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Background: Transcranial Ultrasound Stimulation (tUS) is an emerging technique that

uses ultrasonic waves to noninvasively modulate brain activity. As with other forms of

non-invasive brain stimulation (NIBS), tUS may be useful for altering cortical excitability

and neuroplasticity for a variety of research and clinical applications. The effects of

tUS on cortical excitability are still unclear, and further complications arise from the

wide parameter space offered by various types of devices, transducer arrangements,

and stimulation protocols. Diagnostic ultrasound imaging devices are safe, commonly

available systems that may be useful for tUS. However, the feasibility of modifying brain

activity with diagnostic tUS is currently unknown.

Objective: We aimed to examine the effects of a commercial diagnostic tUS device

using an imaging protocol on cortical excitability. We hypothesized that imaging tUS

applied to motor cortex could induce changes in cortical excitability as measured using

a transcranial magnetic stimulation (TMS) motor evoked potential (MEP) paradigm.

Methods: Forty-three subjects were assigned to receive either verum (n = 21) or sham

(n = 22) diagnostic tUS in a single-blind design. Baseline motor cortex excitability was

measured using MEPs elicited by TMS. Diagnostic tUS was subsequently administered

to the same cortical area for 2min, immediately followed by repeated post-stimulation

MEPs recorded up to 16min post-stimulation.

Results: Verum tUS increased excitability in the motor cortex (from baseline) by 33.7%

immediately following tUS (p= 0.009), and 32.4% (p= 0.047) 6min later, with excitability

no longer significantly different from baseline by 11min post-stimulation. By contrast,

subjects receiving sham tUS showed no significant changes in MEP amplitude.

Conclusion: These findings demonstrate that tUS delivered via a commercially available

diagnostic imaging ultrasound system transiently increases excitability in themotor cortex

as measured by MEPs. Diagnostic tUS devices are currently used for internal imaging

in many health care settings, and the present results suggest that these same devices
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may also offer a promising tool for noninvasively modulating activity in the central

nervous system. Further studies exploring the use of diagnostic imaging devices for

neuromodulation are warranted.

Keywords: brain-stimulation, magnetic stimulation, excitability, neuroplasticity, excitation, pulsed ultrasound

INTRODUCTION

Neuroplasticity is fundamental to many neurobehavioral
processes, including learning and memory (1). It is believed
that neuroplasticity is associated with behavioral changes
during normal development, and clinically for post-stroke
recovery, traumatic brain injury (2), and adaptation to
physical changes in the body (3) among other neural and
behavioral changes across the lifespan. It has been suggested
that changes in cortical excitability may be related to changes
in neuroplasticity (4). Some methods of non-invasive brain
stimulation (NIBS) have been found to be effective for inducing
changes in brain excitability and, subsequently, neuroplasticity.
A number of NIBS techniques have been developed that utilize
different forms of energy, including direct and alternating
current, magnetic, light, and others (5–8). Each of these
techniques have a variety of advantages and disadvantages. Light
stimulation, or photobiomodulation, is a promising but as yet
little underexplored method of NIBS (9). Transcranial direct
current stimulation (tDCS), while inexpensive and associated
with minimal side-effects (10), can produce variable results
across individuals and time points (11, 12). TMS has a longer
history of clinical and experimental application (13), but also
comes with more contraindications (14), and is subject to
variable effects across individuals (15–17). Recently, ultrasound
has received increased interest for NIBS. While the possibility
of modulating peripheral nervous system function through
ultrasonic stimulation was originally explored in the early
twentieth century (18–21), interest subsequently declined, only
to be rekindled recently with an emphasis on central nervous
system modulation and transcranial ultrasound (tUS) (22–24).

Ultrasonic waves (administered via tUS) are able to pass
through the scalp and skull (25–27), where they can safely
interact with brain tissue at low intensities (28–30). A number
of parameters govern the characteristics of tUS waves, including
the fundamental frequency, pulse repetition rate, intensity, duty
cycle, and duration of stimulation. Each of these parameters
alone, or in combination and in consideration of the precise
anatomical regions targeted, has the potential to alter how tUS
affects brain activity. However, the exact relationship between
tUS parameters and the subsequent effects are not yet fully
understood (31–33).

Two common variants of tUS are transcranial focused
ultrasound (tFUS), and diagnostic tUS. tFUS typically employs
frequencies below 1 MHz, while diagnostic tUS utilizes
frequencies ranging from 1 to 15 MHz (34, 35). This distinction
is important in tUS, as the human skull is believed to attenuate
the energy of higher frequency US more greatly than lower
frequencies (36–38), with the degree of energy absorption and
wave aberration varying across individuals (26, 39). Diagnostic

tUS can be used to image brain tissue through the skull (26, 40–
43), demonstrating that energy can be successfully passed into
and out of the skull and brain at higher frequencies than those
typically used in tFUS applications. Whether or not the amount
of energy passed into the skull with diagnostic tUS is sufficient to
produce neurophysiological effects is a question that has not been
examined previously.

A growing body of literature has formed around the
use of various forms of tUS in small mammals (35, 44–
47) and non-human primates (48, 49), paving the way
for research with human subjects (50). In separate studies,
tFUS applied to the human somatosensory cortex improved
performance on a tactile discrimination task (51), and elicited
transient tactile sensations in the contralateral hands and
fingers (52). Diagnostic tUS has also been applied for the
purpose of neuromodulation. Administering 8 MHz diagnostic
tUS over the temporal window, Hameroff and colleagues
reported that 15 s of stimulation acutely improved subjective
mood (53). While similar, longer term effects following tUS
stimulation have been observed (54, 55), the brain processes
underlying these changes are yet to be fully elucidated
(56).

Here we examined whether tUS administered using a
diagnostic ultrasound system modulates cortical excitability in
healthy adults by using motor evoked potentials (MEPs) induced
by transcranial magnetic stimulation (TMS) (57, 58).

METHODS

Subjects
Sixty-six healthy participants (42 female) participated in this
randomized, single-blind study exploring the effects of tUS on
cortical excitability. Individuals were required to pass a tUS
and TMS screening form which included the following: Right-
handed, age 18–45, no personal or family history of seizure,
mood, or cardiovascular disorders, no facial or ear pain, no
recent ear trauma, no metal implants including pacemakers, not
pregnant, no dependence on alcohol or recent illicit drug use,
and no use of any pharmacological agents known to produce
significant changes in CNS function or increase seizure risk. A
between-subjects design was chosen because, while TMS elicited
MEPs have been shown to be reliable across sessions (59, 60), the
intra-individual reliability of other forms of NIBs across sessions
is still debated (61–64). This is especially a concern for forms of
NIBS that are neuromodulators, like TUS, where daily changes in
endogenous brain activity can have a large impact on the outcome
of stimulation (6, 65, 66).

All experimental procedures were approved by Chesapeake
IRB and the U.S. Army Research Laboratory’s Human Research
Protection Program.
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Experimental Overview
Participants were seated in a reclining chair, informed about
the study, and consented. To check for changes in subjective
psychological state over the length of the protocol, subjects
then completed a brief mood questionnaire that asked them
to endorse 10 statements using a 6-point (0–5) Likert scale
(Table 1). This same questionnaire was administered again at
the conclusion of the study. Following measurement of baseline
cortical excitability, subjects received either verum or sham
tUS to their motor cortex for 2min. Cortical excitability was
measured immediately after stimulation at 1min, and at 5min
intervals up to 16min post-stimulation (Figure 1). Sham control
was accomplished through application of the freeze function
on the machine prior to transducer application, as has been
employed in other studies using diagnostic tUS (53, 67). Subjects
completed sensation questionnaires following acquisition of the
motor threshold and again following tUS. These asked subjects to
separately rate the degree of itching, heat/burning, and tingling
on a 0–10 scale.

Cortical Excitability Recording Using
TMS-Induced MEPs
TMS-induced MEPs (57, 58) were administered using a
neuronavigation-assisted eXemia TMS system (Nextstim Ltd.,
Helsinki, Finland) with a 70mm figure of eight coil and NBS
software (version 3.2.0). Electromyography (EMG) was recorded
from disposable Ambu Neuroline 720 electrodes attached to the
abductor pollicis brevis and opponens pollicis muscles of the
right hand with the reference electrode attached to the base of
the extensor digitorum tendon of the right-hand middle finger.

TABLE 1 | Questionnaire administered prior to and after stimulation to probe

possible changes in subject-reported psychological state.

Mood questionnaire items

1) I feel nervous

2) I feel excited

3) I feel tired or fatigued

4) I feel confused or disoriented

5) I feel sad or down

6) I feel tense or frustrated

7) I feel dizzy or light-headed

8) I feel nauseous

9) Physically, I feel pain or discomfort

10) I feel unable to concentrate or pay attention

This enables recording of MEPs elicited from contraction of the
thumb.

Subjects were instructed to rest their hand on a pillow
in a relaxed position, where it remained for the duration of
the study. MEPs are highly variable (68, 69), less variable
resting motor thresholds (RMT) were determined for each
subject (70). Subject’s RMT was determined through adaptive
parametric estimation via sequential testing (PEST) procedure
and software (TMS Motor Threshold Assessment Tool, MTAT
2.0, (http://www.clinicalresearcher.org/software.html), which
reliably determines the motor threshold (71–73). Prior to
baseline, TMS power output was set at 110% of the power
associated with an individual subject’s RMT, where it remained
for the duration of the experiment. In a given subject, if the
PEST procedure found that acquisition of the RMT required
a TMS power output that exceeded the total possible power
output of the TMS system, then the experimental session
was discontinued and the subject was regarded as not having
consistently measurable MEPs.

The motor hotspot associated with abductor pollicis
brevis activation was identified through a combination of
visual inspection and EMG, with the area most consistently
eliciting MEPs above 1mV coupled with isolated thumb
movements being selected for the RMT procedure, using similar
methodology as Nitsche and Paulus (58). Stimulated areas of
the motor cortex were tracked and mapped via neuronavigated
TMS through the eXemia system. Neuronavigated TMS has
demonstrated a higher probability of finding consistent MEPs
compared to referencing external landmarks (74–77), as it allows
the experimenter to maintain the location of the motor hotspot
as well as the ideal coil orientation for an individual subject
(78, 79).

Baseline excitability wasmeasured through a series of 10 single
TMS pulses delivered an average of 4 s apart. Following tUS, 4
additional blocks of 10 single TMS pulses were performed: 1min
after tUS application and then 3 more blocks of 10 pulses each
separated by 5min intervals.

Ultrasound Stimulation
We used a Phillips CX50 Diagnostic Imaging Ultrasound System,
with a Phillips S5-1 broadband plane sector transducer array.
This transducer has 80 piezoelectric elements, an aperture of
20.3 cm, and a frequency range of 1–5 MHz. The system was
set in HGen, B-mode with harmonics on and a focal depth of
10 cm. The waveform generated by this transducer occurs in a
plane wave where the energy deposited is homogenous across
the field of view. The central frequency was 2.32 MHz, which

FIGURE 1 | Study Design. The experimental visit lasted between 70 and 100min. MH, acquisition of the motor hotspot; RMT, acquisition of resting motor threshold.
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represents the median frequency emitted by the transducer, with
the absolute range of frequencies normally distributed between
the limits of 1.53 and 3.13 MHz (80). SonicEaze ultrasound
conductive gel was used to create an acoustic medium when
applying the transducer to the scalp. To ensure fidelity to
the previously identified hot spot, neuronavigation was again
employed for tUS transducer placement. In order to measure
maximum acoustic output, a hydrophone (HNR 500, Onda
Corporation, Sunnyvale, CA, United States) calibrated 1 month
prior to testing was used. The peak negative pressure associated
with our transducer settings was 1.02 MPa as measured in free,
degassed water with a manual stage.

Statistical Analysis
To explicate excitability changes associated with tUS, data was
analyzed in SPSS using a between-subjects repeated measure
ANOVA with 2 conditions, verum and sham, and 5 time
points as described above. Student’s t-tests (independent samples,
two-tailed, p < 0.05) were then performed to test between-
group differences at each post-stimulation time point. Individual
subject MEPs were averaged across the 10 stimuli given per block.
Individual TMS pulses that elicited an MEP amplitude of 0 were
discarded and not counted in the 10MEP average. The researcher
performing the analysis was not blind to the experimental groups;
however, there were no subjective steps involved in the MEP
analysis that could be unduly influenced by unblinding. Due to
the limited extant literature utilizing higher frequency tUS, no a-
priori hypotheses were made about the direction of any possible
neuromodulation effects.

RESULTS

Subjects
Eighty subjects were assigned to the current study after passing
screening. Fourteen of these (17.5%) canceled due to scheduling

conflicts or could not participate to due illness or other issues,
leaving 66 subjects that were enrolled and consented. Measurable
MEPs could not be obtained in 23 subjects (35%), and these were
excluded from further analysis. We collected MEP data from
the remaining 43 subjects, 21 who received verum tUS and 22
who received placebo tUS. The mean MEP averages at baseline
were 0.932mV for the verum group and 0.849mV for sham
(see Figure 2). This difference in baseline means between groups
was not significant (p = 0.55). Subjects with baseline intra-block
variability>1 standard deviation (> 0.812mV) above the average
variability for all baseline trials (N = 420) were excluded, which
led to 2 additional exclusions in the verum group and 1 in the
sham group. No subjects had more than 2 MEPs of 0 within a
single block. A total of 40 subjects were used in the analysis, with
19 in verum (11 females) and 21 in sham (14 females). The mean
age was 20.58 (SD = 1.5) and 22.05 (SD = 5.0) for verum and
sham, respectively. The median age in the verum group was 21,
with a range of 19 to 23. In the sham group, the median age was
20, with a range of 18 to 38. There were no significant differences
between these final groups in gender or age composition (p >

0.05). Additionally, the difference in RMT as percentage of TMS
power output between groups was not significant (p > 0.05;
Table 2).

Safety
Themost commonly reported sensation was tingling, both before
baselinemeasurement (M= 1.44, SD= 1.58), and after tUS (M=

1.32, SD = 1.65). No significant differences were found between
these pre- and post-stimulation measures for any of the sensation
questions regarding itching, heat/burning, and tingling, nor were
there any significant differences between verum and sham groups
at either time point.

The mechanical index during tUS observed during
hydrophone measurement was 0.67, well below the mechanical

FIGURE 2 | Flow chart showing subject randomization and exclusion.
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TABLE 2 | One hundred and ten percent resting motor thersold as percentage of

TMS machine output.

110% RMT

n M (SD) Range

Sham 21 78.6(10.84) 51–94

Male 7 81.71(10.14) 66–94

Female 14 77.29(11.24) 51–93

Verum 19 72.05(11.03) 51–94

Male 8 70.38(12.33) 56–94

Female 11 73.27(10.42) 51–88

index limit of 1.9 recommended by the Food and Drug
Administration (81). The thermal index reading of 2.6 was
also well within established safety parameters (28), where
tissue can safely be exposed to similar temperatures for up to
100min (82). The low duty cycle of our device, <1%, led to an
Isppa of 34.96 W/cm2 and an Ispta of 132.85 mW/cm2 before
transcutaneous and bone transmission (i.e., in free water), well
below recommended limits of 720 mW/cm2.

As an additional safety measure, we assessed the possibility of
motor cortex stimulation eliciting acute changes in subject mood
with a brief questionnaire. Across both groups, paired samples t-
tests indicated significant changes in 2 items over time. On a scale
from 0 to 6, subjects reported feeling less nervous (M = 0.96, SD
= 1.11) and less excited (M = 2.44, SD = 1.56) after completion
of the study (nervousM = 0.32, SD = 0.63, p = 0.003; excitedM
= 1.72, SD= 1.48, p= 0.011). No significant differences between
groups were found either before or after stimulation for any of
these measures.

Effects on Cortical Excitability
Mauchly’s test was significant,χ2 (9)= 18.51, p= 0.03, indicating
unequal variances between verum and sham groups, therefore
a Greenhouse-Geisser correction was used (ε = 0.851). There
was a significant interaction between condition and time point
[ANOVA, F(3.404,129.349) = 3.501, p = 0.014, ω

2
= 0.059].

For subjects that received verum tUS, stimulation produced
an average 33.7% (SD = 0.457mV) increase in average MEP
amplitude 1min post stimulation (post measure 1) that declined
slightly to 32.2% (SD = 0.511mV) over baseline 6min post
stimulation (post measure 2; Figure 3). This contrasted with
sham subjects whose average MEP amplitude was 7.6% (SD =

0.187mV) smaller than baseline at post measure 1 and 1.2% (SD
= 0.290mV) smaller at post measure 2. Follow up comparisons
revealed a significant difference between sham (M = 0.785mV,
SD= 0.460mV) and verum tUS (M= 1.246mV, SD= 0.600mV)
at 1min post-stimulation (post measure 1), t (38)=−2.750, p=
0.009; and at 6min post-stimulation (post measure 2), verum tUS
(M = 1. 232mV, SD = 0.694mV), sham tUS (M = 0.839mV,
SD = 0.510mV), t (38) = −2.054, p = 0.047. Effect sizes for
between-groups comparison were calculated using a pre-post
control technique that accounts for groups of unequal sample size
(83). At post measure 1 the observed effect size was d = 0.86,

and d = 0.71 for post measure 2. No significant differences in
MEP amplitude were found between groups for post-measures 3
(p = 0.129) and 4 (p = 0.359), collected at 11 and 16min post
stimulation.

DISCUSSION

This study demonstrated effects of tUS on MEP amplitude,
amounting to a 33.7% increase in average MEP amplitude 1min
and a 32.2% increase 6min after stimulation. Thereafter, MEP
amplitude decreased toward baseline, and was not significantly
different than sham for the remainder of testing times. Control
subjects’ average MEP amplitude was not significantly different
than baseline at any post-stimulation timepoint. The 2min
duration of tUS used here produces neurophysiological effects
that are limited in time, in this case approximately 4 times the
duration of stimulation. Studies using other forms of NIBS, such
as tDCS and TMS, have observed a similar relationship (57, 84–
86), and have found that a longer duration of stimulation led to
longer effects. Results using these other modalities suggest that
the duration of tUS effects might be controlled in part by varying
the duration of stimulation.

The length of tUS induced changes we observed corresponds
with previous research, where suppression of visual evoked
potentials and somatosensory evoked potentials following tFUS
lasted between 5 and 10min in (54, 87). Importantly, neither of
these studies found evidence of tUS induced tissue damage in
histological analyses. In humans, Hameroff et al. found mood
effects that persisted up to 40min after stimulation (53). While
we did not find similar mood changes following stimulation,
our questionnaire was designed to be a brief status check on
subject well-being and not a nuanced accounting of mood effects,
so subtle changes in mood may have been missed. A possible
alternative explanation might be that tUS effects are specific to
the location of stimulation, and that stimulation of the temporal
lobe producesmood effects, while stimulation of themotor cortex
does not.

Our study is also one of many to have found excitatory
effects from tUS. At the neuronal level, ultrasound stimulation
has directly evoked electrical responses from extracted cells (23,
88), opened voltage-gated sodium and calcium channels (24),
and increased the concentration of excitatory neurotransmitters
(46, 89). In small mammals, in vivo tUS excitation of the motor
cortex has also often been observed, accompanied by increases
in BOLD activation, EMG amplitude, and evoked movement
(44, 45, 87, 90). Beyond the motor cortex excitation has been
measured by visual evoked potentials (91, 92), EMG (93), directly
evoked movement (35, 94–96), and increased glucose uptake
(97). Similar excitation has been found in humans as well,
measured by increased somatosensory evoked potentials (52),
increases in BOLD activation (93, 98), and increases in the
volume of activated cortical tissue in the motor cortex (99).

Our findings of increased MEP amplitude with tUS contrast
with recent work that investigated the effect of transcranial tFUS
onMEPs where a reduction inMEP amplitude was demonstrated
(100). There are a number of differences between these studies
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FIGURE 3 | Stimulation dependent changes in MEP amplitude at baseline and following 2min of tUS. Asterisks indicate significant between group differences

(two-tailed t-test, independent samples, P < 0.05) Error bars = ±SE.

that might account for the difference in response polarity
observed. The precise tUS system, transducer types, and the tUS
protocols used were all different between studies. TFUS and tUS
using a diagnostic ultrasound system potentially penetrate to
different cortical depths, with higher frequency diagnostic tUS
possibly affecting more dorsal cortical tissue nearer to the scalp,
and tFUS affecting deeper tissues that are out of the direct reach
of subsequent TMS stimulation (100, 101). The differences in
findings might also be due to contrasting methodologies between
the present study and others, where applying tUS simultaneously
with TMS leads to inhibitory (100), or null effects (67), whereas
serial application as used here leads to excitatory effects.

While supported theories exist for the effects of tUS (32, 102,
103), researchers are still coming to grips with how tUS effects the
brain above the level of individual neurons. Further complication
comes from trying to parse how the numerous parameters of
tUS interact with each other and with the stimulated medium.
Another difference between our study and that of Legon and
colleagues is the volume of tissue stimulated, a factor that might
be crucial in interpreting the effects of tUS generally. Holding
all other parameters constant, unfocused transducers impact
uponmore brain area than focused transducers, and analogously,
each decrease in frequency within a focused transducer serves
to increase the stimulated area. The greater brain volume
affected by unfocused stimulation, as compared to focused
stimulation, might thus be conceptually similar to the increased
brain volume that is affected by lowering the frequency of
focused ultrasound. In both cases, the sheer volume of brain
tissue involved might be more important than the total energy
delivered. If acoustic force was the most important parameter
for induced effects, higher frequencies would generally equate
with stronger effects; however, lower frequencies, and thus larger
stimulated areas, have been found to be more likely to get a

response (35, 44, 45). TFUS has also been shown to require
greater energies to elicit an excitatory motor response, Isppa
of 12.6 W/cm2, than unfocused tUS, Isppa of 0.23 W/cm2 (45,
87, 104). The same might hold true for human studies, where
higher frequencies, >0.500 MHz, lead to inhibition (51, 100,
105), and lower frequencies, <0.350 MHz (52, 93, 106), or
unfocused stimulation (53) induce excitation. The present study
used a center frequency of 2.32 MHz, further suggesting that
frequency may not be an important parameter in comparing
excitatory and inhibitory effects, and that the volume of tissue
affected may be the critical parameter. Furthermore, given our
use of an unfocused transducer operating a relatively high
fundamental frequency, acoustic energy reaching the brain may
have been distributed across an even larger area due to diffuse
refection occurring within the diploë layer of the skull (31,
107).

A limitation of this study was the use of a single blind
experimental design. While the results of any single blind study
must be interpreted with caution, no significant differences in
outcome measures have been observed in prior studies from our
laboratory comparing single- vs. double-blind NIBS on objective
outcome measures (108). Two other points also help to mitigate
the potential impact of the use of a single-blind design here.
First, studies have shown that objective measures, such as the
MEPs collected here, are less sensitive to expectancy effects
compared with more subjective measures (109, 110). Second,
and most importantly, a chi-square test was conducted and no
significant relationship was found between assigned condition
and condition guessed by the subject at the conclusion of the
experiment, χ2 (1,N = 40)= 1.50, p= 0.22. In addition, a greater
percentage of sham subjects, 71.4%, reported that they believed
they were in the verum condition, compared to 52.6% of actual
verum subjects.
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Another limitation was the relatively high number of
participants excluded from the study. This was due in part to
the power output of our TMS system, where we found that
the average RMT was 68.7% of TMS power output. Thus, for
excluded participants, our baseline TMS power of 110% RMT
exceeded the total possible power output of the TMS machine,
and so could not be performed for those participants. It should
also be noted that the average age in our sample was 21.35.
Replication with older subjects is thus needed, as age has been
previously shown to impact NIBS mediated plasticity (111). Such
replication is essential for possible clinical application. Other
forms of NIBS have been explored as possible therapies for
movement disorders (112–115), and given the observed tUS-
induced changes in the primary motor cortex, this might be a
productive avenue for future tUS research.

CONCLUSION

Our results demonstrate that tUS produced by a diagnostic
imaging ultrasound system increased short-term cortical
excitability in the motor cortex. This suggests that diagnostic
tUS systems may be used as a neuromodulatory tool to alter the
activity of the primary motor cortex. Following similar evidence
demonstrating the effect of tDCS on excitability of the primary
motor cortex as measured by TMS-evoked MEPs (57, 58), future
research should determine how the observed tUS effects translate
to other cortical areas and other measures of neuromodulation.
By contrast to tES and TMS, tUS offers the advantage of greater
anatomical precision and also greater depth without significant
effects in more superficial regions, which together may allow for
greater precision and rigor in this research, and ultimately may
offer improved methods of treatment. Our finding of excitatory
effects from tUS contrasts with a recent report of inhibitory
effects (100), suggesting the potential for a wide dynamic range
in cortical excitability using tUS. Ultrasound imaging has
been used for many years and has an excellent safety record.
The present results warrant further research into the use of
diagnostic imaging ultrasound to modulate cortical excitability
and neuroplasticity beyond the motor cortex, as well as the

development of new clinical applications for this technology. If

further study and development confirm that diagnostic imaging
ultrasound is effective for producing neuromodulation, and
given that diagnostic imaging ultrasound devices are found in
many clinical settings worldwide alongside technicians trained
in their use, this could potentially make neuromodulatory tUS
highly accessible to clinical and research communities.
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