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Introduction
The kidney continuously filters blood and maintains overall body homeostasis, relying on a delicate balance 
between a complex vascular network and multiple specialized cell types (1). Podocytes are kidney epithe-
lial cells with limited capacity for regeneration that function as master regulators of  glomerular health (2). 
Experimental models show that severe podocyte loss leads to an irreversible process of  progressive scarring, 
rendering the affected glomeruli nonfunctional (3–5). Furthermore, human podocyte loss has been identified 
in association with all major diseases contributing to chronic kidney disease (6–13).

Antineutrophil cytoplasmic antibody–associated glomerulonephritis (ANCA-GN) is primarily a sys-
temic vasculitis with a strong immune-mediated epithelial reaction in the kidney, which leads to the for-
mation of  destructive glomerular lesions and a rapid loss of  kidney function (14). While ANCA-GN has 
well-defined cellular changes (15) that include podocyte injury (16), podocyte loss is yet to be characterized 
in ANCA-GN patients. Using indirect immunofluorescence imaging, it is now possible to visualize different 
podocyte structures, facilitating the unambiguous identification of  podocytes and, thereby, the quantifica-
tion of  podocyte depletion (5, 6). However, reliable image segmentation for routine clinical analysis remains 
challenging, mostly due to time constraints for detailed quantitative analysis with cellular resolution and lack 
of  accuracy in available automated methods.

Time constraints, precision, and reproducibility are known hurdles in histopathology. For this reason, the 
automation of  classification and quantification processes has the potential to lessen the diagnostic burden and 

Morphologic examination of tissue biopsies is essential for histopathological diagnosis. 
However, accurate and scalable cellular quantification in human samples remains challenging. 
Here, we present a deep learning–based approach for antigen-specific cellular morphometrics 
in human kidney biopsies, which combines indirect immunofluorescence imaging with U-Net–
based architectures for image-to-image translation and dual segmentation tasks, achieving 
human-level accuracy. In the kidney, podocyte loss represents a hallmark of glomerular injury 
and can be estimated in diagnostic biopsies. Thus, we profiled over 27,000 podocytes from 
110 human samples, including patients with antineutrophil cytoplasmic antibody–associated 
glomerulonephritis (ANCA-GN), an immune-mediated disease with aggressive glomerular 
damage and irreversible loss of kidney function. We identified previously unknown morphometric 
signatures of podocyte depletion in patients with ANCA-GN, which allowed patient classification 
and, in combination with routine clinical tools, showed potential for risk stratification. Our approach 
enables robust and scalable molecular morphometric analysis of human tissues, yielding deeper 
biological insights into the human kidney pathophysiology.
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improve the quality of  the acquired data. Deep learning is increasingly gaining attention in multiple biomed-
ical areas due to its potential clinical applications (17), including natural language processing (e.g., analysis 
of  electronic health records) and computer vision (e.g., histopathology and radiology). Frameworks based on 
U-Net (a convolutional neural network specifically designed for the segmentation of  images) are particularly 
interesting for histopathology (18, 19), since they can be used for image segmentation and specific tasks such 
as image-to-image translation (20, 21). To date, multiple reports have shown the high performance of  deep 
learning networks for tissue-based classification of  human disease (22, 23). Nonetheless, their role in detailed 
cellular morphometric profiling of  clinical tissues remains unclear.

In this study, we present a deep learning–based workflow to perform cell-specific morphometric profiling 
of  human kidney biopsies, including numbers, sizes, densities, and distributions of  podocytes within their 
respective glomerulus, which allowed a comprehensive characterization of  endpoint variability within and 
between patients. We analyzed a total of  1095 glomeruli from 110 patients to profile 27,696 podocytes based 
on tissue expression of  2 complementary antigens in order to identify, segment, and quantify podocyte deple-
tion. A previously unrecognized morphometric signature of  podocyte depletion was detected in patients with 
ANCA-GN (as listed in Supplemental Table 1; supplemental material available online with this article; https://
doi.org/10.1172/jci.insight.144779DS1), allowing patient classification with near–human level accuracy and 
showing potential for risk stratification when combined with established clinical tools. Our findings suggest 
that focal podocyte loss may be a transitional state before the onset of  overt lesion formation in patients with 
ANCA-GN. Together, these findings highlight the potential of  deep learning–based architectures for enabling 
robust and scalable molecular morphometric analyses of  human tissues.

Results
Morphometric profiling of  human samples using a dual segmentation U-Net. Human kidney biopsies from patients 
with available clinical data (i.e., age, sex, and estimated glomerular filtration rate [eGFR]), pathological 
endpoints (i.e., interstitial fibrosis), and integrative scores (i.e., ANCA-GN score) were immunolabeled using 
antibodies against podocyte-specific transcription factors, including nuclear expression of  Dachshund Family 
Transcription Factor 1 (DACH1) and cytoplasmic expression of  Wilms’ Tumor 1 (WT1), in order to unam-
biguously identify glomerular podocytes (Figure 1A) and carefully profile a total of  27,696 podocytes. A total 
of  1095 immunolabeled images was used for training, validation, and testing during the development of  the 
deep learning architectures, including 722 images from 48 controls and 373 images from 62 patients with 
ANCA-GN. General patient demographics are outlined in Supplemental Figure 1.

Common definitions of machine learning–related language are provided in Table 1. In general, deep learn-
ing architectures for image analysis consist of convolutional layers that analyze the image sequentially in order 
to extract increasingly complex features. During this process, the image size is conventionally reduced through 
max-pooling (down-sampling), encoding the data in a smaller dimension. To obtain segmentation predictions 
of the same size as the input image, a decoder restores the information to the original size via upconvolu-
tions combined with additional convolutional layers. Following this logic, we developed a dual output deep 
learning–based segmentation architecture (U-Net) that has an encoder/decoder structure with 3 convolutional 
layers, each containing between 32 (first/last layers) and 256 filters (bottom layer), which can simultaneously 
extract glomerular and podocyte nuclear areas from a composite fluorescence image (Figure 1B). Segmented 
areas are integrated into model-based stereology formulas that estimate podocyte morphometrics (podomet-
rics), including glomerular dimensions, numbers of podocytes, and podocyte dimensions and distributions 
(i.e., minimal distances between neighboring podocytes) within each glomerulus (Figure 1C).

The parameters or weights of  the U-Net convolutional layers are iteratively updated in a training pro-
cess, which consists of  multiple epochs (or temporal steps). In each epoch, all training images are passed 
through the network once. To update the weights of  the network, the difference between the network’s pre-
diction and the manually annotated ground truth is determined for each image based on a “loss function.” 
We used a balanced 2-layer binary cross-entropy loss function that adaptively accounts for the performance 
of  each individual segmentation task (Supplemental Figure 2, B–D). Once the images of  the validation set 
are passed through the network, predictions are computed and evaluated. This way, the performance of  
the network is monitored during training, and the best weights and hyperparameters can be determined. 
The held-out test set is only used to evaluate the best network, which thus provides unbiased results. In this 
study, the overall quality of  the segmentation performed by the U-Net has been evaluated using standardized 
metrics that measure the similarity between prediction and ground truth of  the glomerular and podocyte 
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segmentations at pixel and object levels (i.e., Dice scores, where a Dice score of  0 indicates no overlap of  
prediction and ground truth and 1 a perfect match).

In order to ensure an optimal performance of our U-Net, hyperparameters were determined using 
cross-validation, where we confirmed that the number of training images was sufficient to achieve Dice scores 
over 0.90 (Supplemental Figure 2A). We compared our dual-output segmentation U-Net to 2 single-output 
U-Nets (for glomerular and podocyte nuclear areas separately), showing similar results (Supplemental Figure 
3, A and B), which means that we can work with fewer parameters and require less training and evaluation 
time for the dual-output U-Net than for the 2 single-output U-Nets. Furthermore, our dual-output U-Net out-
performed a customized ImageJ-based segmentation script at pixel and object levels, with a strong reduction in 
false-positive rates (Supplemental Figure 4, A and B).

U-Net cycleGAN for annotation-free bias minimization. A lack of generalization is a well-known vulnerability of  
deep learning architectures (17). To this end, we first compared podometrics obtained from the same patients 
who were systematically imaged in 2 different locations with different microscopes and by different operators 
with different levels of microscopy experience. Podocyte density was not affected by these different conditions 
(Supplemental Figure 5A), neither at a patient level nor at a glomerular level (Supplemental Figure 5B), when 
the segmentation U-Net was trained jointly on these data sets. However, we observed significant differences in the 
variance of DACH1 or WT1 expression per image (pixel level) (Supplemental Figure 5C), suggesting that batch 
effects and image bias should be addressed in order to increase the reproducibility and scalability of the method.

Multiple operators and microscopes led to differences in image quality, differing from the reference 
data set (Figure 2A). One solution is to continuously retrain the segmentation U-Net (Figure 2B), which 

Figure 1. Segmentation U-Net for molecular morphometrics in kidney samples. (A) Biopsies from patients with immune-mediated kidney diseases, 
which are diagnosed, treated, and monitored based on clinical, pathological, and integrative data, are used to perform molecular labeling of kidney podo-
cytes, based on indirect immunofluorescence (24). (B) Glomerular area and podocyte nuclei are virtually dissected from high-resolution confocal images 
with a segmentation U-Net for 2 simultaneous outputs that was trained using a balanced 2-layer binary cross-entropy loss. (C) 3D podocyte morphomet-
rics (podometrics) were generated by model-based stereology, which extrapolates 3D from 2D data; in this case, glomerular and podocyte areas and podo-
cyte spatial location were used to estimate 3D glomerular dimensions, as well as numbers, sizes, and distributions of podocytes. ANCA-GN, antineutrophil 
cytoplasmic antibody–associated glomerulonephritis; eGFR, estimated glomerular filtration rate; DACH1, Dachshund Family Transcription Factor 1; WT1, 
Wilms’ Tumor 1; BCE, binary cross-entropy; Conv, convolution; ReLU, rectified linear unit; Max Pool, max pooling.
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progressively leads to a more robust network but requires manual annotations. An alternative approach can 
be found in the use of  deep learning–based annotation-free bias minimization (Figure 2C). Thus, we imple-
mented a U-Net cycleGAN (cycle-consistent generative adversarial network with a U-Net–like generator) to 
transform images obtained under different conditions (i.e., microscope and operator) into images resembling 
the reference data set used for training the segmentation network (Figure 2D). Representative images show 
the resulting segmentation optimization (Figure 2E) and improvements in Dice scores at both pixel and 
object levels (Figure 2F). Training curves of  the U-Net cycleGAN, as well as receiver operating characteristic 
(ROC) and precision-recall curves for the different combinations of  data and segmentation networks, are 
provided in Supplemental Figure 6, A and B. While these results provide evidence that unannotated data sets 
can be efficiently segmented using a network trained on the reference data set when they are bias transferred 
using the U-Net cycleGAN (e.g., improvement of  the mean podocyte pixel–based Dice score from 0.65 to 
0.81; see center and right panel of  Supplemental Figure 6C), we obtained slightly better segmentation results 
using a segmentation U-Net trained on all images, including the 2 control and the ANCA-GN data sets 
(mean podocyte pixel-based Dice score, 0.84; left panel of  Supplemental Figure 6C). All further results are, 
therefore, based on the U-Net trained jointly on the 2 control and the ANCA-GN data sets.

Molecular podometrics reveal podocyte loss in ANCA-GN. Representative images show high accuracy and preci-
sion of the U-Net for podocyte segmentation in samples from both controls and ANCA-GN patients (Figure 
3A); this was illustrated by ROC and precision-recall curves (Figure 3B). Strong agreement between ground 
truth and U-Net outputs was determined by pixel- and object-based Dice scores (mean podocyte pixel- and 
object-based Dice scores for controls 0.86 and 0.95, respectively) (Figure 3C). While image segmentation in 
ANCA-GN patients was comparable with controls, detection levels were not identical (mean podocyte Dice 
scores for ANCA-GN patients 0.87 and 0.91, respectively). For this reason, we compared segmented areas from 
glomeruli and podocytes in the ground truth and those obtained from the U-Net, which showed identical dif-
ferences between controls and ANCA-GN patients (Supplemental Figure 7, A and B); this supports biological 

Table 1. Glossary of technical terminology.

Artificial intelligence (AI) A subfield of computer science in which a machine or computer learns to perceive its environment and 
acts to achieve a goal (38). Examples: self-driving cars, face recognition, robotics, etc.

Machine learning (ML) Computer algorithms that learn to solve a task in an iterative training process based on sample data.

Artificial neural network (ANN) Models distantly inspired by neurons in the brain that “learn” to produce outputs based on samples 
seen in a so-called training process that iteratively updates the model’s parameters. 

Deep learning (DL) Refers to artificial neural networks with multiple layers between input and output. 

Generative adversarial networks (GANs)
Consist of 2 artificial neural networks, a “generator” and a “discriminator” playing an adversarial 
game. While the generator learns to create a synthetic, but realistic sample, the discriminator tries to 
discriminate real from generated samples.

CycleGAN Cycle-consistent generative adversarial network that learns to translate images from one domain to 
another domain (e.g., zebra to horse, painting to photograph) and vice versa in an unsupervised manner.

Segmentation Assigning pixels or regions of an image to certain classes (e.g., people, trees, sky). 
Classification Assigning a sample to a certain class (e.g., disease versus healthy).

U-Net Deep learning architecture for image segmentation, which relies heavily on convolutional layers in an 
encoder/decoder structure.

Convolutional layer Layer in a deep learning architecture that uses convolutions (systematic multiplication of subregions of 
a sample with a learnable set of weights) in order to detect specific features in a sample.

Metric Assesses match of deep learning prediction with human-created ground truth.

Dice score Commonly used metric: 2 |X∩Y| / (|X| + |Y|), where X denotes the ground truth and Y denotes the 
prediction. Dice score 0, no match between ground truth and prediction. Dice score 1, perfect match.

Loss function Penalizes algorithm for yielding predictions that do not match the ground truth. During training, model 
parameters are adjusted to minimize the loss function.

Binary cross-entropy Widely used loss function in machine learning that measures the difference between ground truth and 
prediction for binary classification tasks.

Data augmentation Strategy to enlarge the number of training samples and diversify their appearance to achieve better 
performance. For images, for example, rotation, shifting, flipping, and brightness variation are applied.

Hyperparameter optimization
While the model parameters are iteratively optimized by the algorithm during training, 
hyperparameters are chosen a priori. Configurations with different hyperparameters are compared and 
the best configuration is selected.



5

T E C H N I C A L  A D V A N C E

JCI Insight 2021;6(7):e144779  https://doi.org/10.1172/jci.insight.144779

differences rather than technical artifacts. Furthermore, we also determined direct correlations between ground 
truth and U-Net segmentation outputs from both controls and ANCA-GN patients (Supplemental Figure 7C).

Reductions in median podocyte numbers and densities with consequent increases in median podocyte 
sizes and distances between closest neighbors were found in patients with ANCA-GN compared with con-
trols (Figure 4A). The median glomerular size was directly associated with median podocyte number (R 
= 0.48, P < 0.0001 in controls, and R = 0.57, P < 0.0001 in ANCA-GN) with significant differences in the 
intercept (P < 0.0001), which suggests podocyte loss across the entire spectrum of  glomerular size (Figure 
4B). Similarly, median podocyte density was inversely associated with median minimal distances between 
neighboring podocytes (R = –0.88, P < 0.0001 in controls, and R = 0.68, P < 0.0001 in ANCA-GN) with 
statistical differences in the slope (P < 0.01), suggesting that compensatory podocyte hypertrophy is exacer-
bated in ANCA-GN patients (Figure 4C).

In our cohort, the main clinical discriminator between controls and ANCA-GN patients was kidney 
function, assessed by eGFR at the time of  biopsy. In particular, eGFR was associated with podocyte number 
(R = 0.39, P < 0.0001), density (R = 0.35, P < 0.001) and size (R = –0.20, P < 0.05) (Figure 4D). Using leave-
one-out cross-validation, we generated a combined podometric score, including podocyte number, density, 
and size, which also partially discriminated between controls and ANCA-GN patients in a logistic regression 
with an AUC of 0.76 (Figure 4E). Together, these findings show a potential overlap in the levels of  podocyte 
depletion between controls and ANCA-GN patients.

Morphometric signature of  podocyte depletion identifies patients with ANCA-GN. Lesion development in ANCA-
GN is focal, meaning that, within the same patient, some glomeruli are affected and others are not (Sup-
plemental Figure 8A). This is directly reflected in the changes in the variances per subject of all podometric 

Figure 2. U-Net cycleGAN for bias minimization between different data set domains. (A) Scalable frameworks require adaptability to external conditions. While 
indirect immunofluorescence protocols can be standardized, operator training, microscopy set-up, and eventually image quality are hard to control, especially if 
segmentation tasks have been defined based on tightly controlled internal conditions. (B) The images can be annotated manually in order to retrain the segmen-
tation U-Net before it is applied to a new data set. (C) Alternatively, we propose using a U-Net cycleGAN (without annotations) in order to transform images before 
applying the segmentation U-Net. (D) While the generator in the U-Net cycleGAN transforms images from one data set domain to the other, the discriminator 
tries to distinguish between “real” and “fake” images. This adversarial game is reflected in the cycleGAN objective, which is made up of the adversarial loss Ladv, 
the cycle-consistency loss Lcyc, and an identity loss Lid. (E) Representative images showing segmentation agreement with ground truth and reductions in false 
negatives. (F) Dice score at both pixel and object level significantly improved after cycleGAN for podocytes (n = 20 images for the reference and n = 24 images for 
before/after U-Net cycleGAN; Kruskal-Wallis with Dunn’s multiple-comparisons tests were performed). In dot plots, every blue dot represents 1 image, and red 
error bars represent medians and IQRs. Conv, convolution; ReLU, rectified linear unit; tanh, hyperbolic tangent; DACH1, Dachshund Family Transcription Factor 1; 
WT1, Wilms’ Tumor 1; TP, true positives; FP, false positives; FN, false negatives. ****P < 0.0001, **P < 0.01, *P < 0.05. Scale bars: 150 μm.
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parameters (Supplemental Figure 8B), which decreased in podocyte numbers and densities, but increased in 
sizes and distances between closest neighbors.

Analyses of single glomeruli showed that podocyte depletion was present in ANCA-GN patients, even in 
glomeruli that were not defined as glomerular lesions, and was associated with compensatory podocyte hyper-
trophy (Figure 5A). A principal component analysis (PCA) also revealed that normal glomeruli in ANCA-GN 
patients represent a transitional state from normal glomeruli in controls to overt glomerular lesions in ANCA-
GN (Figure 5B), suggesting that analyses of individual glomeruli within one patient may provide additional 
clues that may be applied to differentiate controls and ANCA-GN patients. Using leave-one-out cross-valida-
tion, we generated a morphometric signature of podocyte depletion, which is generated per subject based on 
all available morphometric data, including both central tendencies and measures of variability. Importantly, 
this integrative parameter discriminated between controls and ANCA-GN patients in a logistic regression, as 
shown in both ROC (Figure 5C) and precision-recall curves (AUC, 0.88) with an accuracy of 82% (Figure 5D), 
which was almost identical to the discrimination power of eGFR (AUC, 0.92; accuracy, 86%).

In this cohort, 3 ANCA-GN patients were classified as controls and 6 controls were classified as ANCA-
GN. First, we hypothesized that this could be due to segmentation artifacts, since DACH1 expression is 
upregulated in other cell types (i.e., erythrocytes and proximal tubular cells). However, we carefully screened 
all images from these 9 misclassified subjects and confirmed appropriate segmentation; representative images 
are shown in Supplemental Figure 9A. In patients with ANCA-GN, misclassified subjects were younger and 
had higher eGFR than median values for controls. In controls, misclassified cases were older and had lower 
eGFR than median values for ANCA-GN patients (Supplemental Figure 9, B and C). Together, these findings 
suggest that misclassifications may be associated with early stages of  disease in ANCA-GN and age-related 

Figure 3. Application of segmentation U-Net to human kidney biopsies. (A) Visual representation of the segmentation process, from original images, to seg-
mentation outputs for glomeruli and podocytes, and their respective correlation with manually segmented ground truths, highlighting true positives, false pos-
itives, and false negatives. (B) Receiver operating characteristic (ROC) and precision-recall curves in samples from controls and ANCA-GN patients; arrowheads 
show selected thresholds for both conditions (n = 20 images for Controls 1, n = 24 images for Controls 2, and n = 21 images for ANCA-GN patients). (C) Dice scores 
at pixel and object levels for glomeruli and podocytes, showing comparable segmentation performance in health and disease (n = 44 images for controls and n = 
21 images for ANCA-GN patients; Mann-Whitney U tests were performed). In dot plots, each blue dot represents 1 image, and red error bars represent medians 
and IQRs. ANCA-GN, antineutrophil cytoplasmic antibody–associated glomerulonephritis; DACH1, Dachshund Family Transcription Factor 1; WT1, Wilms’ Tumor 
1; TPR, true positive rate; FPR, false positive rate; TP, true positives; FP, false positives; FN, false negatives. ***P < 0.001. Scale bars: 100 μm.
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podocyte loss in controls. Furthermore, this morphometric signature of  podocyte depletion marks the degree 
of  disease progression in close relation to physiological readouts.

Potential of  podometrics for risk stratification in patients with ANCA-GN. A recent study proposed an integra-
tive predictive score of  5-year kidney survival in ANCA-GN (24), based on eGFR, percentage of  interstitial 
fibrosis, and number of  nonpathological glomeruli. We adapted this ANCA score to include a baseline com-
parison with control patients and model associations to podometrics, showing that median podocyte number, 
density, and size are significantly correlated with the modified ANCA-GN score (Figure 6A). From a total 
of  62 patients with ANCA-GN, 58 had at least 3 identified glomeruli in the diagnostic biopsy, which allowed 
us to perform analysis of  intrasubject variability. Then, 8 patients were identified based on our definition 
of  “poor outcomes,” including mortality, relapse, or loss of  at least 10% of eGFR within their respective 
follow-up period (Figure 6B). For a balanced comparison, we carefully matched these 8 subjects for age and 
sex within the remaining available patients from our cohort (n = 8 matched ANCA-GN patients). While our 
matching strategy was successful for age and sex, we were not able to obtain matches by eGFR (Figure 6C). 
Variances (Figure 6D) and ranges (Figure 6E) in podocyte size were significantly increased in ANCA-GN 
patients with poor outcomes. Neither the conventional ANCA-GN score nor our adapted version were dif-
ferent between the outcome groups (Figure 6F), but a ratio between the adapted ANCA-GN score and range 
in podocyte size showed significant differences by outcome group (Figure 6G). In summary, these findings 
highlight a potential for additional risk stratification among ANCA-GN patients using a combination of  
podometrics and available clinical and pathological tools.

Discussion
In this study, we present a deep learning–based approach that automatically identifies morphometric signa-
tures of  podocyte depletion in human kidney biopsies, achieving human-level accuracy while saving time 
and resources. Our method provides robust and scalable molecular morphometric endpoints for patients 
with ANCA-GN, revealing potentially novel pathophysiological insights of  kidney epithelial biology and 
serving as an example for the potential integration of  deep learning–based technologies into clinical settings.

Figure 4. Molecular podometrics reveal podocyte loss in patients with ANCA-GN. (A) Podocyte morphometric analysis (podometrics; median per patient) 
showing reductions in podocyte numbers and densities, as well as increases in podocyte sizes and closest neighbor distances in ANCA-GN patients compared 
with controls. (B) Spearman’s rank correlation analyses confirm a pattern of podocyte loss across the entire range of glomerular volume. (C) Increases in podo-
cyte closest neighbor distances are associated with reductions in podocyte density. (D) ANCA-GN patients have a lower estimated glomerular filtration rate 
(eGFR) at the time of biopsy compared with controls; features of podocyte depletion are associated with eGFR at biopsy. (E) Receiver operating characteristic 
(ROC) and precision-recall curves of a logistic regression using leave-one-out cross-validation showing the discrimination power of combined podometrics 
(podocyte number, density, and size), including confusion matrix. In all panels n = 48 patients for controls and n = 62 patients for ANCA-GN; Mann-Whitney 
U tests were performed. In violin plots, each gray dot represents the median value per subject, red lines represent medians, and blue lines represent IQRs. 
Regression lines represent lines of best fit and 95% CI. ANCA-GN, antineutrophil cytoplasmic antibody–associated glomerulonephritis; eGFR, estimated 
glomerular filtration rate; TPR, true positive rate; FPR, false positive rate. ****P < 0.0001, **P < 0.01, and *P < 0.05.
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Previous deep learning studies focused on the end-to-end evaluation of  biopsies through classification into 
several categories based on classical histology (22, 23, 25–27). To the best of  our knowledge, this is the first 
report to combine deep learning for object segmentation in clinical samples with cell-specific morphometrics, 
which does not only allow disease classification and risk stratification, but also provides objective endpoints 
for the analysis of  kidney biopsies. Furthermore, antigen-based cellular identification reduces subjectivity in 
annotation strategies, since extensive specialized training is not needed in order to identify protein expression 
with fluorescence microscopy, accelerating annotations and homogenizing ground truth definition — all of  
which are well-defined obstacles for clinical translation of  deep learning–based methodologies (17). However, 
reproducibility remains a valid drawback for new clinical tools — especially those dependent on microscopy.

Bias minimization through a U-Net cycleGAN allows a wider use of  the pipeline, given that data 
obtained by various users and on different microscopes can be adapted in order to efficiently homogenize 
image quality. Generative networks have been used in the past for histopathological analysis but mostly have 
been limited to classical histological stainings (28, 29). While this strategy is certainly effective and is compa-
rable with multi–data set training, manual annotations and retraining of  the segmentation architecture is the 
safest approach to maximize accuracy. In this manuscript, we provide both options, allowing users to decide 
based on their experimental and clinical needs.

The limited sample size for training, optimization, validation, and testing of  multiple deep learning 
architectures may be perceived as a shortcoming of  the present study. However, this is a very common prob-
lem in biomedical sciences. The number of  patients with follow-up data and negative outcomes, even with 
extended internal criteria (i.e., at least 10% of  eGFR), prevented us from providing predictive analyses at this 
stage. For this reason, our observations should be taken as proof-of-principle and will need careful validation 

Figure 5. Podocyte morphometric signature identifies ANCA-GN patients. (A) Podocyte-morphometric analysis (podometrics; per glomerulus) showing a 
pattern of podocyte loss and hypertrophy in glomeruli classified as “normal” (without lesion) in ANCA-GN patients. (B) Principal component analysis (PCA) 
using Pareto scaling to rows. Probabilistic PCA was used to calculate principal components, confirming that normal glomeruli in ANCA-GN patients repre-
sent a transitional state between normal glomeruli in controls and lesions in ANCA-GN patients. In A and B, n = 722 normal glomeruli for controls and n = 
373 glomeruli for ANCA-GN patients; Kruskal-Wallis with Dunn’s multiple-comparisons tests were performed. (C) Receiver operating characteristic (ROC), 
precision-recall curves, and confusion matrices of patient classification with a logistic regression using leave-one-out cross-validation based on eGFR and 
on a morphometric signature of podocyte depletion (PD), which combines morphometric data from every available glomerulus per biopsy per patient. (D) 
ROC, precision-recall curves, and confusion matrices for eGFR and PD signature as classifiers. In C and D, n = 48 patients for controls and n = 58 patients 
for ANCA-GN with PD signature; n = 62 patients for ANCA-GN with eGFR only. In violin plots, each gray dot represents 1 glomerulus, red lines represent 
medians, and blue lines represent IQRs. ANCA-GN, antineutrophil cytoplasmic antibody–associated glomerulonephritis; eGFR, estimated glomerular 
filtration rate; TPR, true positive rate; FPR, false positive rate. ****P < 0.0001, ***P < 0.001, and *P < 0.05.
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in larger patient cohorts with longer and standardized follow-up periods. Furthermore, the successful inte-
gration of  artificial intelligence–based morphometrics into clinical practice will not only depend on larger 
data sets, but also on standardization and automation of  tissue processing and imaging. While our efforts for 
batch effect minimization are promising, we only tested variations in image quality based on 2 parameters: 
microscopy operators and confocal systems. The compatibility of  our approach with other high-throughput 
imaging methodologies, such as spinning disk and epifluorescence–based systems, still needs to be validated.

The devastating nature of ANCA-GN requires continuous efforts to identify diagnostic and prognostic 
tools that may guide clinical management (15). In the pathophysiology of lesion formation during ANCA-GN 
development and progression, it is known that immune cells and parietal epithelial cells play key roles (1, 14, 
16). Importantly, our data highlight a previously unrecognized role of podocyte loss in ANCA-GN that could 
only be revealed by analyzing single glomeruli and their variability within and between subjects. The unex-
pected value of podometric endpoints in diagnostic ANCA-GN biopsies can only strengthen the position of  
podocyte depletion as a hallmark of glomerular disease (30, 31). Future studies will assess whether podocyte 
depletion signatures may serve as objective endpoints for the management of glomerular diseases, as well as 
their potential applicability to patient diagnosis and prognosis. It is our hope that this study may pave the way 
for the development and implementation of advanced tissue morphometrics in routine clinical pathology.

Methods
Human samples. Tissue collection from nephrectomy samples due to renal cell carcinoma was performed at Esch-
weiler Medical Center. After fixation with 4% paraformaldehyde (PFA), representative kidney blocks from the 
pole opposite to the tumor were extracted — a strategy that aimed to collect nonpathological tissue. Kidney 
biopsies from patients with ANCA-associated glomerulonephritis were obtained from the Hamburger Glomer-
ulonephritis Registry (https://www.sfb1192.de/en/register).

Figure 6. Potential role of podometrics for ANCA-GN risk evaluation. (A) Features of podocyte depletion correlate 
with an adapted ANCA-GN score that predicts poor clinical outcomes within 5 years (n = 62 patients for ANCA-GN; 
Spearman’s rank correlation analyses were performed). (B) Among all 62 ANCA-GN patients, clinical follow-up data 
identified a total of 8 patients with poor clinical outcomes, including mortality, relapse, and loss of estimated glomer-
ular filtration rate (eGFR) of at least 15% from baseline; these were carefully age- and sex-matched to patients without 
negative outcomes. (C) Successful age-match with random selection of variable eGFR. (D) Variance in podocyte size 
per biopsy was significantly elevated in patients with poor outcomes. (E) The ratio between maximal and minimal 
podocytes sizes (range) per biopsy was also increased in patients with poor outcome. (F) Neither the classical ANCA-
GN score nor an adapted ANCA-GN score were different between patients with poor outcome and matched controls. 
(G) A modified ANCA-GN score based on a ratio between the adapted ANCA-GN score and the range of podocyte size 
per biopsy was significantly reduced in patients with poor outcome. In C–G, n = 8 ANCA-GN patients with negative 
outcomes were carefully age- and sex-matched to n = 8 ANCA-GN patients without negative outcomes; Mann-Whitney 
U tests were performed. Regression lines represent lines of best fit and 95% CI. Each blue dot represents 1 subject. In F, 
red lines represent medians and IQRs. ANCA-GN, antineutrophil cytoplasmic antibody–associated glomerulonephritis. 
****P < 0.0001, ***P < 0.001, **P < 0.01, and *P < 0.05.
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Immunofluorescence and confocal microscopy. Previously reported protocols were applied (5, 6). To identify 
podocytes, we used a combination of  WT1 (Agilent Technologies; IS05530-2) and DACH1 (Sigma-Aldrich; 
HPA012672) (32) as primary antibodies; Alexa-Fluor 488, -555, and/or -647 as secondary antibodies (Invi-
trogen; A21202, A31572, A31571, and A31573, respectively) depending on the experiment; and a DNA 
marker to identify single nuclei — either DAPI (Sigma-Aldrich; D9542) or DRAQ5 (Abcam; ab108410). 
Optical images were obtained using inverted laser confocal microscopes (Nikon and LSM800, Zeiss), stored 
in 1024 × 1024 pixel frames. Each image contained 1 glomerulus.

Manual image annotation for ground truth generation. Ground truth data sets were generated based on 
podocyte nuclei and glomerular areas in manual segmentation performed by 3 expert scientists trained 
under equal conditions within our team, blinded from the patient data. Quality control was performed by a 
senior scientist within our team. During training, the segmentation U-Net then learned from the annotated 
images (training and validation sets) to segment the structures of  interest, and the final results were validat-
ed on another set of  annotated images (test set).

Glomeruli were classified as normal or lesions based on anatomical criteria. Normal glomeruli had a 
monolayer of  parietal epithelial cells and glomerular tufts with homogenous and robust podocyte labels, 
namely cytoplasmic WT1 and nuclear DACH1. Glomerular lesions showed at least a double layer of  pari-
etal epithelial cells, capillary collapse, and/or segmental or global absence of  podocyte labeling.

ImageJ baseline script for glomerulus and podocyte nuclei segmentation. In order to segment the glomerulus 
using ImageJ, the following sequence was used: (a) channel splitting; (b) thresholding and then dilation 
applied to each channel separately; (c) channel merging; (d) filling holes, eroding, and particle analysis; and 
(e) selection of  the biggest region of  interest. In order to segment podocyte nuclei using ImageJ, the fol-
lowing sequence was used: (a) channel splitting and thresholding; (b) dilation of  WT1 channel followed by 
combination of  all channels using the logical operator “AND”; (c) thresholding of  DNA label; (d) dilation, 
filling holes, and eroding; and (e) distance transformation using watershed (MorphoLibJ plugin).

Dual-output segmentation U-Net. Inspired by Ronneberger et al. (18, 19), a U-Net architecture was imple-
mented in Python 3 using Tensorflow 1.13. The segmentation U-Net consists of  an encoder with 3 layers, 
where the convolutions in the first layer have 32 filters. The number of  filters is doubled in the following 
layers. After the bottom layer with 256 filters, the number of  filters is halved again for each of  the 3 layers 
of  the decoder. We pad the images in order to receive segmentations of  the same size as the input images.

The U-Net was modified to simultaneously return a dual segmentation output: glomerular areas and 
podocyte nuclear areas. An annotated subset of  images (n = 317) was split into training (192 images), vali-
dation (60 images), and test (65 images) subsets with the relation of  approximately 60/20/20, maintaining 
that all images from 1 subject should belong to 1 subset. For training, the use of  extensive on-the-fly data 
augmentation (horizontal and vertical flips, horizontal and vertical shifts, rotations up to 45°) was import-
ant for the generalizability of  the network. The network was trained for 2000 epochs with a batch size of  2 
images on an Nvidia Tesla V100 graphics card. We used RMSprop as an optimizer and introduced a cus-
tom balanced 2-layer binary cross-entropy loss that adaptively takes into account the current performance 
of  each segmentation task. The binary cross-entropy for each task,

 (Equation 1)

for mask (y) and prediction (ŷ) (the prediction is clipped to lie between ε and 1 – ε, with ε = 1 × 10–7, in order 
to avoid logarithms of  1 and, thus, later divisions by 0) is adapted to consider both segmentation tasks simul-
taneously and to weight each term so that the currently poorer performing task receives more importance:  

              (Equation 2)
 

 
where BCEpodo and BCEglom are the binary cross-entropies for the podocyte and glomerulus segmentation 
tasks, respectively. Additionally, we weighted foreground objects and the background in the training loss in 
order to enforce a better segmentation of  narrowly spaced podocytes. This was done using the function 
weight maps w(x) for each image using its ground truth mask x similar to those proposed by Falk et al. (19): 

       (Equation 3)
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where wc is the class probability map for the mask, d1 is the distance to the border of  the nearest cell, d2 is 
the distance to the border of  the second nearest cell, w0 a coefficient that controls the importance of  the 
distance maps, and σ2 the variance of  the Gaussian filter.

Our evaluation metric is the commonly used Dice score, evaluated for each task separately at pixel 
level and additionally at object level for the podocytes. Incomplete nuclear parts or glomeruli were fil-
tered out using postprocessing, removing all objects smaller than 800 μm for glomeruli and smaller than 
3 μm for podocyte nuclei. Given that this architecture provided excellent results, and some tests with 
a more complex architecture (i.e., Mask R-CNN) yielded similar results, we decided to work with our 
more compact and faster dual U-Net.

Hyperparameter optimization. In order to find the optimal architecture and hyperparameters, an extensive 
grid search across various options was performed using Ray Tune (https://docs.ray.io/en/master/tune/
index.html) and Sacred (https://sacred.readthedocs.io/en/stable/). Chosen values are in parentheses: sin-
gle versus dual segmentation (dual), number of  layers (n = 3), number of  filters in the first layer (n = 32), 
dropout in encoder and decoder (no), dropout in the bottom layer (yes), skip connections between encoder 
and decoder (yes), dropout in the skip connections (no), batch normalization (yes), optimizer (RMSprop), 
learning rate (1 × 10–5), learning rate decay (no), loss (balanced 2-layer binary cross-entropy), weighting 
(yes), histogram equalization (no), contrast stretching (no), data augmentation (yes), and oversampling of  
crescents (no). To evaluate these, iteratively, a few (related) hyperparameters were varied. Then, using 4-fold 
cross-validation on the combined training and validation subsets of  the Controls 1 data set (Supplemental 
Table 1), networks were trained, and the optimal configuration was chosen based on the average Dice scores, 
as well as their SD between the different folds of  the cross-validation (or, for similar performance, the least 
data/computationally intensive). This process was repeated with the next set of  hyperparameters. In a sim-
ilar fashion, using 10-fold cross-validation, we evaluated the number of  images used for training to ensure 
that approximately 60–70 images per data set yielded satisfactory results, with Dice scores above 0.90.

U-Net cycleGAN configuration. The U-Net cycleGAN was implemented in Python 3 with Tensorflow 2.0. 
The generator is made up of  an encoder, a transformer, and a decoder. Based on Zhu et al. (20), the encoder 
consists of  3 convolutional layers with 64, 128, and 256 filters; kernel sizes 7, 3, and 3; and strides 1, 2, and 
2. All layers use instance normalization, as well as ReLU activation. The transformer consists of  9 ResNet 
blocks (33), which are made up of  2 convolutional layers with instance normalization and ReLU activation 
for the first layer. The decoder is made up of  3 transposed convolutional layers. Before each decoder layer, 
the input is concatenated with the output of  the corresponding layer in the encoder. The transposed convolu-
tional layers have 128, 64, and 3 filters; kernel sizes 3, 3, and 7; and strides 2, 2, and 1. All layers use instance 
normalization, except for the first 2 layers, which are ReLU activated, and the last layer, which has a hyper-
bolic tangent (tanh) activation since its output is the generated image having pixel values between –1 and 1. 
The discriminator consists of  6 convolutional layers, with 64, 128, 256, 512, 512, and 1 filters; kernel size 4; 
and strides 2, 2, 2, 2, 1, and 1. Except for the first and last layer, all are instance normalized. And, except for 
the last layer, all use a leaky ReLU activation with an α slope of  0.2.

CycleGAN training. The model has been trained on 285 images from Controls 2 (Supplemental Table 1) 
and 180 images from Controls 1. For the validation, 46 images from Controls 2 and 44 from Controls 1 have 
been used. The images were resized to 256 × 256 pixels with 3 channels (RGB) using Gaussian pyramids. 
After their transformation, the images were upsampled to the original size of  1024 × 1024 pixels using 
Laplacian pyramids, as has been done in Engin et al. (34). The pyramids consist of  layers calculated based 
on the original input. The network was trained for up to 200 epochs with a steady learning rate of  2 × 10–4 
for the first 100 epochs and a linearly decaying learning rate that ends at 0 after 200 epochs. The cycle con-
sistency loss and identity loss have been weighted with weights λcyc = 10 and λid = 5, respectively. The batch 
size was 1. The epoch with the lowest validation loss has been selected for transferring the images (epoch 
83). The network was trained on an NVIDIA Quadro RTX 8000 48GB with TeslaLink.

Since bias between different data sets is not a new problem, a comparison between generative mod-
els and traditional approaches was necessary. Because the (initial) effort for generative models is higher, it 
should be shown that they lead to better results. As baseline methods, histogram equalization, color transfer 
based on a single reference image, and an adaptation of  the mean colors to the reference have been tested. 
However, none of  these methods showed a substantial improvement.

Molecular podometrics. Model-based stereology was applied (35) and allowed the estimation of  podocyte 
number and podocyte density per glomerulus. Fiji imaging software (Max Planck Institute of  Molecular  
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Cell Biology and Genetics) was used to navigate the raw files. Podocytes were defined as DAPI+WT-
1+DACH1+ cells. Glomerular cross-sectional areas were measured in order to estimate glomerular volumes 
and thereby define podocyte densities.

The morphometric signature combines the podometrics per glomerulus within each patient by cal-
culating the minimum, maximum, mean, median, and variance of  podocyte number, podocyte density, 
podocyte distance (distance to closest neighboring podocyte), podocyte nuclear area, and glomerular area 
across all glomeruli per subject.

Data and materials availability. The data sets generated and analyzed during the current study are available 
from the corresponding authors. The code is available via https://github.com/imsb-uke/podometric_u_net 
(Branch name: main, commit ID: a33afcc).

Statistics. All statistical analyses were performed using GraphPad Prism (v8.0.2) and Stata 13.1. Results 
are reported as median and IQR. Significance was evaluated using the unpaired Mann-Whitney U test 
when comparing 2 continuous variables. For comparison of  3 groups, Kruskal-Wallis test with Dunn’s mul-
tiple-comparisons test was used. Correlation analyses were performed using Spearman’s rank coefficients. 
A P value below 0.05 was considered to be statistically significant.

Classification of  subjects into controls and ANCA-GN patients was performed in scikit-learn (36) 
using a logistic regression and leave-one-out cross-validation, where 1 subject was iteratively excluded from 
the training of  the model and then used as a test set. The final results are a combination of  all subjects’ 
results, each tested on a different model. Due to the nature of  leave-one-out cross-validation without a com-
pletely unseen test set, no further optimization of  parameters was possible. Each of  the features in the mor-
phometric signature was normalized by removing its mean and dividing by its SD before using it to train 
the logistic regression (excluding the test subject). To evaluate podometrics at the level of  single glomeruli, 
individual glomeruli were clustered using ClustVis (37) based on podometrics via PCA by Pareto scaling to 
rows. Probabilistic PCA was used to calculate principal components.

Study approval. The ethics approval was obtained from the IRB of  the RWTH Aachen University Med-
ical Center, Germany (EK-016/17); the Ethik-Kommission der Ärztekammer Hamburg; and local ethics 
committee of  the chamber of  physicians in Hamburg (PV4806), all in accordance with the ethical princi-
ples stated by the Declaration of  Helsinki.
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