The Pearson correlation coefficient indicates a sig-

nificant linear relationship between these two variables (r = 0.221;

p > 0.001; n = 200) and confirms that the older the individual is, the

larger the percentage error of the estimate. Error bar chart of rela-

tive accuracy (Figure 4f) reveals a level of consistency between age

classes. The higher inaccuracy for subjects in the [80;90] class may

be due to the overrepresentation of individual aged between

80 and 90 (Figure 1).

3.5 | Validation of the semiautomated method

The purpose of this section is to determine whether the algorithms

implemented by the software can differentiate and count acellular

cementum annuli with similar performances to the human expert. The

whole dental sample (n = 200) was considered for this assessment,

and the 101 annuli counts analyzed in Visilog on an ROI selected by

the operator for each tooth (n = 20,200) were compared to the five

annuli counts (n = 975) performed by the operator on the same teeth.

In terms of absolute precision, the counting phase is characterized

by a mean precision of 4.85 annuli for an operator (Bertrand

et al., 2019) and 3.58 for the software (Table 2). Similarly, the relative

precision is also better for the software (7.93%) than for the analyst

(10.13%). The automated system reveals a higher performance, but

this observation must be qualified since the operator conducted his

counts on five cross-sections for each tooth (involving variability of

cementum tissue along the root high), whereas the software was

implemented on a single micrograph acquired from a selected slide

per tooth.

The mean inaccuracy is greater for the automated approach

(absolute accuracy: �5.44 years and relative accuracy: 11.24% on

average) than for the manual approach (absolute accuracy:

�4.53 years and relative accuracy: 9.19%). This discrepancy highlights

the constancy of the reading of the software regardless of the age

TABLE 2 Comparison of performance indicators between a human expert and semiautomated estimates based on cementum annuli counts

IC-95%

N Mean Min. Max. Lower bound Upper bound

Human Precision Absolute (σ) 199 4.85 0.00 12.8 4.45 5.25

Relative (CV) 199 10.13 0.00 28.76 9.4 10.86

Accuracy Absolute (Δage) 200 �4.53 �38.5 15.3 �5.58 �3.48

Relative (Δ%age) 200 9.19 0.13 44.25 8.09 10.29

Software Precision Absolute (σ) 200 3.58 1.34 6.42 3.45 3.72

Relative (CV) 200 7.93 4.74 31.97 7.55 8.31

Accuracy Absolute (Δage) 200 �5.44 �51.75 16.48 �7.01 �3.87

Relative (Δ%age) 200 11.24 0.2 54.9 9.54 12.93
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classes or regions of interest and the adaptive capacity of the

operator.

Regarding the level of agreement, the 95% agreement interval of

the difference between the manual and semiautomated methods was

represented on a Bland–Altman plot (Bland & Altman, 1986)

(Figure 6a,b). Most of the differences between the two methods lie

between the 2σ limits. Ninety-four percent of the individuals

(n = 188/200) fall within this interval. Some points outside this agree-

ment interval reveal a strong disagreement. These strong divergences

are exclusively above the upper limit. A positive value of this differ-

ence indicates higher values of the manual counts. This can be inter-

preted as a higher sensitivity of the operator or software threshold

parameters set for a lower sensitivity. It is interesting to note that

these major disagreements exclusively concern older individuals in the

[70;80] and [80;90] classes.

Note also that both techniques can count the number of annuli

similarly on these older individuals. The Bland–Altman representation

does not state whether the agreement is appropriate to adopt the

semiautomated method but only defines the interval of agreement

and quantifies the bias and range of agreement in which 95% of the

differences are included. A Kolmogorov–Smirnov test performed on

the distribution of differences between the two techniques demon-

strates that the distribution of these differences does not follow a

normal distribution (p > 0.001). Hence, even low, the bias can be sta-

tistically considered significant.

4 | DISCUSSION AND CONCLUSION

Based on the known-age dental sample (n = 200), 20,200 counts per-

formed by the software (101 counts/tooth) were compared to

975 human counts (5 counts/tooth), and performances were con-

fronted using precision and accuracy and interobservers indicators.

To counts performed by the observer, the automatization of

annuli counts demonstrated no considerable variation in repeated

measurements with an interval of 6 months. This was a prerequisite

for comparing the two methods. The intraclass correlation coefficients

and the graphical approach demonstrated suitable agreement

between automated and human approaches for estimating age at

death. Nevertheless, the automated approach generated outliers that,

although they represent only 4% of the readings, have a substantial

impact on users' confidence. We have not found a rational explana-

tion to justify these discrepancies, and the origin of inconsistencies

may be related to tissue variability, inappropriate settings, or software

instability.

The mean precision for automated counts has been estimated to

be 3.6 annuli and ranges from 1.3 to 6.4. This mean precision reaches

4.9 annuli for the operator, but the interval is twice as broad and

reaches 12.8 annuli. Regarding only the absolute precision, the soft-

ware appears to be more effective. Regarding relative precision, the

software values range from 4.7% to 32% and are similar to that of the

operator, which reaches 29%. Globally, the advantage is also given to

the software, with a relative precision of 7.9% against 10.1% for man-

ual technique. The higher precision achieved by the software must be

qualified. Due to methodological choice whose purpose was to move

forward on the simplification of the protocol if a software is adopted,

human counts performed on different cross-sections could explain

greater variation. Thus, the operator's imprecision could integrate

greater biological variability along the dental root height. Future

development could fruitfully explore this issue further by processing

automated counts on different cross sections of the same tooth.

Adapting this procedure would also overcome some taphonomic

F IGURE 6 Bland–Altman plot (a) and accompanying histogram (b) showing the distribution of mean differences between automated and
manual counts
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obstacles that render some preparations hardly usable for software

applications.

Interestingly, the accuracy of the automated approach is estab-

lished to be �5.4 years and yielded less accurate age estimates than

the human (�4.5 years). In both methods, the absolute accuracy

covers wide ranges. The relative accuracy is also comparable for both

approaches (11.2% for the software and 9.2% for the manual) but

again, the software led to somewhat less accurate estimates than

human.

Based on our observations, the software performs more precise

but less accurate counts compared with the human. This result which

might seem paradoxical demonstrates that although computer-

assisted estimations are more consistent in the annuli counts, the den-

tal cementum patterns, often heterogeneous in distribution and opti-

cally anisotropic, can make automated image analysis vulnerable to

irregularities and therefore wind up having somewhat greater age esti-

mation error.

Although more precise, the software does not avoid the trajec-

tory effect. For both approaches, the variance in cementum annuli

counts increases with increasing age. The relative imprecision of the

software shows variation in subjects under the age of 30. We suspect

that specific taphonomic conditions, such as infiltrations recurrently

seen on cross sections derived from WWI soldiers, might be responsi-

ble for this variation in disturbing annuli detection (Figure 7). We

believe that the human eye can adapt and perceives more efficiently

the cementum alternating structure despite the staining due to iron

oxide infiltration.

The comparison between the two techniques shows that 94% of

the estimates are within the agreement interval. In other words, 6% of

the counts represent a disagreement, and if we base our reasoning on

a significance level set at 5%, this proportion is mathematically signifi-

cant. Interestingly, major disagreements concern individuals over

60 years old. It is then difficult not to link this observation to the age-

related decreasing distinctness of cementum annuli. It should also be

noted that cementochronology is a two-tier performance method and

that a deterioration of performance for individuals over 60 already

has been demonstrated. However, these discrepancies do not under-

mine the use of the software on individuals over the age of 60 since

majority of them are within the agreement interval.

The subjectivity of annuli interpretation and counts, which may

appear to some practitioners more of an art than science, is often

advanced as a justification for designing an automated system. The

computerization of data acquisition gives the impression of greater

objectivity, but we must keep in mind that the system is only semiau-

tomated and that the region of interest and profile locations are

selected manually. Moreover, the operator always conducts visual

control of the detected annuli along the generated segments and

checks, accepts or adjusts the detection parameters. Subjectivity is

always perceived as a bias but can also be seen as an asset. Visual per-

ception is indeed a complex process for which a retinal image, even if

incomplete, is not an obstacle for a human expert. The eye can iden-

tify a cementum annulus, ignore artifacts, search for discontinuous

cementum lines and complete discontinuities that the software is

unable to interpret, and adapt. Advances in analytical tools such as

machine learning already applied in sclerochronology (Hoekendijk

et al., 2021; Moen et al., 2018) and improvement of open-source plu-

gins for analyzing micrographs may represent a precious perspective

for future applications.

The analytical tool tested here does not really limits human inter-

vention but assign new tasks to the operator. The use of a software

shifts subjectivity from the annuli identification and counting action

to the ROI and parameters selection. Furthermore, a visual inspection

is regularly required to check the adequacy and effectiveness of

selected settings. In this respect, the adoption of an automated sys-

tem is not entirely objective and may not represent a time-saving

solution. Nonetheless, automated image analysis allows substantial

increases in the numbers of counts and investigated samples. Hence,

even though we cannot recommend the adoption of image analysis

for case studies where human counts are faster and already beset

with difficulties, we believe that it is certainly for population-based

studies that such an approach can reveal its potential.
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