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Abstract: Extracellular vesicles (EVs), which are the main paracrine components of stem cells, mimic
the regenerative capacity of these cells. Stem cell-derived EVs (SC-EVs) have been used for the
treatment of various forms of tissue injury in preclinical trials through maintenance of their stemness,
induction of regenerative phenotypes, apoptosis inhibition, and immune regulation. The efficiency
of SC-EVs may be enhanced by selecting the appropriate EV-producing cells and cell phenotypes,
optimizing cell culture conditions for the production of optimal EVs, and further engineering the EVs
produced to transport therapeutic and targeting molecules.
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1. Introduction

Extracellular vesicles (EVs) are vesicular entities with lipid bilayer membranes. They were initially
defined as “platelet dust” in 1967 [1]. Intense research regarding EVs in the past half century has
enabled a thorough understanding of the origin and biological function of EVs and has positioned EVs
on the front line of treatments for various diseases.

EVs exist in all bodily fluids and are produced by all types of cells. Smaller vesicles, known as
“exosomes” (EXs), are released from cells through the multivesicular endosomal pathway. Larger
vesicles, known as “microvesicles” (MVs), are formed by cell membrane budding and apoptotic
bodies are produced by the blebbing of aging or dying cells [2,3]. Apoptotic bodies have been studied
less often; thus, EXs and MVs are mainly discussed in this article. EVs can mediate cellular waste
degradation and interact with recipient cells through surface receptor binding, endosomal uptake,
membrane fusion, membrane protein translocation, and by shuttling RNAs and proteins through
vesicle cell channels [2].

EVs carry components of EV-producing cells. They have been shown to exert similar
pathophysiological/regenerative effects on tissue and cellular functions when they are applied to
experimental animal models. Stem cells are the most common EV-producing cells. Stem cells can be
isolated successfully from bone marrow, fat, umbilical cords, embryos, and other tissues. Stem cells can
differentiate into many types of cells and they can substitute for injured tissues and fulfill the repair
process through the paracrine mechanism at the injury location. Stem cells have been used successfully
in the treatment of hematological malignancies, graft-versus-host disease, acute thrombocytopenia, and
autoimmune diseases in several experimental in vivo studies [4,5]. However, large-scale production,
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storage, immune rejection, gene mutation, and tumorigenesis or tumor promotion in vivo limit its
application. Stem cell derived-EVs (SC-EVs), as the main paracrine executor, overcome most limitations
of stem cell applications. SC-EVs have allowed major advances in preclinical or clinical studies.

In this review, the potential therapeutic applications of SC-EVs in regenerative medicine are
discussed and the underlying molecular mechanisms are explored. Some of the possibilities for
improving their secretion and altering their components to improve their efficacy toward diverse
indications and diseases are summarized.

2. Stem Cell-Derived EVs in the Treatment of Damaged Tissue

Numerous preclinical trials have reported that SC-EVs can carry active molecules, such as proteins,
lipids, and nucleic acids, and good therapeutic effects against various diseases regarding different
systems, including the nervous system, respiratory system, circulatory system, digestive system,
urinary system, and others, have been observed.

2.1. Neurological System

Brain trauma is a common event that can cause nerve damage and disability. EXs derived
from human adipose mesenchymal stem cells (AdMSC-EXs) can significantly increase the number of
neurons, reduce inflammation, improve sensory and cognitive function, and produce better effects
than AdMSCs alone in rats that have incurred traumatic brain injury (TBI) [6]. Kim et al. indicated
that systemic administration of CD63+CD81+ EVs produced by human bone marrow-derived stem
cells (BMSC-EVs) decreased neuroinflammation 12 h after a TBI in a mouse model of TBI induced
by a controlled cortical impact device [7]. They also found that BMSC-EV infusion preserved the
pattern separation and spatial learning abilities of mice, which were demonstrated respectively by an
object-based behavioral test and a water maze test [7].

Stroke is the sudden rupture or occlusion of cerebral blood vessels that interrupts the blood
supply. It is the main cause of death and disability in Chinese adults. Preclinical studies have shown
that SC-EVs seem to be a promising candidate for stroke treatment. Xin et al. showed that infusion
of BMSC-EXs enhanced oligodendrogenesis and neurogenesis, remodeled synapses, reduced the
incidence of stroke, and accelerated the recovery of neurological functions in a rat model of stroke
induced by transient middle cerebral artery occlusion [8]. Webb et al. tested the effect of SC-EVs
on stroke in a translational large animal model. In their study, they utilized human neural stem
cell-derived EVs (NSC-EVs) to treat ischemic stroke that was manufactured by permanent middle
cerebral artery occlusion in pigs, and they found that NSC-EVs eliminated the symptoms of intracranial
hemorrhage, decreased the cerebral lesion volume and brain swelling, and preserved the white matter
integrity compared to the control pigs [9]. They also indicated that NSC-EV treatment improved
behavior and mobility in this model [9]. In an ongoing clinical trial, MSC-EXs were engineered to
overexpress miR-124 for the treatment of ischemic stroke (NCT03384433; The estimated primary
completion date is April 17, 2020 and the estimated study completion is December 17, 2021).

Alzheimer’s disease (AD) is a common disease that usually occurs in older people. There is no
effective treatment for AD. Aβ protein accumulation in nerve cells may promote neurodegeneration
and memory impairment in AD. Studies have shown that AdMSC-EXs transport Aβ protease, which
effectively inhibits Aβ protein accumulation in nerve cells in vitro, suggesting a possible treatment
application for AD [10]. In addition, Cui et al. indicated that BMSC-EX administration ameliorated
animal cognitive function and symptoms in a mouse model of AD [11]. In addition, EXs derived from
hypoxic-preconditioning BMSCs displayed enhanced therapeutic effects study [11].

The high incidence of spinal cord injury (SCI), which has occurred in recent years, often results
in serious sequelae, such as lower limb paralysis and incontinence, for which effective treatments
are currently lacking. Liu et al. showed that BMSC-EXs could target specific sites of SCI and
promote functional recovery in a rat model of SCI by inhibiting neuronal apoptosis and increasing
neuroinflammatory improvement, angiogenesis, and the inactivation of A1 astrocytes [12]. Additionally,
Ruppert et al. found that the administration of human BMSC-EVs displayed reduced inflammatory
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responses, improved motor function, and enhanced mechanical sensitivity thresholds in a rat model of
SCI [13]. Recently, a study demonstrated that EXs from human umbilical cord MSCs (hucMSC-EXs)
promoted functional recovery in mice with SCI by reducing inflammation [14].

2.2. Cardiovascular System

Cardiovascular diseases seriously threaten human health because they have high incidence and
mortality rates. Improvement of treatment methods remains a worldwide objective. The proliferation
ability of cardiomyocytes is normally considerably weak, and their ability to achieve complete repair
through self-regulation after an injury is low. Preclinical studies have indicated that SC-EVs have
great application prospects in the treatment of myocardial infarction (MI). Adamiak et al. showed
that intravenous injection of induced pluripotent stem cell (iPSC)-derived EVs (iPSC-EVs) at 48 h after
MI in mice resulted in improved left ventricular function, reduced left ventricular mass, preservation
of viable myocardia and reduction in apoptosis in the infarct zone [15]. A similar phenomenon was
observed by Khan who reported that embryonic stem cell (ESC)-EX treatment of mouse MI promoted
cardiac blood flow recovery, alleviated myocardial fibrosis, reduced the infarct size, and significantly
recovered cardiac function [16]. SC-EVs encapsulate microRNA (miRNA), which reinforces cardiac
repair by facilitating angiogenesis. Wang et al. demonstrated that miR-210 enriched in BMSC-EVs
drives endothelial proliferation and migration in vitro, and it improves cardiac angiogenesis and
cardiac function after MI in mice by targeting Ephrin-A3 [17]. Zhu et al. showed that BMSC hypoxic
pretreatment increased the enrichment of angiogenesis-associated miRNAs in BMSC-EXs, which
promoted angiogenesis more effectively and improved the therapeutic effects of MI treatment in
mice [18].

Preclinical studies have indicated that BMSC-EXs could alleviate inflammatory responses in
cardiovascular diseases. Macrophages and neutrophils are activated and recruited to the injured site
after a MI and they release a large number of inflammatory factors that trigger a series of inflammatory
reactions. In mouse models of doxorubicin-induced dilated cardiomyopathy, intravenous injection of
BMSC-EXs improved cardiac function, inhibited cardiac dilation, alleviated cardiomyocyte apoptosis,
and reduced the expression of inflammatory factors in addition to the number of proinflammatory
macrophages at the infiltration site and in the blood [19].

2.3. Respiratory System

Potter et al. showed human BMSC-EVs could significantly reduce pulmonary vascular permeability
that was caused by hemorrhagic shock in mice via regulation of cytoskeletal signaling [20]. In
another study, Tang et al. showed that BMSC-MVs could promote the stability of the pulmonary
vascular structure and improve inflammation in the lungs by delivering angiopoietin-1 (Ang-1)
messenger RNAs (mRNAs) in mice. In their research, Tang et al. showed that unmodified BMSC-MVs,
but not Ang-1 mRNA-deficient MVs, were able to maintain the integrity of endotoxin-stimulated
microvascular endothelial cells in vitro, and they could reduce lung inflammation in a mouse model of
lipopolysaccharide (LPS)-induced acute lung injury [21]. Vascular endothelial growth factor (VEGF)
can mediate the therapeutic effects of EVs originating from human umbilical cord blood-derived MSCs
(hUCB-MSC-EVs) after neonatal hyperoxia-induced lung injury in rats. Ahn et al. demonstrated
that treatment with 20 µg of hUCB-MSC-EVs improved lung injury, protected blood vessels, and
maintained normal function of the alveoli in newborn rats, whereas VEGF-deficient MSC-MVs
functioned poorly [22].

Khatr et al. reported swine BMSC-EVs could disturb the agglutination reaction of various influenza
viruses, restrict influenza virus replication in lung epithelial cells in vitro, and alleviate virus-induced
apoptosis [23]. The authors suggested that intratracheal administration of BMSC-EVs reduced viral
shedding, inhibited lung influenza virus replication, and reduced the production of proinflammatory
cytokines in a pig influenza virus model [23]. Additionally, Chaubey demonstrated that intraperitoneal
injection of hucMSC-EXs could improve experimental bronchopulmonary dysplasia in mice [24].
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2.4. Liver

Preclinical studies have demonstrated that SC-EVs harbor the potential to treat liver diseases through
the delivery of various active molecules. Haga et al. demonstrated that BMSC-EVs protected against
hepatic ischemia/reperfusion injury (IRI) in a mouse model [25]. Similarly, Tamura et al. discovered
murine BMSC-EXs improved chemical-induced hepatocyte injury and promoted hepatocyte regeneration
in mice, which was mediated through immunosuppression and immune protection [26]. In addition,
Rigo et al. discovered human liver SC-EVs effectively reduced liver injury in an ex vivo normothermic
hypoxic rat liver perfusion model [27]. Normothermic machine perfusion is an emerging approach
for liver preservation before transplantation and it may induce hypoxic injury. Rigo and colleagues
indicated that liver SC-EVs reduced the level of alanine aminotransferase and lactate dehydrogenase in
perfusate samples, and they protected histological damage and apoptosis in damaged livers [27].

Liver disease often includes liver fibrosis. Our studies have revealed that hucMSC-EXs can relieve
liver fibrosis in mice by inactivating transforming growth factor (TGF)-β/Smad signaling, reducing
collagen deposition, and alleviating inflammation [28]. Qu et al. also suggested that BMSC-EXs
effectively deliver miRNA-181-5p to damaged hepatocyte sites and they prevented liver fibrosis in a
mouse model by activating autophagy [29].

Our study reported that hucMSC-EXs carrying glutathione peroxidase1 protect against liver failure
in mice by reducing inflammation and oxidative stress [30]. In a murine model of liver failure that
was induced by d-galactosamine/tumor necrosis factor-α (TNF-α), Haga et al. found that BMSC-EV
administration reduced liver damage and regulated the inflammatory response [31]. In this study,
imaging of fluorescence-labeled BMSC-EVs suggested that EVs preferentially migrate to the livers of
mice, and their density increases after chemically induced damage. They further demonstrated that
EVs from murine or human BMSCs significantly increased the survival rates (murine BMSC-MVs:
57.1%; human BMSC-MVs: 37.5%; Control: 0%) of mice with liver failure, which were superior to
those of BMSCs [31]. They demonstrated that Y-RNA-1 is enriched within BMSC-EVs and Y-RNA-1
mediates the protective effects of BMSC-EVs on hepatocyte apoptosis [31].

2.5. Diabetes

In a type 2 diabetes rat model, intravenous infusion of hucMSC-EXs decreased the level of blood
glucose and promoted glucose uptake, glycolysis, and glycogen storage [32]. Additionally, hucMSC-EX
treatment relieved the destroyed islets, activated the insulin-signaling pathway, and ameliorated
insulin resistance in the rats [32]. Similarly, Nie et al. found that hucMSC-EXs could protect islet
cells from hypoxia-induced injury in vitro, prolong islet cell survival, and improve its function, thus
increasing the efficiency of islet transplantation [33].

Shigemoto-Kuroda showed that MSC-EVs could delay the onset of type 1 diabetes (T1D) in mice
through immunoregulation. In their study, they found that intravenous injection of MSC-EVs alleviated
insulitis, protected insulin-producing cells in the islets, and increased the levels of insulin in plasma.
They further demonstrated that MSC-EVs suppressed the progress of T1D mainly by suppressing the
activation of antigen-presenting cells and the development of Th1 and Th17 cells [34]. In an in vitro
experiment, Favaro et al. found that human BMSC-MV treatment reduced the expressions of IFN-γ and
interleukin (IL)-17 and the number of Th17 cells in islet antigen-glutamic acid decarboxylase-pretreated
peripheral blood mononuclear cells from patients with T1D. BMSC-MV treatment also increased FoxP3
(+) regulatory T cells, thus suggesting that BMSC-MVs inhibited islet antigen-induced pro-inflammatory
responses [35].

Preclinical studies demonstrated that SC-EVs can relieve diabetic complications. Diabetic
nephropathy is a common and severe complication in patients with diabetes. In a rat model of
STZ-induced diabetic nephropathy, Jiang et al. showed that intravenous infusion of human urinary
stem cell-derived EXs (USC-EXs) decreased the level of urinary albumin, alleviated podocyte apoptosis,
and promoted glomerular endothelial cell proliferation [36]. Additionally, BMSC-EXs protected
damaged neurons and astrocytes in mice, which reduced diabetes-induced cognitive impairment [37].
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2.6. Eyes

Zhang et al. indicated that retinal inflammation induced by hyperglycemia in rats was reduced
after intravitreal injection of hucMSC-EXs, and human retinal endothelial cells displayed downregulated
expressions of IL-1β and IL-18 when they were co-cultured with hucMSC-EXs in vitro [38]. They
further found that hucMSC-EXs overexpressing miR-126 exhibited improved effects in the same
models by targeting high-mobility group box 1 and inhibiting the activity of NLRP3 inflammatory
bodies [38]. In addition, He et al. demonstrated that hucMSC-EXs could ameliorate murine retinal
laser injury. In their study, hucMSC-EX treatment improved the histological structures of choroidal
neovascularization after laser stimulation by downregulating VEGF-A expression, which resulted in
better visual function [39].

Preclinical studies have indicated that administration of MSC-EXs can protect against retinal
ischemia. In a mouse model of hyperoxic-induced retinopathy, intravitreal injection of MSC-EXs
partially preserved retinal vascular blood flow and improved the symptoms of retinal ischemia
without immunosuppression [40]. Corneal stromal cells (CSCs) are involved in the formation of a
functional corneal endothelium and they play a remarkable role in moderating the corneal endothelial
microenvironment [41]. Shen et al. indicated that AdMSC-EX treatment obviously promoted CSC
proliferation in vitro, inhibited its apoptosis, triggered higher expression of collagen and fibronectin,
and caused lower expression of matrix metalloproteinases [41]. Samaeekia et al. demonstrated that
human corneal MSC-derived EXs significantly increased the corneal wound healing rate (Ex vs. Control;
77.5% vs. 41.6%) in a murine model [42], providing a promising non-cellular therapeutic approach for
ocular surface injury.

2.7. Kidneys

Preclinical studies have demonstrated that SC-EVs have a favorable effect on kidney disease.
Yuan et al. revealed that EVs from human iPSC-derived MSCs (hiPSC-MSC-EVs) transported
specificity protein (SP1) to renal tubular epithelial cells, increased the expression of sphingosine kinase
1, and inhibited necroptosis, thus preventing renal IRI in rats [43]. In another murine model of IRI,
Ranghino et al. found that EVs derived from MSCs within the glomeruli (Gl-MSC-EVs) reduced
ischemic damage and facilitated the recovery of murine kidney function post-IRI by promoting tubular
epithelial cell proliferation [44].

Additionally, SC-EVs have the potential to ameliorate cisplatin-induced nephrotoxicity. A previous
study indicated that hucMSC-EXs transported 14-3-3ζ to renal tubular epithelial cells in vitro and
increased ATG16L expression [45]. The interaction of 14-3-3ζ and ATG16L promoted the localization of
ATG1L in autophagosome precursors and activated autophagy to prevent acute kidney injury induced
by cisplatin in rats [45]. In addition, Tomasoni et al. revealed that BMSC-EXs transported mRNAs of
the insulin-like growth factor 1 (IGF-1) receptor to renal tubular epithelial cells in vitro; these mRNAs
were then translated into IGF-1 receptor proteins, which could be utilized to increase IGF-1 receptor
sensitivity to local IGF-1 and treat cisplatin-induced kidney tubule injury [46].

Eirin et al. used a single intrarenal injection of autologous AdMSC-EVs to treat renal artery stenosis
and metabolic syndrome in pigs. In their study, AdMSC-EVs peaked in the stenotic kidney and were
taken up by renal tubular epithelial cells on the third day after injection [47]. AdMSC-EV treatment
improved renal blood flow, reduced the glomerular filtration rate, alleviated kidney inflammation, and
inhibited medullary oxygenation and fibrosis [47]. Eirin et al. discovered that interleukin (IL)-10 in
AdMSC-EVs mediates renal protection, as the effect was attenuated after treatment with IL-10–depleted
AdMSC-EVs [47]. In addition, BMSC-EVs delivering miR-let7c reduced renal fibrosis in mice by
inhibiting renal inflammation [48].

2.8. Skin

Skin, as the first line of defense by the body, is in direct contact with the external environment
and is easily damaged. Burns are a common type of trauma, which are currently mainly treated with
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supportive therapy, wound cleaning, and surgical skin grafting. Recent studies have revealed that
SC-EVs have great potential to enhance wound healing by delivering anti-inflammatory, antifibrotic,
and proangiogenic factors. Kim et al. noted that hUCB-MSC-EXs could be absorbed by mouse
skin and promote the synthesis of collagen I and elastin of human keratinocytes and human dermal
fibroblasts, which is essential for skin regeneration and is expected to be used in future cosmetics [49].
Our team discovered that hucMSC-EXs transported the Wnt4 protein to activate Wnt/β-catenin
signaling and facilitate angiogenesis in a rat model of deep second-degree burn injury, thus shortening
wound healing times [50]. We further found that hucMSCs pretreated with a small-molecule drug,
3,3′-diindolylmethane, displayed increasing exosomal Wnt11 autocrine signaling, cell activity, and
differentiation potential, eventually leading to a better repair effect in the same model [51].

In a mouse model of a skin defect, Fang et al. found that hucMSC-EXs contain miR-21, miR-23a,
miR-125b, and miR-145, which could synthetically antagonize the TGF-β/Smad2 signaling pathway
and inhibit the differentiation and accumulation of myofibroblasts, thus reducing scar formation and
promoting wound healing [52]. In another study, Chen et al. demonstrated that USC-EXs showed a
favorable therapeutic effect on diabetic skin ulcers through that was deleted in malignant brain tumors
1 (DMBT1) [53].

SC-EVs have the potential to alleviate skin aging. Oh et al. showed that human dermal fibroblasts
displayed an aging phenotype and increased the synthesis of bovine lactose and matrix degrading
enzymes (MMP-1/3) in vitro after ultraviolet irradiation, which was reversed after treatment with
hiPSC-EVs [54]. Oh et al. further demonstrated that hiPSC-EVs could reduce the secretion of collagen I
of dermal cells and promote cell proliferation and migration, which is essential for improving aging [54].

Additionally, Cho et al. discovered that human AdMSC-EXs could improve atopic dermatitis
from house dust mite antigens in a mouse model. In their study, AdMSC-EX treatment reduced the
number of eosinophils in the blood and inhibited the infiltration of mast cells and CD86+ and CD206+

cells in skin lesions. The mRNA expression of various inflammatory cytokines, such as IL-4, IL-23,
IL-31, and tumor necrosis factor-α (TNF-α), were also reduced in the injured skin [55].

2.9. Musculoskeletal System

Bone and cartilage damage is very common clinically, and SC-EVs have exhibited a good
therapeutic effect for the repair of bone and cartilage tissue in preclinical experiments. Qi et al. noted
that hiPSC-MSC-EXs promoted the expression of osteogenic-related genes in BMSCs and increased
cell activity and bone matrix secretion in vitro [56]. They further demonstrated that hiPSC-MSC-EXs
significantly stimulated bone regeneration and angiogenesis in a dose-dependent manner in a rat
model of critical-sized calvarial defects [56]. In another study, hiPSC-MSC-EXs prevented osteonecrosis
of the femoral head of rats through the promotion of angiogenesis [57]. Zhang et al. discovered that
hucMSC-EX transplantation dramatically affected bone healing in a rat model of femoral fracture with
a similar mechanism [58].

It is difficult for cartilage to self-heal. EV-mediated communications between the BMSCs and
juvenile chondrocytes play a crucial role in BMSC repair of cartilage, and the inhibition of EV transport
hinders the therapeutic effects of BMSCs [59]. BMSC-EV treated chondrocytes that isolated from
patients with osteoarthritis and these cells were stimulated to produce proteoglycan and collagen
II [60]. Otsuru et al. demonstrated that MSC-EVs promoted chondrocyte proliferation in vitro and
facilitated bone growth in a mouse model of osteogenesis imperfecta by delivering miRNAs, whereas
miRNA-deficient MSC-EVs functioned poorly [61]. Zhang et al. reported that EXs produced from
human ESC-derived MSCs (ESC-MSC-EXs) delivered CD73 to promote the proliferation and infiltration
of chondrocytes in vitro through the activation of AKT and ERK signaling [62]. Preclinical studies
showed that SC-EVs could improve inflammation and regulate cartilage homeostasis. Wang et al. noted
that ESC-MSC-EXs moderated murine osteoarthritis by equilibrating the synthesis and degradation of
cartilage extracellular matrices [63]. Wnt5a is closely involved in the progression of osteoarthritis and
is a promising therapeutic target. Mao et al. engineered MSC-EXs to carry miR-92a-3p to reduce the
expression of Wnt5a and enhance cartilage formation in mice [64].
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2.10. Other Diseases

SC-EVs have been considered to be a promising tool for the treatment of reproductive diseases.
Zhu et al. demonstrated that AdMSC-EXs encapsulate some proangiogenic miRNAs (miR-126, miR-130a
and miR-132) and antifibrotic miRNAs (miR-let7b and miR-let7c) that could induce angiogenesis
or decrease fibrosis of the corpus cavernosum in diabetic rats, respectively, thus restoring erectile
function [65]. Huang et al. showed that AdMSC-EXs improved ovary function in a mouse model
of premature ovarian insufficiency [66]. In their study, AdMSC-EX treatment promoted the activity
of human ovarian granule cells in vitro and induced the expression of human ovarian granule
cell-associated markers [66]. They also showed that AdMSC-EXs enhanced murine follicle numbers,
elevated hormone levels, and improved murine ovarian function by targeting Smad [66]. AdMSC-EXs
can exert a protective effect against obesity in mice. Zhao et al. found that AdMSC-EXs delivered
active STAT3 to macrophages, which induced macrophage polarization toward an M2 phenotype
in vitro [67]. They utilized a mouse model of diet-induced obesity and further demonstrated that
AdMSC-EX administration reduced murine inflammation, improved insulin sensitivity, and inhibited
hepatic steatosis, which resulted in reduced obesity [67].

In conclusion, various preclinical studies have shown that SC-EVs have great potential to stimulate
the repair and regeneration of various tissues such as the brain, nerves, heart, lungs, liver, eyes, kidneys,
skin, bone, and cartilage (Figure 1) alone and also by carrying active molecules (Table 1). With the
continuance of functional research and the expansion of clinical trials, SC-EVs have been shown to
have broad application prospects.
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Figure 1. Diseases treated with different types of stem cell-derived EVs. MSC, mesenchymal stem
cell; EVs, extracellular vesicles; EXs, exosomes; MVs, microvesicles; AdMSC, adipose-derived MSC;
BMSC, bone marrow-derived stem cells; hucMSC, human umbilical cord MSC; ESC, embryonic stem
cell; hUCB-MSC, human umbilical cord blood-derived MSC; hiPSC-MSC, human induced pluripotent
stem cell-derived MSC; USC, urine-derived stem cell; ESC-MSC, ESC-derived MSC. iPSC, induced
pluripotent stem cell.
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Table 1. Experimental model diseases treated with different types of stem cell-derived EVs. Cell proliferation, neovascularization, and nerve regeneration are key
phenomena in healing of damaged tissues. Stem cell-derived extracellular vesicles (SC-EVs) can participate in the repair of damage through stemness maintenance,
induction of regenerative phenotypes, apoptosis inhibition, and immune regulation. MSC, mesenchymal stem cell; EXs, exosomes; MVs, microvesicles; AdMSC,
adipose-derived MSC; BMSC, bone marrow-derived stem cells; hucMSC, human umbilical cord MSC; ESC, embryonic stem cell; EnMSC, endometrium-derived MSC;
hUCB-MSC, human umbilical cord blood-derived MSC; hiPSC-MSC, human induced pluripotent stem cell-derived MSC; ESC-MSC, ESC-derived MSC; NSC, neural
stem cell; i.v., intravenous injections; s.c., subcutaneous injection; i.p., intraperitoneal injection; bw, body weight.

Indication Species/Tissue EV Source/Injection
Method Dose Main Outcome in Target

Disease/Injured Tissue Mechanism Reference

Neurological system

Traumatic brain injury
(TBI) Rat

Human
AdMSC-EXs/intravenous

injections (i.v.)
100 µg Recovery of motor behavior function

and cortical brain injury↓ Delivering MALAT1 [6]

TBI Mouse Human BMSC-EXs/i.v. 30 µg Suppression of neuroinflammation,
improvement of cognitive function Unknown [7]

Stroke Rat Rat BMSC-EXs/i.v. 100 µg Improved functional recovery, neurite
remodeling↑

Neurogenesis↑,
angiogenesis↑ [8]

Stroke Pig NSC-EVs/i.v. Unknown Improvement of neural tissue
preservation and functional levels Unknown [9]

Alzheimer’s disease Mouse
EXs from

hypoxia-stimulated
BMSCs/i.v.

150 µg Learning and memory capabilities↑

Restoration of synaptic
dysfunction and regulation
of inflammatory responses

via miR-21

[11]

Spinal cord injury (SCI) Rat BMSC-EXs/i.v. 200 µg

Angiogenesis↑, neuronal cell apoptosis↓,
glial scar formation↓, lesion size↓,

inflammation↓, axonal regeneration↑,
improvement of functional behavioral

recovery effects

Activation of A1 neurotoxic
reactive astrocytes↓ [12]

SCI Rat Human BMSC-EVs/i.v. 1 × 109 particles
Inflammatory response↓, improved

motor function, enhanced mechanical
sensitivity threshold

Unknown [13]

SCI Mouse hucMSC-EXs/i.v. 20 µg and 200 µg Improving functional recovery Inflammation↓ [14]
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Table 1. Cont.

Indication Species/Tissue EV Source/Injection
Method Dose Main Outcome in Target

Disease/Injured Tissue Mechanism Reference

Cardiovascular system

Myocardial infarction
(MI) Mouse iPSC-EVs/i.v Unknown

Improvement of left ventricular function,
left ventricular mass↓, preservation of

viable myocardium

Delivery of ESC specific
miR-294 [15]

MI Mouse
Mouse

ESC-EXs/intramyocardial
injection

Two separate
10 µL injections

Neovascularization↑, cardiomyocyte
survival↑, fibrosis post infarction↓,
resurgence of cardiac proliferative

response

Delivering miR-294 [16]

MI Mouse Mouse BMSC-EVs/i.v. Unknown Improving cardiac function,
angiogenesis↑ Delivering miR-210 [17]

MI Mouse

EXs derived from
hypoxia-stimulated

BMSC/intramyocardial
injection

EXs derived from
2 × 107 MSCs, in

30 µL PBS

Survival↑, scar size↓, better cardiac
functions recovery

miR-210 and neutral
sphingomyelinase 2

activities↑
[18]

Dilated
cardiomyopathy Mouse Mouse BMSC-EXs/i.v. 300 µg

Improving cardiac function, attenuating
cardiac dilation, cardiomyocytes
apoptosis↓, inflammatory cells

infiltration↓

Regulating the polarization
of the macrophage [19]

Respiratory system

Lung injury Mouse Human BMSC-EVs/i.v. 30 µg Lung vascular permeability↓ Modulating cytoskeletal
signaling [20]

Acute lung injury Mouse Human BMSC-MVs Unknown Histological injury↓, pulmonary
capillary permeability↓

Delivering Angiopoietin-1
mRNA and immune

regulation
[21]

Neonatal hyperoxic
lung injury Rat hUCB-MSC-EVs/intratracheal

injection 20 µg

Impaired alveolarization and
angiogenesis↓, cell death↓, activated

macrophages↓, proinflammatory
cytokines↓

Transfer of VEGF protein [22]
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Table 1. Cont.

Indication Species/Tissue EV Source/Injection
Method Dose Main Outcome in Target

Disease/Injured Tissue Mechanism Reference

Acute respiratory
infection Pig

Swine
BMSC-EVs/intratracheal

injection
80 µg/kg bw

The hemagglutination activity of
viruses↓, virus shedding and
replication↓, proinflammatory

cytokines↓, influenza virus-induced
lung lesions↓

Transfer of RNAs [23]

Bronchopulmonary
dysplasia Mouse hucMSC-EXs/i.p.

4.5× 108 and
2.88× 107
particles

Improvement in pathology, pulmonary
inflammation↓, alveolar-capillary
leakage↓, chord length↓, alveolar

simplification↓

Transfer of TSG-6 protein [24]

Liver

Hepatic
ischemia/reperfusion

injury
Mouse Mouse BMSC-EVs/i.v. 2 × 1010 particles

Tissue necrosis↓, apoptotic cells↓, serum
aminotransferase↓, NACHT mRNA↑,

LRR mRNA↑, PYD domains-containing
protein 12 mRNA↑, chemokine ligand 1

mRNA↑, mRNA expression of
inflammatory cytokines↓

Modulation of
inflammatory response [25]

Liver injury Mouse Mouse BMSC-EVs/i.v. 10 µg

ALT↓, liver necrotic areas↓, apoptotic
cells↓, cell proliferation↑, the mRNA

expression of anti-inflammatory
cytokines↑, the number of Treg cells↑

Immunosuppression and
immune protection [26]

Liver fibrosis Mouse hucMSC-EXs/intrahepatic
injection 250 µg

Surface fibrous capsules↓, textures soft↑,
inflammation and collagen deposition↓,

serum aspartate aminotransferase
activity↑, collagen types I and III, TGF-β
and phosphorylation Smad2 expression↓

Inhibiting EMT and
protecting hepatocytes [28]

Liver fibrosis Mouse
miRNA-181-5p-overexpressing
AdMSC-EXs/intrasplenic

injection
40 µg Collagen I, vimentin, α-SMA and

fibronectin expression↓
Transfer of miRNA-181-5p
and autophagy activation [29]

Liver failure Mouse hucMSC-EXs/i.v. 16 mg/kg bw Rescuing liver failure, oxidative stress
and apoptosis↓

Transfer of glutathione
peroxidase1 [30]

Liver failure Mouse Mouse and human
BMSC-EVs/i.v. or i.p.

2 × 108 to 2 × 1010
particles

Hepatic injury↓, modulating cytokine
expression, survival↑

Transfer of noncoding RNA
Y-RNA-1 [31]
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Table 1. Cont.

Indication Species/Tissue EV Source/Injection
Method Dose Main Outcome in Target

Disease/Injured Tissue Mechanism Reference

Diabetes

Type 2 diabetes Ra hucMSC-EXs/i.v. 10 mg/kg bw Blood glucose↓; glucose uptake,
glycolysis and glycogen storage↑

Reversing insulin resistance
and protecting islets [32]

Type 1 diabetes Mouse Human BMSC-derived
EVs/i.v. 30 µg Inactivation of antigen-presenting cells,

development of Th1 and Th17 cells↓ Immunoregulation [34]

Eyes

Retinal laser injury Mouse hucMSC-EXs 50, 100, and
150 ng

Improving the histological structures of
choroidal neovascularization

Downregulation of
VEGF-A. [39]

Oxygen-induced
retinopathy Mouse

Human
BMSC-EXs/intravitreal

injection
20 µg

Preserving retinal vascular flow and
improving the symptoms of retinal

ischemia
Unknown [40]

Corneal epithelial
wound healing Mouse

Human Corneal
Mesenchymal Stromal

Cell-derived EXs
5 × 106 particles

Increasing the corneal wound healing
rate Unknown [42]

Kidneys

Diabetic nephropathy Rat Human urinary stem
cell-derived EXs/i.v. 65 mg/kg bw Urinary albumin↓, preventing kidney

injury

Inhibition of podocyte
apoptosis and promotion of
glomerular endothelial cell

proliferation

[36]

Renal
ischemia/reperfusion

injury
Rat hiPSC-MSC-EVs/i.v. 1 × 1012 particles

Histological score↓, serum levels of
creatinineand urea nitrogen↓, oxidative

stress↓

Exosomal SP1 activating
the expression of SK1 and

the generation of S1P
[43]

Cisplatin-induced acute
kidney injury Rat hucMSC-EVs/intrarenal

injection 200 µg/kidney
Histological injury↓, apoptosis↓,

proliferation↑, serum levels of creatinine
and urea nitrogen↓

Exosomal 14-3-3zeta
interacting with ATG16L
and autophagy activation

[45]

Renal fibrosis Pig
Autologous

AdMSC-EVs/intrarenal
injection

1 × 1010 particles

Renal inflammation↓, medullary
oxygenation and fibrosis↓, restoring

renal blood flow and glomerular
filtration rate

Transfer of IL-10 protein [47]
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Table 1. Cont.

Indication Species/Tissue EV Source/Injection
Method Dose Main Outcome in Target

Disease/Injured Tissue Mechanism Reference

Skin

Rejuvenation of skin Human skin
tissues hUCB-MSC-EXs/coculture 1 × 109

particles/mL
EXs approaching the epidermis,

expressions of Collagen I and Elastin↑ Unknown [49]

Wound healing Rat hucMSC-EXs/s.c. 200 µg
Re-epithelialization↑, expression of

CK19, PCNA, collagen I (compared to
collagen III)↑

Transfer of Wnt4 and
Wnt11, and activation of
Wnt/β-catenin and AKT

pathway

[50,51]

Wound healing Mouse hucMSC-EXs/s.c. 100 µg/mL Scar formation and myofibroblast
accumulation↓

Transfer of specific
microRNAs (miR-21, -23a,

-125b, and -145) and
suppression of

TGF-β/Smad2 pathway

[52]

Chronic non-healing
wounds Mouse Human urinary stem

cell-derived EXs/s.c. 200µg Soft tissue wound healing↑ Transfer of DMBT1 protein
and angiogenesis [53]

Atopic dermatitis Mouse Human AdMSC-EXs/i.v.
or s.c.

0.14 µg, 1.4 µg,
and 10 µg

Clinical score↓, serum IgE↓, the number
of eosinophils in blood↓, the infiltration
of mast cells, CD86+, and CD206+ cells

in skin lesions↓, expression of
inflammatory cytokines↓

Unknown [55]

Musculoskeletal
system

Osteoporosis Rat hiPSC-MSC-EXs/i.v. 1 × 1010 or
1 × 109 particles

Preventing bone loss, microvessel
density in the femoral head↑

Activation of the PI3K/Akt
signaling pathway [56]

Osteonecrosis Rat hiPSC-MSC-EXs/intracranial
implantation 200 µg Bone regeneration↑ Angiogenesis and

osteogenesis↑ [57]

Stabilized fracture Rat hucMSC-EXs/injection
near the fracture site 100 µg/mL Angiogenesis and bone healing↑ HIF-1alpha-mediated

promotion of angiogenesis [58]

Osteogenesis
imperfecta Mouse Murine BMSC-EVs/i.v. 300 uL Facilitating bone growth Delivery of miRNAs [61]

Osteochondral defect Rat
Human

ESC-MSC-EXs/intra-articular
injection

100 µg
Cellular proliferation and infiltration↑,

matrix synthesis↑, displaying a
regenerative immune phenotype

Exosomal CD73 mediating
adenosine activation of
AKT and ERK signaling

[62]
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Table 1. Cont.

Indication Species/Tissue EV Source/Injection
Method Dose Main Outcome in Target

Disease/Injured Tissue Mechanism Reference

Osteoarthritis Mouse
Human

ESC-MSC-EXs/intra-articular
injection

5 µL Cartilage destruction and matrix
degradation↓

Balance of synthesis and
degradation of cartilage

extracellular matrix
[63]

Osteoarthritis Mouse miR-92a-3p-overexpressing
BMSC-EXs 15 µL (500 µg/mL) Chondrogenesis↑, cartilage

degradation↓ Targeting Wnt5A [64]

Other diseases

Erectile dysfunction Rat
Rat

AdMSC-EXs/orthotopic
injection

10 and 100 µg Promoting angiogenesis and decreasing
fibrosis in the corpus cavernosum

Delivery of proangiogenic
miRNAs and antifibrotic

miRNAs
[65]

Premature ovarian
insufficiency Mouse Human AdMSC-EXs

An approximate
amount produced

by 1 × 106

AdMSCs

Enhancing follicle numbers, elevating
hormone levels, and improving ovarian

function

Inhibition of Smad
expression [66]

Obesity Mouse Mouse AdMSC-EXs/i.p. 30 µg Reducing obesity and inflammation
Improving insulin

sensitivity and inhibiting
hepatic steatosis

[67]
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3. Mechanisms

Some preclinical studies have confirmed that SC-EVs have promise in the field of regenerative
medicine. However, the underlying molecular mechanism remains unclear. Exploration of SC-EV
involvement in injury repair can contribute to adjustment of SC-EV utilization strategies and accelerate
the clinical transformation of SC-EVs. These preclinical investigations have reported that SC-EVs could
contribute to the repair of tissue damage through stemness maintenance, induction of regenerative
phenotypes, apoptosis inhibition, and immune regulation.

3.1. Stemness Maintenance

EVs, which are crucial paracrine components, may induce phenotypic changes in recipient cells
and establish functional links between stem cells and recipient tissues under various physiological
or pathological conditions. Proliferation, self-renewal, and differentiation of endogenous stem
cells are essential for tissue regeneration. SC-EVs encapsulate stem-associated transcription factor
mRNAs, including Nanog, Oct4, HoxB4, and Rex-1, which play crucial roles in maintaining stem cell
characteristics [68]. In addition, SC-EVs delivering stem cell specific effector molecules containing
Wnt3 [68], Hedgehog [69], and others, regulate proliferation, self-renewal, and differentiation of
endogenous stem cells.

3.2. Induction of Regenerative Phenotypes

Cell proliferation, neovascularization, and nerve regeneration are key phenomena in the healing
of damaged tissues. Preclinical studies have demonstrated that SC-EVs can induce regenerative
phenotypes to participate in the repair of damaged tissues.

3.2.1. Cell Proliferation

Khan et al. showed that ESC-EXs could protect cardiac progenitor cells and promote cell
proliferation in a murine model of MI by delivering miR-294, which eventually led to improved
myocardial function [16]. Ranghino et al. indicated that Gl-MSC-EVs prevented IRI in mice by
stimulating tubular epithelial cell proliferation [44]. SC-EVs can enhance cell proliferation by carrying
proteins to target cells. McBride et al. showed that Wnt3a transported by BMSC-EVs binds to LRP6
receptors to promote dermal fibroblast proliferation in vitro [70]. Similarly, ESC-MSC-EXs can deliver
CD73 proteins to activate AKT and ERK signals and improve chondrocyte vitality in vitro [62].

3.2.2. Neovascularization

Mathiyalagan showed that EXs derived from human CD34+ MSCs that transport miR-126-3p to
vascular endothelial cells regulated the expression of VEGF, angiopoietin 1/2, matrix metalloproteinases,
and thrombospondin 1 in vitro. Additionally, they indicated that the MSC-EXs increased vascular
density and improved hind limb motor function in a murine hind limb ischemia-reperfusion model [71].
In another study, Chen et al. indicated that urine-derived SC-EXs carried the proangiogenic protein
DMBT1, which promoted angiogenesis and accelerated wound healing in a diabetic mouse model [53].

3.2.3. Nerve Regeneration

BMSC-EXs have been shown to exert improved cognitive and sensorimotor function by promoting
endogenous neurogenesis in a rat model of TBI [72]. Mead et al. found that intravitreal injection of
BMSC-EXs promoted visual function recovery by facilitating retinal ganglion cell survival and the
regeneration of axons via miRNA transfer in a rat optic nerve crush model [73].

3.3. Apoptosis Inhibition

SC-EVs can protect against cell apoptosis that is induced by several factors and can reduce tissue
damage. Yao et al. revealed that hucMSC-EVs transported mitochondria-located antioxidant enzymes



Cells 2020, 9, 707 15 of 28

and manganese superoxide dismutase, which inhibited hepatocyte apoptosis induced by oxidative
stress and protected against hepatic IRI in rats [74]. EVs produced from amniotic fluid stem cells could
capture excess VEGF through VEGFR1 on their surface to protect against VEGF-induced glomerular
endothelial cell apoptosis in mice [75].

3.4. Immune Regulation

Preclinical studies have confirmed that SC-EVs can wield immunomodulatory effects in
the treatment of various diseases by transporting noncoding RNAs, cytokines, and other
immunomodulatory molecules. Fujii et al. showed that human BMSC-EVs reduced the ratio of
CD62L-CD44+/CS62+CD44-T cells in graft-versus-host diseased mice and prolonged their survival
by transporting miR-125a-3p [76]. Li et al. showed that hucMSC-EXs reduced inflammation in
burned rats by inhibiting the expression of Toll-like receptor 4 in macrophages [77]. In another study,
hucMSCs pretreated with IL-1β produced the EVs that selectively encapsulated miR-146a to induce
macrophage polarization toward an M2 phenotype, thus promoting survival in cecal ligation and
puncture-induced septic mice [78]. Fetal liver MSC-EXs transport latency-associated peptides, TGF-β,
and thrombospondin 1 to activate TGF-β/Smad2/3 signaling in natural killer (NK) cells and they
also inhibit NK cell cytotoxicity in vitro, which implies a potential for the treatment of autoimmune
diseases [79]. In a rat model of hepatic IRI, hucMSC-EV treatment protected against liver injury by
reducing neutrophil inflammatory responses and oxidative stress [74].

In conclusion, SC-EVs are able to repair damaged organs and tissues by promoting recipient cell
proliferation, inhibiting apoptosis, facilitating angiogenesis and nerve regeneration, and maintaining
stem cell phenotypes (Figure 2). EVs engineered to deliver exogenous biological function molecules
and targeting molecules can improve therapeutic efficiency through synergistic effects.

[H]
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Figure 2. Molecular mechanisms of stem cell-derived EVs in the treatment of disease. Extracellular
vesicles (EVs) mainly include exosomes and microvesicles. Exosomes originate from multivesicular
bodies (MVB) and microvesicles are formed through cell membrane budding. Stem cell-derived EVs
can repair damaged organs and tissues by maintaining stem cell phenotypes, promoting recipient cell
proliferation, inhibiting apoptosis, and promoting angiogenesis and nerve regeneration.

4. Stem Cell Culture for Extracellular Vesicle Production

The contents and functions of EVs produced by diverse stem cells vary widely. Some EVs secreted
by the same type of stem cells under various culture conditions differ in content and function. The
selection of appropriate parental stem cells that are cultured under a specific condition for large-scale
production of safer and more effective EVs is essential for the development of new treatments for
diseases in the future.

4.1. Stem Cell Selection

Stem cells can be successfully isolated from bone marrow, fat, umbilical cords, embryos, placentas,
amniotic fluid, blood, livers, skin, and other tissues. The first four types of stem cells listed here based
on their origins are currently the most widely studied.

BMSCs exert many biological functions, and their earliest application was for leukemia
treatment [80]. Preclinical studies have confirmed that BMSC-EVs can be used to treat various
diseases, as expressed in this review. However, BMSC acquirement is difficult and invasive, and
BMSCs have poor ability for in vitro expansion, which is not conducive to large-scale production of EVs
for clinical use. AdMSCs are easy to obtain and proliferate, and autologous AdMSC transplantation
can prevent immune rejection and provide beneficial effects. However, AdMSCs carry the risk of
tumor promotion [81]. Therefore, clarifying the effects of AdMSC-EVs on tumors before attempts at
clinical application is essential. ESCs are difficult to obtain and utilize for ethical reasons, and they
contain the risk of tumorigenesis in the body, which also limits their clinical applications. hucMSCs are
easy to acquire and are not associated with ethical controversies. They have strong expansion ability
and low immunogenicity. Preclinical studies have reported that hucMSC-EVs have good therapeutic
effects in tissue repair and regeneration, as expressed in this review, and hucMSCs have an inhibitory
effect on some tumors [81,82]. Currently, commercial cell banks that collect and store hucMSCs are
emerging. These advantages enable large-scale production of SC-EVs for clinical applications and iPSC
culture makes large-scale production of stem cells easier. Numerous preclinical investigations have
demonstrated that iPSC-EVs have similar therapeutic effects to iPSCs in repairing damaged tissue.
Therefore, iPSC culture is an alternative for the large-scale production of EVs.

4.2. Cell Culture

Different culture conditions result in different functions and phenotypes of stem cells, which then
affect the content and function of EVs. Studies have suggested that various conditions, including
cell density, cell phenotype, hypoxia, drug preconditioning, inflammatory stimuli, and 3D culture,
influence the properties and activities of stem cells (Figure 3).
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4.2.1. Cell Density

Seeding density may affect EV secretion. EVs are typically collected from culture media at
60%–90% cell confluence. Stem cells cultured at high density demonstrate contact inhibition and are
induced to enter a resting state [83]. Low-density inoculation (1.5 cells/cm2) may result in faster stem
cell proliferation [84]. Low-density cultures may activate EV-mediated paracrine signaling of stem
cells and promote EV secretion [85].

4.2.2. Cell Phenotypes

Cell phenotypes affect the components and functions of EVs. Stem cells alter phenotypes and
functions as the in vitro expansion time increases. Early MSCs have the potential for osteogenic and
adipogenic differentiation, and the differentiation potential tilts toward adipogenesis as the in vitro
culture is extended [85]. MSCs secrete less EVs after aging [85]. Kulkarni et al. revealed that MVs
produced from young BMSCs are rich in autophagy-related gene mRNAs, which better support
hematopoietic stem cell transplantation in mice compared to MVs from aging BMSCs [86]. Our
unpublished research has indicated that resveratrol treatment improves the senescence phenotype of
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hucMSCs and increases the differentiation potentials. EXs originating from hucMSCs pretreated
with resveratrol had better healing effects on murine lung cancer metastasis than EXs from
untreated hucMSCs.

Therefore, improving culture conditions and ensuring stem cells remain as young as possible are
necessary, and EVs secreted by younger cells may have superior therapeutic effects on certain diseases.
In a different study, Wang et al. noted that EXs produced from MSCs in the late stages of osteogenic
differentiation, but not in the early stages, delivered osteogenic differentiation-associated miRNAs to
simulate homotypic cell osteogenic differentiation and mineralization in vitro [87]. This provided the
hypothesis that stem cells can be induced into a specific tissue phenotype in vitro for collection of their
EVs that can be used in corresponding tissue damage repair.

4.2.3. Hypoxia Culture

Cui et al. revealed that EXs produced from hypoxia-preconditioned mouse BMSCs
exhibited considerably improved learning and memory capabilities and reduced plaque deposition,
neuroinflammation, and Aβ expression in an AD mouse model [11]. Zhu et al. showed that hypoxia
(0.5% O2) stimulated exosomal mRNA-210 secretion through nSMase2 in mouse BMSCs to promote
angiogenesis and improve cardiac function in a mouse model of MI [18].

4.2.4. Drug Preconditioning and Inflammatory Stimuli

Ruan et al. revealed that Suxiao Jiuxin Pill, a type of traditional Chinese medicine, could
promote mouse BMSC-EV secretion [88]. Our study revealed that 3,3′-Diindolylmethane-stimulated
hucMSCs secreted Wnt11-overexpressing EVs that could be used to improve wound healing in rats [51].
In addition, Kulkarni et al. noted that aging BMSCs treated with AKT signal inhibitor LY294002 reduced
exosomal miR-17 and miR-34a, and both downregulated autophagy-associated mRNA expression
in recipient cells [86]. LY294002 treatment increased autophagy-associated genes in BMSC-MVs [86].
MVs from aging BMSCs that were pretreated with LY294002 were more powerful than MVs from
young BMSCs in supporting hematopoietic stem transplantation in mice [86]. In another study, EVs
from human BMSCs activated by LPS or ConA displayed enhanced anti-inflammatory ability and
reduced the release of TNF-α and IFN-γ from spleen cells in vitro [89].

4.2.5. Three-Dimensional Culture

Cell culture configurations for producing EVs include both 2D and 3D systems. The 2D system
uses conventional polystyrene flasks for the adhesion growth of EV-producing cells and the 3D system
for EV production mainly includes a scaffold-free bioreactor and scaffold-based approach [90]. The 3D
system can bestow EV production with higher yields, more natural features, and better therapeutic
effects compared to the 2D system [90].

Bioreactors are typically used for large-scale production of EVs. In these devices, EV-producing
cells were sown into cylindrical hollow fibers that provided a high surface area that was available
to billions of cells. These cells were seeded into the bioreactor and could produce 4-fold more EVs
than cells cultured in a traditional 2D flask [91]. EXs from stem cells cultured in a bioreactor protected
human dopaminergic neurons from apoptosis in vitro, which was not observed in EXs collected from
the 2D culture [92]. In a rat model of experimental TBI, EXs from BMSCs cultured in 3D scaffolds
exhibited greater spatial learning ability than EVs harvested from 2D conditions [93].

5. Bioactive Molecule Delivery

EVs are nanolevel active ingredients that are secreted by cells. These cells actively release the
vesicles into the internal environment to participate in intercellular substance transport and signal
transduction. Preclinical trials have shown that EVs are highly biocompatible and safe and can cross the
blood–brain barrier [8]. EVs engineered to load bioactive molecules can prolong the plasma circulation
half-life of active ingredients. These advantages make EV an ideal drug delivery tool.
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5.1. Biodistribution of EVs

The biodistribution of EVs affects their efficiency in the delivery of therapeutic entities as part
of the treatment of various diseases. Abello et al. analyzed the biodistribution of EXs by labeling
hucMSC-EXs with gadolinium lipid (GdL-EXs) or a near-infrared dye; i.e., 1,1′-dioctadecyl-3,3,3′,3′-
tetramethylindotricarbocyanine iodide (DiR-EXs), in tumor bearing mice [94]. In this study, they
found that GdL-EXs mainly accumulated in the liver (38%), tumor (18%) and kidney (8%) at
24 h after intravenous injection, and DiR-EXs mostly appeared in the liver, spleen, and tumor
at 48 h after intravenous administration [94]. DiR-EXs displayed longer circulation times than
PEGylated nanoparticles [94]. In another study, Wiklander et al. observed a similar distribution where
DiR-labeled EVs mainly appeared in the liver and spleen in mouse tissue at 24 h after intravenous
injection [95]. They further indicated that EV dose and the approach of the injection influenced
the EV biodistribution [95]. Intravenous infusion of lower EV doses demonstrated relatively higher
liver accumulation in comparison with higher doses [95]. Compared to intravenous infusion of
EVs, subcutaneous and intraperitoneal injection facilitated EV accumulation in the pancreas and
gastrointestinal tract, but inhibited EV distribution in the liver and spleen [95]. This suggested that the
flexible choice of EV injection doses and injection methods will benefit therapeutic studies.

5.2. Delivery of Therapeutic Molecules

Various preclinical studies have reported that EVs can transport nucleic acids, proteins, oncolytic
viruses, and small-molecule drugs to treat and target various diseases. These substances have great
application prospects (Figure 4).
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Figure 4. Engineering EVs. Extracellular vesicles (EVs) can deliver therapeutic entities, including
proteins, RNAs, oncolytic viruses and small-molecule drugs, with endogenous loading during EV
biogenesis or exogenous loading after EV isolation. The engineered EVs can express targeting peptides
or therapeutic proteins on their surfaces and bind aptamers or therapeutic RNAs through RNA-binding
proteins. Additionally, EVs can encapsulate these therapeutic entities and protect them from degradation
or failure.
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5.2.1. Nucleic Acids

mRNAs, miRNAs, small interfering RNAs (siRNAs), and circular RNAs can be transported in
EVs. In 2007, Valadi et al. first noted that EXs were involved in the exchange of mRNAs and miRNAs
between cells [96]. Even when recipient cells are derived from other species, mRNAs and miRNAs can
function in their new positions through EX transport [96]. This suggests that EVs have the potential to
participate in a drug delivery system.

Rat BMSC-EXs loaded with miRNA-133b can be used for neurological recovery after stroke in
rats [97]. In another study, iPSC-EXs delivering siRNA inhibited intracellular adhesion molecule-1
expression and reduced neutrophil adhesion in lung microvascular endothelial cells in vitro [98].

Kojima et al. employed several devices that enable efficient and customizable production of
designer EXs in engineered cells [99]. These devices in EX-originated cells enhanced EX production
through combined expression of STEAP3, syndecan-4, and a fragment of L-aspartate oxidase,
they promoted specific mRNA packaging through L7Ae and CD63 coexpression and increased
the delivery rate of mRNA into target cells through the expression of constitutively active mutant
S368A of connection [99]. Kojima et al. combined these devices with a targeting module; i.e.,
RVG-Lamp2b, to treat a mouse model of Parkinson’s disease, resulting in attenuated neurotoxicity and
neuroinflammation [99].

5.2.2. Proteins

It was documented earlier that EXs derived from 14-3-3ζ-overexpressing hucMSCs could
deliver 14-3-3ζ proteins to protect against cisplatin-induced nephrotoxicity in rats [45]. In addition,
hucMSC-EXs were used for transporting Wnt11 proteins to promote wound healing in rats [51].

EVs could be modified to overexpress CD47, which provided a “do not eat me” signal, and the
activation of this signal causes EXs to escape phagocytosis [100], thus increasing the residence time
of EVs in the body. In other research, EXs carrying TAT peptides were used to target nuclei and EXs
mediating Arg-Gly-Asp (RDG) peptides operating to induce cancer cell apoptosis in mice [101].

5.2.3. Small-Molecule Drugs

Sun et al. found that EVs had good drug-loading capability. They showed that EVs and
curcumin mixtures were more effective than curcumin in improving inflammation in a mouse model of
LPS-induced septic shock [102]. An underlying limiting factor in EV drug delivery is the drug-loading
efficiency. Stem cells are more tolerant of chemotherapeutic drugs than other cells due to EV-mediated
drug effluxes. Using this mechanism, MSCs were exposed to high concentrations of paclitaxel and
their EVs were harvested, which encapsulated considerable amounts of paclitaxel [103]. In another
study, hucMSC-EVs loaded with vincristine provided more cytotoxicity than the free drug [104].
Perteghella et al. used silk/curcumin to create nanoparticles with an average diameter of 100 nm
and incubated MSCs with those nanoparticles [105]. MSCs could then produce and release EVs
that encapsulated the silk/curcumin nanoparticles. This strategy can be used for the delivery of
curcumin [105]. In addition, Tian et al. used engineered EXs that expressed alpha integrin-specific
iRGD to load doxorubicin via electroporation and they demonstrated that doxorubicin was specifically
delivered to tumor tissues, which resulted in the inhibition of tumor growth in mice [106].

5.2.4. Oncolytic Viruses

EVs can be utilized as vectors to deliver oncolytic viruses to tumor sites [107]. Oncolytic viruses are
promising in the treatment of various cancers because they selectively infect cancer cells, synchronously
stimulate the immune response and attract more immune cells to continue to kill residual cancer
cells [108–110]. However, delivery of oncolytic viruses to tumor sites remains a major challenge.
Garofalo et al. demonstrated that oncolytic viruses could be delivered by tumor-derived EVs (T-EVs),
which increases their antitumor properties and displays a selective tropism for any tumor sites,
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independent of the tumor type originating the EVs [110]. They further found that tumor tropism
is achieved when oncolytic viruses are loaded inside T-EVs that are injected intravenously, but not
when administrated intraperitoneally [111]. In addition, they indicated that T-EVs delivering oncolytic
viruses did not harm other body tissues and displayed enhanced anti-tumor ability after the process of
combined loading with paclitaxel in mice [112]. However, T-EVs are not as desirable as SC-EVs in the
treatment of various diseases due to their production limitation and tumor-promoting properties. We
speculate that SC-EVs can also deliver oncolytic viruses to fight against tumors. It has been reported
that stem cells display tropism for the tumor sites and could transfer oncolytic viruses to tumor cells
specifically [113,114]. Sonabend et al. found that MSCs could deliver a conditionally replicating
oncolytic adenovirus to murine gliomas [113]. In another study, Hoyos et al. used MSCs to transfer
oncolytic and apoptotic adenoviruses in a non-small-cell lung cancer mouse model [114]. They found
that MSCs traveled to lung tumors replicated and released both viruses to the tumor microenvironment,
displayed enhanced antitumor activity, and prolonged survival of tumor-bearing mice [114]. SC-EVs
have more advantages than stem cells and they also display tropism for tumor sites [94]. Tests of their
virus-delivery ability is promising in the field of oncotherapy.

6. Conclusions and Prospects

SC-EV treatment has made great progress in the field of regenerative medicine, and a large number
of preclinical experiments have laid a solid foundation for its clinical transformation application.
Selecting suitable EV-producing cells, optimizing cell culture conditions and separation techniques,
and using EVs to transport biomolecules or small-molecule drugs can improve their efficacy toward
diverse indications and diseases.

However, many hurdles remain for clinical applications of EVs. Choosing a type of appropriate
EV-producing cells is of utmost importance. Current research mainly focuses on the treatment of a
limited number of diseases in the field of regenerative medicine and oncology by using SC-EVs. The
functions of SC-EVs must be tested for many other diseases. Furthermore, research on the functions of
EVs in other cells such as epithelial, endothelial progenitor, and red blood cells must be accelerated
and expanded.

To achieve higher quality EVs, EV-producing conditions must be optimized, including the
appropriate selection of culture medium, cell seeding density, cell phenotype, culture time,
media-collecting time, separation technology, and other parameters of EV production for further
research into the various therapeutic purposes of EVs.

The drug-loading potential of SC-EVs must be further explored. Currently, genome-editing
techniques facilitate EV engineering with diverse content and functions but may introduce uncertain
mutations in EV-producing cells, which in turn affects the content and functions of corresponding EVs.
Therefore, improving the safety and operability of genome-editing techniques, reducing off-target
efficiency, and ultimately accurately producing EVs with specific functions and specific components
are necessary.

Improving the drug-loading efficiency of EV through another method is crucial. Exogenous
drugs are currently loaded into EVs mainly through electroporation but the efficiency of this technique
remains unsatisfactory. Although drug-loading efficiency is not necessarily proportional to therapeutic
efficiency, balancing these two types of efficiency is advisable. Therefore, the optimal concentrations of
drugs with the lowest side effects to achieve the highest therapeutic efficiency may be preferable. For
this, we still must improve drug-loading efficiency.

Quantitative techniques for EV efficacy remain to be developed and improved. As a heterogeneous
group, EVs are susceptible to external factors such as culture, isolation, and storage. Therefore, methods
for quantifying the efficacy of EVs must be considered in the future.

The advantages of SC-EVs and their excellent application potential are driving the advancement
of regenerative medicine. The future development goal is to optimize EV-producing conditions,
improve production technology, improve yield and quality, quantify their therapeutic efficacy, engineer
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operations to endow EVs with more therapeutic functions, and promote their clinical transformation
to enable them to ultimately benefit humans in a wider field.
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