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Escherichia coli-derived virus-like particles in vaccine
development
Xiaofen Huang1,2, Xin Wang1,2, Jun Zhang1,2, Ningshao Xia1,2,3 and Qinjian Zhao1,2

Recombinant virus-like particle-based vaccines are composed of viral structural proteins and mimic authentic native viruses but are
devoid of viral genetic materials. They are the active components in highly safe and effective vaccines for the prevention of
infectious diseases. Several expression systems have been used for virus-like particle production, ranging from Escherichia coli to
mammalian cell lines. The prokaryotic expression system, especially Escherichia coli, is the preferred expression host for producing
vaccines for global use. Hecolin, the first licensed virus-like particle vaccine derived from Escherichia coli, has been demonstrated to
possess good safety and high efficacy. In this review, we focus on Escherichia coli-derived virus-like particle based vaccines and
vaccine candidates that are used for prevention (immunization against microbial pathogens) or disease treatment (directed against
cancer or non-infectious diseases). The native-like spatial or higher-order structure is essential for the function of virus-like particles.
Thus, the tool box for analyzing the key physicochemical, biochemical and functional attributes of purified virus-like particles will
also be discussed. In summary, the Escherichia coli expression system has great potentials for producing a range of proteins with
self-assembling properties to be used as vaccine antigens given the proper epitopes were preserved when compared to those in
the native pathogens or disease-related target molecules.
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INTRODUCTION
Vaccination is the most efficient way to control and prevent
infectious diseases. Currently, the majority of licensed vaccines
produced by traditional technologies are either live-attenuated or
inactivated, although both may present safety issues (such as
reversion to virulence and residual virulence).1 In the 1970s,
scientists discovered that a single key protein from a virus could
be a vaccine antigen.2, 3 Almost a decade later, the first genetically
engineered vaccine using recombinant gene expression technol-
ogy was produced in the prokaryotic microbe.4 With the advent of
modern molecular biology, recombinant subunit vaccines have
flourished in human vaccinology. Virus-like particles (VLPs) are
composed of the virion-building proteins of a virus and
spontaneously self-assemble into particles without incorporating
the infective viral genome.5 Thus, VLP are extremely promising
vaccine candidates due to their native-like and non-infective
properties. VLPs can induce both innate and adaptive immune
responses and have shown to be highly immunogenic in animals
and humans.5, 6 The approved VLP-based vaccines have been
produced in yeast,7, 8 insect, bacteria Escherichia coli (E. coli),9, 10

plant, and mammalian cells,11, 12 ranging from prokaryotic to
eukaryotic expression systems.
Bacteria, especially E. coli, have been widely used for producing

recombinant proteins. The first recombinant pharmaceutical
approved for the treatment of diabetes, recombinant human
insulin (Humulin-US/Humuline-EU), was obtained from E. coli.13

Numerous recombinant protein-based products derived from E. coli
have been approved for therapeutic use, including cytokines,
hormones, growth factors, serine proteases, and fusion proteins.14

The food and drug administration and European medicines agency
have approved 151 protein-based recombinant drugs, 45 (29.8%) of
which are produced using products derived from E. coli.15 From
2010 to July 2014, almost 33% of the approved recombinant
biopharmaceutical in the United States and EU were obtained from
Chinese hamster ovary cells, while 29% and 16.5% were obtained
from E. coli and yeast, respectively.16 Thus, E. coli is still a widely
used host for the production of protein-based biopharmaceuticals.
Of the 174 different types of VLPs successfully produced,
approximately 28% were produced in bacterial systems, 20% in
yeast systems and 28% in insect systems.17 As of 2015, over 50 VLP-
based vaccines or vaccine candidates, derived from different
expression hosts, have been licensed or are under clinical
development (Fig. 1, Supplementary Table 1S). Hecolin was the
first VLP-based vaccine against hepatitis E virus (HEV) obtained from
E. coli and was licensed by the FDA of China, or CFDA, in 2011.18, 19

Currently, scientists in academia and industry are actively seeking
ways to produce more cost-effective VLP-based vaccines, particu-
larly low-cost vaccines for distribution in developing countries.
VLP-based vaccines are pre-eminent candidates for vaccination

because of their high immunogenicity and good safety perfor-
mance.5, 20 VLP-based vaccines derived from E. coli are more cost-
effective than those derived from insect cells or yeasts during
industrial production. However, only one VLP-based vaccine,
Hecolin, fully derived from E. coli has been approved for use in
humans.20 Currently, a number of recombinant specific E. coli
strains have been developed with the intention of achieving high-
yield and high-quality protein production. Proper folding that
allows the formation of specific structures is essential for the
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function of VLPs in clinical use. Various in vitro analytical methods,
in conjunction with in vivo evaluation, have been established to
monitor the presence of native-like epitopes on VLPs obtained
from E. coli, thereby ensuring the efficacy of VLP-based vaccines.
This review highlights examples of E. coli-derived VLP-based
vaccines and vaccine candidates. Additionally, the functional
assessment of VLPs and the challenges associated with recombi-
nant VLP proteins produced in E. coli will also be discussed.

WHY USE E. COLI-DERIVED VLPS FOR VACCINE
DEVELOPMENT?
As a robust protein expression host, E. coli has many advantages,
such as inexpensive culturing, high expression levels, easy scale-
up and short turnaround time.21, 22 It is a preferred expression
system for protein production if the protein can be correctly
folded. In vaccine development, high product cost would restrict
utilization, especially in developing countries.23 Existing, emerging
and re-emerging infectious diseases pose a threat to human life
and productivity in both the developed and the developing world.
There is thus an urgent need for new vaccine manufacturing
platforms that are able to rapidly and cheaply produce vaccine
antigens. Platform technology based on E. coli, which can
synthesize viral capsomeres at gram-per-litre levels, was devel-
oped by Middelberg et al. The high yield of capsid proteins or
structural proteins (the basic unit of VLPs) could significantly
reduce the time and the cost of vaccine production.24 A microbe-
based platform has the potential to quickly provide affordable,
safe, and efficacious vaccines in developing countries.

E. COLI-DERIVED VLP VACCINES AND VACCINE CANDIDATES
E. coli is the preferred recombinant expression host due to its ease
of use and the low cost associated with cultivation. Several E. coli-
derived VLP vaccines or vaccine candidates have entered clinical
trials in recent years (Table 1). Hecolin, a p239 VLP-based vaccine,
containing 368-606 aa of open reading frame 2 of a genotype
1 strain of HEV,25 was the first commercialized E. coli-derived
vaccine for the prevention of HEV infection.19 Meanwhile, two E.

coli-derived VLP-based vaccines (NCT01735006 and NCT02710851)
against human papillomavirus (HPV) also has been developed in
clinical trials. In addition, VLPs have been utilized as vaccine
platforms to increase the immunogenicity of antigens. These
chimeric VLP vaccines were both targeted against infectious and
non-infectious diseases. The high-cost of the vaccines was the
main limitation preventing worldwide implementation.26 Devel-
oping more affordable vaccines could partly address the
inaccessibility and other hurdles faced by some commercial
vaccines.

HEV vaccine
The HEV, the causative agent of hepatitis E, is the sole member of
the genus Hepevirus within the family Hepeviridae and transmits
primarily in a fecal-oral manner.27, 28 HEV infection is a serious
threat to public health, especially in developing countries.
Mammalian HEV is classified into four major genotypes, but only
one serotype.29 This opens up the opportunity for the develop-
ment of a univalent, broad-spectrum HEV vaccine. HEV is a 34-nm,
non-enveloped, positive-sense single-stranded RNA icosahedral
virus with an approximately 7.2-kb genome containing three open
reading frames (ORFs). These ORFs encode a number of different
proteins for various biological functions, among which ORF2 (660
amino acid) encodes the sole capsid protein, pORF2.30

Hecolin, the first prophylactic hepatitis E vaccine, was licensed
in 2011 and launched in 2012 in China.19 It is also the world’s first
E. coli-derived VLP-based vaccine synthesized on a commercial
scale.10 The neutralizing and immunodominant epitopes from HEV
genotype 1 were present on the surface of p239 VLPs.9 The high
efficacy of the HEV vaccine was demonstrated by a randomized,
double-blind, placebo-controlled phase III clinical trial;31 a follow-
up study subsequently demonstrated long-term efficacy of up to
4.5 years after the initial vaccination.32 Product consistency was
demonstrated through comprehensive characterization of anti-
gens in Hecolin. The comparable p239 VLPs characteristics of the
antigen produced at different scales indicated that the antigen
manufacturing process was robust and scalable.33 The vaccine
contains 30-μg truncated capsid protein formulated with alumi-
num adjuvants.10 Zhang et al. have demonstrated the

Fig. 1 The number of VLP-based vaccines or vaccine candidates that were approved and in clinical studies from 1986 to 2015. Total numbers
of VLP vaccines or candidates derived from different expression systems (including E. coli) are plotted on the left. The numbers of
commercialized VLP vaccines or those being tested in clinical trials derived from E. coli are plotted on the right.
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preservation of critical antigen epitopes absorbed on adjuvants
and recovered antigens post-dissolution treatment using a set of
biochemical, biophysical, and immunochemical methods (Fig. 2).34

In that study, the anti-HEV monoclonal antibody 8C11, which was
applied in different immunochemical methods, was able to
capture the native HEV virions.9 This result indicated that virion-
like epitopes are present on the surface of E. coli-derived p239
VLPs. Multi-year stability is required for marketed vaccines. The
real-time and long-term stability of Hecolin, stored at 4 °C for
24 months, was evaluated using a set of biophysical, biochemical,
and immunochemical approaches. The results demonstrated
overall high structural stability of p239 VLPs over 24 months.35

HPV vaccines
HPVs, non-enveloped double-stranded DNA viruses, are the
causative agents of cervical cancer.36, 37 Papillomavirus virions
consist of two structural proteins, L1 and L2; the major structural
protein is L1, which is able to self-assemble into pentamers and
subsequently into VLPs.38 Currently, three prophylactic HPV
vaccines are based on VLPs, Gardasil-4 (a quadrivalent HPV16/
18/6/11 vaccine produced in yeast), Gardasil-9 (a 9-valent 16/18/
31/33/45/52/58/6/11 HPV vaccine produced in yeast), and Cervarix
(a bivalent HPV 16/18 vaccine expressed via insect cells).39–41

Clinical trials have shown that all three vaccines consistently
induced production of protective and neutralizing antibodies to
prevent infection. These vaccines are generally well tolerated.42, 43

However, their high production and delivery costs are significant
barriers to worldwide implementation.44 The globally licensed HPV
vaccines, all produced in eukaryotic systems with high production
cost,45 are thus excluded low-income regions, where cervical

cancer results in higher mortality.46 Thus, there is a pressing need
for more cost-effective vaccines.
Xiamen Innovax Biotech has used E. coli to produce a low-cost

HPV vaccine based on L1 VLPs. L1 is the HPV major structural
protein (the other minor capsid protein is L2).47 A bivalent HPV
vaccine (Types 16, 18), based on these VLPs, has been developed
and has been shown to be safe and highly immunogenic in
preclinical studies. The data indicated that HPV16/18 VLPs were
obtained from a prokaryotic expression system with desired
immunogenicity.48 The results of a phase I safety trial showed that
the E. coli expressed recombinant HPV 16/18 bivalent vaccine
candidate is well tolerated in healthy women, with just few minor
adverse events attributable to the vaccination were observed.48

The immunogenicity of vaccine was demonstrated in healthy
young women in a phase II clinical trial.49 A large-scale phase III
efficacy trial was initiated in November 2012 in China
(NCT01735006). Additionally, another bivalent HPV vaccine
candidate (Types 6, 11) obtained from E. coli is currently
undergoing a phase II clinical trial (NCT02710851) (Table 1). The
success of HPV L1 VLPs and HEV p239 obtained from E. coli
indicates that this microbe-based vaccine technology may
facilitate the development of cost-effective vaccines and bring
benefits to people in developing countries.

Other prophylactic vaccines
VLPs have been used as a vaccine delivery platform to increase the
immunogenicity of antigens.50 Several chimeric VLP vaccine
candidates are listed in Table 1. In addition to the HEV vaccine
and HPV vaccines mentioned above, a malaria vaccine and two

Fig. 2 Analytical toolbox for the characterization of VLPs. A series of modern techniques make up a “toolbox” that has been extensively used
for structural and functional characterization of VLPs. Biochemical: SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis,
MALDI-TOF MS matrix-assisted laser desorption/ionization time of flight mass spectrometry,33 LC-MS liquid chromatography–mass
spectrometry,33 icIEF imaged capillary isoelectric focusing has been widely used for protein characterization,33 Biophysical: the morphology
of VLPs can be observed by TEM, Cry-EM, and AFM. TEM transmission electron microscopy, Cry-EM cry electron microscopy,85 AFM atomic force
microscopy,114 AF4-MALS, DLS, ES-DMA, and HPSEC generally are used for the measurement the size of particles. AF4-MALS asymmetric flow
field-flow fractionation coupled with multiple-angle light scattering,117, 118 DLS dynamic light scattering,119 ES-DMA electrospray differential
mobility analysis,118 HPSEC high performance size exclusion chromatography,33 AUC analytical ultracentrifugation, CD Circular dichroism,33 UV
ultraviolet spectroscopy,33 DSC differential scanning calorimetry, mAb or pAb-based assays are used to measure the concentration of
functional epitopes in the vaccine samples. Epitope-mapping: comparable of epitope overlap of VLPs in different vaccine samples by mAbs;
SPR surface plasmon resonance, IVRP in vitro relative potency, KD equilibrium dissociation constant,114 IC50 half maximal inhibitory
concentration, ELISA enzyme-linked immunosorbent assay, The mini-VLP in the figure is the structure mode of HPV59, which was adapted
from Structure, Li et al.120
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influenza VLP-based vaccines expressed by the E. coli system were
reported.

Malaria vaccine. Malaria, caused by the Plasmodium parasite, is a
serious public health problem in the tropics.51 There is no highly
effective vaccine for malaria.52 A chimeric VLP-based vaccine
candidate, MalariVax (ICC-1132), consists of a hepatitis B virus core
VLPs produced in E. coli, displaying malaria epitopes (the
Plasmodium falciparum circumsporozoite) on their surface. The
results of a phase I trial showed clinical efficiency against malaria
parasites.53 No subsequent clinical data were published.

Influenza vaccines. Due to viral drifts and shifts, a particular
influenza vaccine cannot provide long-term immunity.54 A
microbial platform may rapidly provide a vaccine to combat
seasonal influenza epidemics.55 The anti-influenza A M2e-HBc
vaccine candidate, ACAM-FLU-A, was produced by E. coli.
Recombinant hepatitis B core antigen (HBcAg), as a carrier VLP,
is one of the main structural antigens of HBV.56 The M2 external
domain is a relatively conserved epitope in both human and avian
influenza A viruses that is present on the surface of HBcAg VLPs.
The immunogenicity has been confirmed in a phase I clinical trial
(NCT00819013).57–60 In addition, globular head domain (gH1)-
Qbeta, a fully bacterially produced influenza vaccine, was obtained
by chemically conjugating the gH1 of hemagglutinin (HA) from
the pandemic A/California/07/2009(H1N1) influenza strain to the
Qbeta VLPs. A phase I trial has demonstrated that gH1-Qbeta was
able to induce high titer of anti-viral antibodies with a favorable
safety profile.61

Therapeutic vaccines in clinical trials for human diseases
A combination vaccine used for chronic hepatitis B treatment,
ABX203 (trade name HeberNasvac), is composed of hepatitis B
virus surface (HBsAg) and core antigens (HBcAg), which are
expressed in Pichia pastoris and E. coli, respectively.62 ABX203 has
been shown to be effective and well tolerated in clinical trials.63–65

The Cuban regulatory authorities granted the Center for genetic
Engineering and Biotechnology their first marketing authorization
application for ABX203 in 2015.66 Additionally, a number of
chimeric VLP vaccine candidates, chemically conjugated antigens
to the RNA bacteriophage Qβ VLPs derived from E. coli, have been
developed by Cytos Biotechnology AG (Switzerland) (Table 1).
These chimeric VLP vaccine candidates are designed to targeted
non-infectious diseases such as nicotine addiction, hypertension,
cancer, diabetes, allergies, and Alzheimer’s disease. Results
showed that the use of nicotine-Qβ VLPs, such as NIC002
(formerly CYT002-Nic002), have promoted long-term abstinence
from smoking.67, 68 Similarly, a Qβ VLP conjugated with a modified
Ang II peptide, CYT006-AngQβ, were developed as an anti-
hypertensive vaccine.69 Additionally, CYT004-MelQβG10
(NCT00651703), CYT103-IL1bQβ (NCT00924105), and CYT003-
QβG10 (NCT00890734), which are directed against malignant
melanoma, Type II diabetes, allergic rhinitis, and asthma,
respectively, are currently in various stages of clinical trials. CAD-
106, in which Qβ VLP is covalently coupled to the Aβ1-6 peptide, is
an immunotherapeutic vaccine for Alzheimer’s disease currently
undergoing a Phase II trial.70–72

In addition, many E. coli-derived VLP-based vaccine candidates,
against West Nile virus,73 foot-and-mouth disease virus74 and
hepatitis C virus75 also have been developed in preclinical studies.
The potency of these E. coli-derived VLP antigens has been
demonstrated in different animal models. The efficacy and safety
of a vaccine need to be demonstrated for licensing in human
use.76, 77 Post licensure, the quality of vaccines during manufac-
turing and storage should be assessed to ensure their safety and
efficacy throughout the life cycle management of vaccine
commercialization. Structural and functional assessment of VLPs

is the most critical antigen characterization assays for recombinant
protein based vaccines.

STRUCTURAL AND FUNCTIONAL ASSESSMENT OF VLPS
E. coli-derived HEV p239 VLPs and HPV VLPs consist only of the
viral capsid protein without incorporating genetic materials but
retain a conformation similar to that of the native virus.9, 78

Generation of functional antibodies is dependent on the correct
antigen conformation and native-like epitopes being present on
the surface of VLPs.79 VLPs containing virion-like epitopes can be
acquired via antigen-presenting cells and then induce a protective
humoral immune response.50, 80 Thus, recombinant VLPs must be
correctly folded to ensure their function by inducing a protective
humoral immune response. The spatial or higher-order structure
of the vaccine antigen is the basis of the various biological
functions of protein-based vaccines. Quantitative analysis of the
functional epitopes on VLPs using monoclonal antibody-based
assays can be an advantageous way to ensure vaccine safety and
efficacy.81 Multifaceted analytical approaches, such as biochem-
ical, biophysical, and immunochemical methods (Fig. 2), have
been well established and are widely used for the evaluation of
three different licensed recombinant VLP-based vaccines: hepatitis
B vaccine, hepatitis E vaccine, and HPV vaccine.82

The identification of the primary structure indicated that the
target protein composed of VLPs was successfully expressed.
Biochemical characterization includes the primary amino acid
sequence, molecular weight, isoelectric point, and purity of the
VLPs.10 The secondary and tertiary structures of the VLPs can be
measured by circular dichroism and ultraviolet spectroscopy.33

Mass spectrometry is an indispensable analytical technique used
to determine the mass of proteins and their amino acid
composition.33, 83, 84 This tool is useful for process monitoring
and demonstrating final product consistency at single amino acid
level. SDS-PAGE, the most common method that used to
determine the purity, integrity and molecular weight of the
purified antigen.25, 84 The morphological characteristics and the
state of the VLP are amenable to imaging by transmission
electron microscopy (TEM),85 analytical ultracentrifugation (AUC)
or density gradient ultracentrifugation.86, 87 TEM methods can be
used to determine the three-dimensional structure of VLPs and
investigate their interaction with antibodies or their appearance
when adsorbed to an adjuvant, in combination with modern
computational tools, bioinformatics, homology modeling, docking,
and MD simulation.20, 85, 88 Differential scanning calorimetry and
cloud point have been widely applied for investigating the
thermal stability and aggregation propensity of recombinant
proteins.33, 89–91 These modern techniques make up a “toolbox”
that has been extensively used for structural and functional
characterization of VLP-based vaccines (Fig. 2).
As an immunogen, VLP-based vaccines generally stimulate a

humoral and a mostly CD4 T cell-mediated immune response.80

VLPs were injected into individuals to develop protective
immunity against infection. Neutralizing and immunodominant
epitopes on antigen are the structural basis of an epitope to elicit
functional and protective antibodies.79 The functional epitopes
can be quantitated by their ability to bind to a panel of specific
monoclonal antibodies.92–94 Monoclonal antibodies have been
developed as specific probes to identify and characterize virion-
like epitopes.34, 95, 96 Binding activity to a certain neutralizing
epitope can serve as an excellent surrogate marker for in vivo
immunogenicity or vaccine efficacy. Currently, various immunoas-
says have been applied for assessment of the antigenicity of HBV,
HPV, and HEV VLPs using a panel of specific and functional
monoclonal antibodies (Fig. 2). These methods include one-site
binding and label-free SPR technology,33, 88, 97 solution competi-
tion ELISA (IC50),

88, 98, 99 and sandwich ELISA.95, 100, 101 In vitro
relative potency assays (IVRP assays) generally is a sandwich-type
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immunoassay that uses neutralizing monoclonal antibodies to
measure the concentration of functional epitopes in the vaccine
sample. The IVRP assay has been shown to have a good
correlation with mouse potency in Gardasil-4.101 Thus, mouse
potency can be replaced by IVRP for release and stability testing,
as well as monitoring of the production process.

DISCUSSION
VLPs have been widely used in vaccinology. The next generation
of VLP-based vaccine candidates must be creative in form and
function to satisfy diverse needs.50 Several viral structures
produced in E. coli, such as HBcAg, Qβ, AP250, murine
polyomavirus and HPV, have been used for vaccine platforms.22,
59, 69, 102, 103 Vaccinologists can now add heterologous epitopes or
antigens to these VLPs from different origins achieved by
genetically fusing or chemical conjugation.104 Middelberg et al.
have developed in vitro cell-free assembly of modular VLPs based
on murine polyomavirus capsid proteins expressed in E. coli as
vaccine carriers to enhance immune responses, especially to
weakly or non-immunogenic antigens.22 These modular VLPs have
potential for use as a vaccine platform to increase the efficacy and
stability and to allow for more versatile display of antigens. Re-
engineering or grafting epitopes in chimeric VLPs may widen the
coverage spectrum compared to monovalent vaccines.50 Several
chimeric VLP vaccine candidates have been developed by
chemically conjugating foreign antigens to RNA bacteriophage
Qβ VLPs obtained from E. coli. These chimeric VLP vaccines are
currently in clinical development (Table 1). The yield of Qβ VLP
production in E. coli is higher than that in yeast.105 RNA
bacteriophage VLPs naturally encapsidated ssRNA in E. coli, such
that it could influence the immune bias when used in mouse
immunizations, with a shift from IgG1 to IgG2a compared to VLPs
without RNA, indicating that the Th1-biased immune response has
occurred.106–108 The Th1-type immune response is essential for
the control of intracellular pathogens and could be an ideal
platform for future prophylactic (malaria, HIV, Herpes viruses) and
therapeutic vaccine applications (cancer and chronic hepatitis).109

VLPs derived from a given viral protein or as displaying
bionanoparticles of foreign epitopes could enhance the immuno-
genicity of the B-cell epitopes on the particle surface or modulate

the Th1- and/or Th2-immune response due to the the nature of
the B-cell or T-cell epitopes built in via recombinant technology as
part of the protein-based particles.
The commercial VLP-based vaccines have been constructed

through eukaryotic or prokaryotic systems. A brief comparison
among different expression systems with respect to their
applications in producing recombinant VLPs has been summar-
ized in Table 2. As a manufacturing platform, E. coli faced several
obstacles, which may limit its application in protein-based
biopharmaceuticals. Their limitation factors included: (1) lack of
ability to produce the correct disulfide bonds, (2) fail to produce
recombinant proteins with mammalian-like post-translational
modifications, (3) the problems of protein solubility, and (4) the
presence of endotoxins (lipopolysaccharide, LPS).17 Post-
translational modifications play an important role in protein
folding, processing, and stability, as well as final biological activity
and even the immunogenicity of the protein.110 Disulfide bond
formation, glycosylation, phosphorylation and proteolysis proces-
sing play a crucial role in biological activity of some recombinant
proteins.15 E. coli cannot synthesize useful HBsAg particles,
probably because of unfavorable environmental conditions, such
as pH and redox potential, or lipid compositions within the
bacterium.111 Studies have also shown that HBcAg phosphoryla-
tion is essential for viral replication and capsid formation.112

Therefore, the expressed proteins may be insoluble, unstable or
inactive without post-translational modifications. E. coli stands out
as the expression system for the production of small recombinant
proteins without post-translational modifications.14, 15 However,
Spiess et al. developed an approach for the efficient generation of
nonimmunogenic, stable bispecific antibodies with a natural IgG
architecture by co-culture of bacteria (E. coli) expressing two
distinct half-antibodies.113 This technology provides a rapid
generation of biospecific antibodies with natural architecture
from any two existing antibodies for academic research and
industrial development.
Currently, numerous mutant E. coli strains have been developed

to improve the different protein expression (representative
examples are shown in Table 3). Origami™ 2(DE3) is mutated in
glutathione reductase and thioredoxin reductase to promote
target protein disulfide bond formation. Several strategies were
applied to solve the insolubility of proteins by adjusting culture

Table 2. A brief comparison among different systems with respect to their applications in producing recombinant VLPs

Property E. coli Yeast Baculovirus-insect cells Mammalian cells

Production cost + ++ +++ ++++

VLP production levels ++++ +++ ++ +

VLP complexity20 + ++ ++++ ++

Post-translational modifications(PTMs)*

Disulfide bond Unfavorable redox potential for
disulfide bond formation

Yes Yes Yes

O-glycosylation No Yes Yes Yes

N-glycosylation No Yes The inability to synthesize
mammalian-type N-glycans

Yes

Phosphorylation No Yes Yes Yes

Acylation No Yes Yes Yes

γ-Carboxylation No No No Yes

Applications** Simple polypeptides and
proteins (Hecolin)

Mammalian-like or secreted
proteins (Gardasil-4 and Gardasil-
9)

Mammalian-like or secreted
proteins (Cervarix)

Mammalian proteins
(GenHevac B)

*Post-translational modifications (PTMs) are similar or identical to those occurring in mammalian cells **The application examples of VLP-based vaccines
derived from different expression systems were summarized in Fig. 1 and Supplementary Table 1S. Hecolin (HEV vaccine): manufactured by Xiamen Innovax
Biotech Co., Ltd. Gardasil-4 and Gardasil-9 (HPV vaccines): manufactured by Merck. Cervarix (HPV vaccine): manufactured by GSK. GenHevac B (HBV vaccine):
manufactured by Pasteur-Merieux Aventis
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conditions (such as low temperature), using fusion protein
systems and in vitro denaturing/re-assembly of insoluble inclusion
body.17 The key for VLPs to elicit both humoral and CD4 T cell-
mediated immune responses is that the VLPs retain a conforma-
tion similar to that of native viruses in molecular scaffolds. Zhao
et al. have demonstrated that disassembly-reassembly (D/R) of
HPV VLPs produced more virion-like antibody reactivity.114

The D/R treatment with defined and controlled physicochemical
conditions have been explored for better folding of structural
proteins, such as the formation of correct disulfide bond.87 These
additional bioprocessing steps with well-controlled conditions will
be essential to obtain more desirable VLPs with in-particle
assembly and particle-to-particle homogeneity. Most gram-
negative bacteria contain endotoxins, LPSs, which can induce a
pyrogenic response.115 Thus, for safe use in humans, LPSs must be
removed from the recombinant proteins expressed in E. coli to
maintain the levels of endotoxins below a certain threshold.
However, the removal of LPSs increases the complexity and the
cost of protein purification processes.115 Recently, Mamat et al.
constructed endotoxin-free E. coli strains by multi-step mutagen-
esis, KPM335, which provided an endotoxin-free environment and
can be a versatile expression system for protein production.115, 116

Thus, although E. coli has some limitations, it could be a potential
expression host for rapid, scalable and economical VLP-based
vaccine production.

CONCLUSIONS
In summary, several promising E. coli-derived VLP-based vaccines
or vaccine candidates, directed against both infectious and non-
infectious diseases, have been currently commercialized or are
being developed in the clinical testing stage. The success of E. coli-
derived VLPs (Hecolin) as recombinant vaccine antigens sug-
gested that using microbial synthesis has the potentials to
facilitate the production of low-cost vaccines for global use. VLPs
mimicking viral capsids or chimeric VLPs by grafting epitopes of
interests to a well-behaved VLP display vector are platforms for
future vaccines via structure-based modular design. Different
analytical methods for antigen characterization provide important
supports for recombinant VLP-based vaccines to ensure their
efficacy and safety, and most importantly the preservation of
native-like epitopes during manufacturing, storage and transpor-
tation of the vaccines. Further improvements on the E. coli
platform could be achieved by genetically modify the expression
host for achieving certain specific goals, such as protein
expression with post-translational modifications. Better under-
standing of protein production and self-assembly would facilitate

scale up and better process control at commercial production
scale. As a result, rapid and inexpensive VLP-based vaccine
production could be realized for global accessibility.
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