
Data and text mining

Robust identification of temporal biomarkers in

longitudinal omics studies

Ahmed A. Metwally 1,2,3,*, Tom Zhang4, Si Wu1, Ryan Kellogg1,5, Wenyu Zhou1,

Kevin Contrepois1, Hua Tang1 and Michael Snyder 1,*

1Department of Genetics, Stanford University, Stanford, CA 94305, USA, 2Illumina Artificial Intelligence Laboratory, Illumina Inc., San

Diego, CA 92122, USA, 3Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt,
4Department of Computer Science, Columbia University, New York, NY 10027, USA and 5Department of Bioengineering, Stanford

University, Stanford, CA 94305, USA

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on November 29, 2021; revised on April 28, 2022; editorial decision on June 3, 2022; accepted on June 26, 2022

Abstract

Motivation: Longitudinal studies increasingly collect rich ‘omics’ data sampled frequently over time and across
large cohorts to capture dynamic health fluctuations and disease transitions. However, the generation of longitudin-
al omics data has preceded the development of analysis tools that can efficiently extract insights from such data. In
particular, there is a need for statistical frameworks that can identify not only which omics features are differentially
regulated between groups but also over what time intervals. Additionally, longitudinal omics data may have incon-
sistencies, including non-uniform sampling intervals, missing data points, subject dropout and differing numbers of
samples per subject.

Results: In this work, we developed OmicsLonDA, a statistical method that provides robust identification of time inter-
vals of temporal omics biomarkers. OmicsLonDA is based on a semi-parametric approach, in which we use smoothing
splines to model longitudinal data and infer significant time intervals of omics features based on an empirical distribu-
tion constructed through a permutation procedure. We benchmarked OmicsLonDA on five simulated datasets with di-
verse temporal patterns, and the method showed specificity greater than 0.99 and sensitivity greater than 0.87.
Applying OmicsLonDA to the iPOP cohort revealed temporal patterns of genes, proteins, metabolites and microbes
that are differentially regulated in male versus female subjects following a respiratory infection. In addition, we applied
OmicsLonDA to a longitudinal multi-omics dataset of pregnant women with and without preeclampsia, and
OmicsLonDA identified potential lipid markers that are temporally significantly different between the two groups.

Availability and implementation: We provide an open-source R package (https://bioconductor.org/packages/
OmicsLonDA), to enable widespread use.

Contact: ametwall@stanford.edu or mpsnyder@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

Introduction

Human health is highly dynamic, and there is great interest in better
understanding how wellness and disease states fluctuate over time in
relation to different variables such as lifestyle or treatment perturba-
tions. While genetics provides a blueprint for life, health states are
also reflected by many other ‘omics’ such as transcriptomics, proteo-
mics, metabolomics, lipidomics, and microbiomics. With rapid
advances and decreasing costs in sequencing and mass spectrometry,
many studies are beginning to measure comprehensive omics pro-
files at frequent timepoints across many individuals. Longitudinal

omics studies generate enormous datasets; however, there is current-
ly a major bottleneck in analyzing these data to extract and interpret
meaningful findings. In particular, there is a need for robust statistic-
al methods for longitudinal omics.

Longitudinal omics data have their own properties that differen-
tiate them from cross-sectional experiments, including high dimen-
sional feature space, temporal and intrapersonal variation, and
samples characterized by heterogeneity of various natures. These
heterogeneities include a different number of samples per subject,
uncaptured data points, variable time of sample collection ‘sampled
non-uniformly’ and omics features often represent a biological
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process that usually exhibits temporal variation. Another aspect is
the variability in temporal dependence structure, ‘variance–covari-
ance structure’, between repeated measurements. All of these char-
acteristics of longitudinal omics data make the analysis a
challenging task. Methods developed for longitudinal omics data
analysis can be categorized into the following groups: (i) methods
that extract omics biomarkers for a specific phenotype (Storey et al.,
2005), (ii) methods that build mechanistic models to describe the
underlying mechanism involved in gene regulation, metabolism or
protein–protein interaction causally related to specific phenotype
(Bordbar et al., 2011; Gonçalves et al., 2013; Mardinoglu et al.,
2013) and (iii) identifying clusters of omics features that have similar
expression patterns (Bar-Joseph, 2004).

For the class of methods that identify omics biomarkers, many
statistical models have been proposed. The joint mixed model,
which is widely used, links separate linear mixed models by allowing
their model-specific random effects to be correlated (Verbeke et al.,
2014). The advantages of this approach include well-established the-
ory and efficiency gains (Gueorguieva and Sanacora, 2006;
Molenberghs and Verbeke, 2000). More importantly, a joint
random-effect model allows the correlation between different out-
comes to be assessed. It can provide a succinct summary of not only
how the evolution of one outcome variable is correlated to the evo-
lution of another outcome but also how the correlation between out-
comes changes over time (’evolution of association’) (Fieuws and
Verbeke, 2004). On the other hand, the mixed-effect model comes
with its set of assumptions, such as homogeneity of variance of the
residuals being equal across groups (Wang et al., 2017) and normal-
ity of the residuals (Santos Nobre and da Motta Singer, 2007). In
many situations, these assumptions are violated. With the rapidly
increasing size and complexity of omics datasets, non-parametric
methods (Conover, 1999; Efron and Tibshirani, 1994) are emerging
as the primary methods for biomedical analysis. Non-parametric
statistics have the advantage of making minimal distributional
assumptions and can scale to fit the complexity of the data. A recent
non-parametric robust method, bootLong, was developed for
extracting microbial biomarkers from longitudinal microbiome data
based on a moving block bootstrap approach (Jeganathan et al.,
2018). It accounts for within-subject dependency by using overlap-
ping blocks of repeated observations within each subject. It then
infers biomarkers based on approximately pivotal statistics.
Although bootLong shows promising results in identifying microbial
biomarkers in microbial longitudinal studies, it does not provide
time intervals of differences between the study phenotypes. Another
method, MetaLonDA, has been proposed to find time intervals of
significant microbial biomarkers using a permutation test (Metwally
et al., 2018). MetaLonDA is tailored to microbial experiments
through the use of a negative binomial distribution. Similarly,
splinectomeR was introduced recently to test whether two groups of
individuals statistically follow different trajectories over time or not
through the use of LOESS regression (Shields-Cutler et al., 2018). It
also has the ability to identify time intervals of significant markers.

In this article, we introduce a robust method to perform longitu-
dinal differential analysis on omics features in order to identify time
intervals of differences between study groups. The method is based on
a semi-parametric approach, where we use smoothing splines to
model longitudinal data and infer significant time intervals of changes
in omics features based on an empirical distribution constructed
through a permutation procedure. The proposed method can handle
all types of inconsistencies in sample collections and adjust for sub-
jects’ specific baseline. Identifying biomarkers and their significant
time interval differences can inform intervention strategies (drugs,
probiotics, antibiotics and supplements), and most importantly, may
indicate the best time for interventions to be administered to patients.
The method achieved a correctly calibrated type-I error rate and is ro-
bust to data collection inconsistencies that commonly occur in longi-
tudinal human studies. Application of the proposed method to iPOP
cohort revealed a multitude of sex differences in dynamic respiratory
infection response. To our knowledge, this is the first study to investi-
gate sexual dimorphism in infection response with frequent temporal
sampling and delineation of the dynamic infection response for each

sex. We also applied OmicsLonDA on a longitudinal lipidomics
study on preeclampsia for the identification of time intervals that lip-
ids are significantly different between pregnancy with and without
preeclampsia. We provide an open-source Bioconductor R package,
OmicsLonDA (Omics Longitudinal Differential Analysis), for wide-
spread availability.

2. Materials and methods

The proposed method, OmicsLonDA, aims to find the feature’s sig-
nificant time intervals (FSTI) of differences between each pair of the
tested groups (e.g. healthy versus diseased, male versus female, etc.).
The method works on unpaired experiment design, where subjects’
longitudinal samples are related to only one of the tested groups. We
model the longitudinal data in a time-series model using a spline ker-
nel. Although, in theory, longitudinal data should be correlated, the
first-order auto-correlation is not high [e.g. 0.19 in the longitudinal
microbiome data from the Human Microbiome Project (Zhou et al.,
2019)]. This is mainly due to the fact that longitudinal samples are
taken far apart from each other [e.g. weeks to months in Zhou et al.
(2019)]. For this reason, we do not consider auto-correlation in our
model due to the complexity of assuming a valid dependency struc-
ture. The input data to the method is the processed (filtered based
on quality control thresholds, annotated, quantified, normalized,
corrected for batch effect and sequencing depth) measurements of
any of the omics experiments, such as genes expression from
RNAseq experiments (Reuter et al., 2015), proteins levels from pro-
teomics experiments (Van Eyk and Snyder, 2018), metabolites inten-
sities from metabolomics experiments (Kellogg et al., 2018),
microbial abundance from metagenomics experiments (Metwally
et al., 2016). The data processing output of each of these omics
assays can be summarized in a matrix C with a dimension of m�n
where m denotes the number of omic features and n denotes the
number of samples. C(i, j) represents the quantity from sample j that
is annotated to feature i. The proposed method is based on four
main steps as shown in Figure 1: (a) adjust measurements based on
each subject’s profile, (b) fitting the Gaussian smoothing spline re-
gression model, (c) permutation test to generate an empirical distri-
bution of the test statistic of each time interval and (d) inference of
significant time intervals of omics features. The details of the
method are described in the following sections.

2.1 Adjusting for subject’s personal profile
Interpersonal omics values can vary dramatically between subjects.
Usually, people cluster according to themselves (Zhou et al., 2019).
Hence, there is a need to adjust longitudinal samples based on the
subject’s profile. In this work, we implemented two techniques for
adjusting personal profiles. The first strategy is based on using the
first sample of the study as the baseline and adjusting each following
sample to the baseline. The baseline timepoint is usually chosen to
be the sample prior to perturbation (e.g. infection, vaccination, sur-
gery, etc.), or at a steady-state condition. This strategy is effective
when the baseline timepoint is right before the perturbations. For
each omic feature f under consideration, we first adjust for the dif-
ference in the personal baseline. Our strategy is to calculate the log-
ratio between omic feature’s level of each timepoint t to the level of
the same omic feature at the subject’s chosen baseline tb (Eq. 1),
where yi, t is the measure of the omic feature of subject i at time
point t, and tb is the ith subject’s baseline. Besides adjusting for the
personal baseline, the logged ratio reduces the positive skewness of
the distribution while stretching out the lower end. Also, it makes
the within-group variability more similar across groups, which in
turn makes the homoscedasticity assumption by the following mod-
eling acceptable. The second strategy is to use min–max scaling to
normalize each feature’s measurements (Eq. 2). For each feature’s
time series of subject i, the minimum value of that feature gets trans-
formed into a 0, the maximum value gets transformed into a 1, and
every other value gets transformed into a decimal between 0 and 1.
This normalization step is crucial to be able to emphasize the time-
series pattern rather than its amplitude, which implicitly corrects for
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the differing baseline measurements between subjects. However,

min–max normalization is not robust in handling outlier’s measure-
ment within any time series. Hence, outliers need to be removed as a

pre-processing step prior to performing min–max normalization.

yadj
i;t ¼ log

yi;t

yi;tb

; (1)

yadj
i;t ¼

yi;t �minðyiÞ
maxðyiÞ �minðyiÞ

: (2)

2.2 Fitting Gaussian smoothing spline regression model
For each omic feature f¼1, . . ., F from the candidate list, the data
under consideration are the random variables Yadj

t;k;i or their observa-

tions yadj
t;k;i of level or mapped reads of the ith subject of group k to

the feature f at timepoint t, where t¼1, . . ., T, k¼1,2, and subject
i¼1, . . ., nk. The random variable Yadj

t;k;i is assumed to follow

Yadj
t;k;i � Nðgðyadj

t;k;iÞ; r2Þ, where gðyadj
t;k;iÞ is the cubic spline function to

be estimated from the data. We seek the estimation of model param-
eters by solving the penalized likelihood function in (Eq. 3) using a

piecewise cubic polynomial minimizer. In the objective function,
L ¼ logLðgjYÞ encourages the goodness of fit, J gð Þ is a roughness

penalty that is added to the minus log-likelihood to quantify the
smoothness of g, which is essentially the inner product in a repro-
ducing kernel Hilbert space (Gu, 2013). The k in (Eq. 3) controls the

trade-off between the goodness of fit and the smoothness of the
spline and can be determined using cross-validation (Gu, 2013). For

each feature, we solve (Eq. 3) for each one of the two tested groups,
which leads to two smoothing splines, one for each group.

ming � Lþ kJ gð Þ: (3)

Once we have the two smoothing splines, one that fits each
group’s longitudinal samples, we then calculate the test statistic for
each of the T � 1 time intervals, where T is the number of time inter-
vals that span the study period. We developed studentized test statis-
tics that quantify differences between the two splines for each time
interval. The formula represents the area between the two splines
for each time interval (t, tþ1) as shown in (Eq. 4), where Ak1

t;tþ1 and
Ak2

t;tþ1 denote the area under the spline curve from time t to tþ1 for
Group 1 and Group 2, respectively, t¼1,. . ., T � 1, and SE repre-
sents the standard error. Usually, the predicted time intervals are
equidistant, as shown in Figure 1. Therefore, (Eq. 4) can be rewrit-
ten in terms of the spline function ĝ as shown in (Eq. 5). Under the
null hypothesis of no difference between the groups at the specific
window, we expect the test statistics to take values near 0, with
variance estimated using a permutation procedure described next.

testStatistict;tþ1 ¼
Ak1

t;tþ1 � Ak2

t;tþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE

k1
t þSE

k1
tþ1

2

� �2

þ SE
k2
t þSE2

tþ1

2

� �2
r (4)

testStatistict;tþ1 ¼
ĝ

k1
t þĝ

k1
tþ1

2 � ĝ
k2
t þĝ

k2
tþ1

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE

k1
t þSE

k1
tþ1

2

� �2

þ SE
k2
t þSE2

tþ1

2

� �2
r : (5)

Under the null hypothesis of no difference between the groups at
the specific window, we expect the test statistics to take values near
0, with variance estimated using a permutation procedure described
next.

Fig. 1. Overview of the main steps of OmicsLonDA: adjust measurements based on each subject’s specific baseline, fitting Gaussian smoothing spline regression model, permu-

tation test to generate an empirical distribution of the test statistic and inference of feature’s significant time intervals (FSTI)
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2.3 Inference of significant time intervals via

permutation procedure
We perform a permutation procedure by permuting the sample
group labels k. The permutation is done B times, and after each per-
mutation, we calculate the testStatisticb

j;jþ1for the null hypothesis for
each time interval. Since all longitudinal samples from the same par-
ticipant have the same group label after each permutation, the auto-
correlation correlation is preserved across subjects, and hence, type
1 error remains the same throughout the permutation procedure.
Subsequently, the pvalue of each interval of the tested feature f is
calculated using (Eq. 6) when testStatistict;tþ1is positive and (Eq. 7)
when it is negative, where T � 1 denotes the number of time inter-
vals, and I(.) is an indicator function. The pvalue is adjusted for mul-
tiple testing using Benjamini–Hochberg (BH) to control for the false
discovery rate. For each feature f, significant time intervals are those
with pvaluet;tþ1 < a, where a is the significance level.

pvaluet;tþ1 ¼
PT

j¼1

PB
b¼1 IðtestStatisticb

j;jþ1 > testStatistict;tþ1Þ
B� ðT � 1Þ ;

where b ¼ 1; . . . ;B

(6)

pvaluet;tþ1 ¼
PT

j¼1

PB
b¼1 IðtestStatisticb

j;jþ1 < testStatistict;tþ1Þ
B� ðT � 1Þ ;

where b ¼ 1; . . . ;B:

(7)

3. Results

3.1 Performance evaluation using simulated data
To measure the performance of our proposed method in identifying the
significant time intervals of omics features, we simulated datasets that
mimic all variations in human sample collection, such as non-uniform
time gap between samples, subjects have a different number of samples
over the study period, a different baseline for each subject, subjects
drop out late in the study and missing data. We used SimStudy
(Goldfeld 2018) to simulate five datasets with different patterns across
the study course, as shown in Figure 2. We simulated 1000 features
from each pattern. The Time 0 indicates the start of the study or the
start of the perturbation. In our simulations, we assumed that the co-
variance structure between consecutive timepoints follows first-order
autoregression AR(1) with a correlation coefficient q ¼ 0.4. Datasets
were simulated for 10 individuals from each group. Then, to mimic
variability in sample collections, we sampled data points with a vari-
able number of subjects and a variable number of samples per subject.
The generated longitudinal data have a varying number of timepoints
as well as varying time intervals between each measurement period.
We assumed that the number of timepoints per subject follows a trun-
cated Poisson distribution with k ¼ 20:

Simulated omic features of the first pattern (Fig. 2A) were simu-
lated with a mean l(t), which follows (Eq. 8), where N denotes nor-
mal distribution, t¼0, . . .,500, and r 2 f1;5g. The first pattern
indicates that the change between the two groups happens 50 days
from the start of the perturbation and lasts till 150 days, Pattern 2
(Fig. 2B) shows differences between 100 and 200, Pattern 3
(Fig. 2C) shows differences between 150 and 250, Pattern 4
(Fig. 2D) shows differences between 200 and 300 and Pattern 5
(Fig. 2E) does not have change at all between the two groups and
act as a negative control. The purpose of simulating these various
patterns is to benchmark the proposed method performance while
there are fewer samples at the period that have differences between
groups since subjects dropping out of most of the longitudinal stud-
ies is directly proportional to the time.

lðtÞ ¼
Nð10; rÞ þ t � 50; 50 < t � 100

Nð10;rÞ þ 150� t; 100 < t � 150
N 10;rð Þ; otherwise:

8<
: (8)

We evaluated the performance of the OmicsLonDA in identifying
significant time intervals from each one of the five patterns described
above. In our analysis, we used B¼1000 permutations to construct the
empirical distribution, a significance level of a ¼ 0:05, and adjusted for
multiple testing using the BH method. We tested 500 intervals for each
feature (T¼1, . . ., 501). Specificity ¼ TN

TNþFP and Sensitivity ¼ TP
TPþFN,

for each pattern, were measured for each feature independently, where
TP is the number of significant time intervals that were correctly identi-
fied by the method, FN is the number of significant time intervals that
were missed by the method, TN is the number of insignificant time
intervals that were identified as insignificant, and FN is the number of
significant time intervals that were identified as insignificant. Then,
average specificity and sensitivity were measured among the 1000 fea-
tures for each pattern. We benchmarked two variants of OmicsLonDA
based on the model they use to fit the longitudinal data for each group;
(i) OmicsLonDA with smoothing spline ANOVA (OmicsLon
DA_SSANOVA) and (ii) OmicsLonDA with Gaussian additive mixed
models (OmicsLonDA_GAMM). GAMM allows fitting smoothing
terms to model time-series data, and it uses subject ID as a random ef-
fect. No covariates were added in this simulation study. We also bench-
marked OmicsLonDA against MetaLonDA and splinectomeR. We
choose to benchmark against MetaLonDA and splinectomeR since, to
our knowledge, they are the two methods that were developed mainly
to identify time interval of significance between the two tested groups.
There are three key differences between OmicsLonDA and
MetaLonDA: (i) MetaLonDA does not correct for personal baseline,
(ii) MetaLonDA uses negative binomial smoothing spline when used
with microbiome data and LOESS regression otherwise and (iii)
MetaLonDA uses a different formula for testStatistic that only include
the area between the curves of the two groups without adjusting of the
standard error in their estimation. In our benchmarking experiments,
we ran MetaLonda with LOESS regression and 1000 permutations,
and all other parameters were left as default. For splinectomeR, we ran
the benchmarking evaluation with cut_low¼0 inorder not to filter out
any subjects based on small number of time points, and the rest of
parameters were left as default.

Table 1 demonstrates the high level of specificity of OmicsLonDA
(>0.99) among all five tested patterns, with OmicsLonDA_GAMM
has slightly more specificity over the first four patterns, and
OmicsLonDA_SSANOVA has slightly more specificity in Pattern 5.
On the other hand, MetaLonDA’s specificity is �0.80 among all first
four patterns, and 0.97 in Pattern 5. splinectomeR followed similar
trends to MetaLonDA, high sensitivity and low specificity. Table 1
shows the sensitivity of all benchmarked methods for all patterns, ex-
cept Pattern 5. This is because all features in Pattern 5 were simulated
to not have any significant differences in the time intervals between the
two compared groups. splinectomeR has the highest sensitivity (�1)
among the compared methods. This high sensitivity can also be seen as
a trade-off with the low specificity of splinectomeR. In general, there is
a decrease in sensitivity for all methods from Pattern 1 to Pattern 4.
This decrease in sensitivity is expected due to the fact that as the time
intervals that are significantly different between the two groups shift to
the right (later in the study course, which was implemented in our sim-
ulations), there are more participants dropping out of the study, and
hence there is lower power of each method to detect the significantly
differential time intervals. OmicsLonDA_SSANOVA maintains rea-
sonably high sensitivity across all patterns (Pattern 1: 0.98, Pattern 1:
0.92, Pattern 3: 0.90 and Pattern 4: 0.87). OmicsLonDA_GAMM has
a similar sensitivity pattern to OmicsLonDA_SSANOVA, but surpris-
ingly, the sensitivity drops significantly at Pattern 4 (0.72). These
results demonstrate that OmicsLonDA_SSANOVA is a better choice
than OmicsLonDA_GAMM when few samples cover the tested time
interval. Additionally, Table 1 shows that low variance in simulated
data (r ¼1 versus 5 in Eq. 8) increases the sensitivity and specificity of
all methods.
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Additionally, we evaluated the two implemented personal base-
line adjusting methods (log-ratio and min–max normalization) on
OmicsLonDA performance. Table 2 shows the sensitivity and speci-
ficity of OmicsLonDA when running on the five simulated patterns
after each of the baseline adjusting methods. While log-ratio and
min–max baseline adjusting methods have yielded a similar effect on
OmicsLonDA specificity, min–max has yielded higher sensitivity.

3.2 Time and memory evaluation
The running time of OmicsLonDA depends primarily on the num-
ber of permutations used to construct the empirical distribution for
each feature. Additionally, OmicsLonDA can be run in parallel on
multi-core platforms. However, we used one thread in our time
evaluation. In our analysis of the simulated data with 1000 permuta-
tions, for each feature, OmicsLonDA analysis took, on average,
43 min and 47 s. The evaluation was conducted on a MAC machine
with a 2.5 GHz Intel Core i7 processor and 16 GB 1600 MHz RAM.

3.3 Application of OmicsLonDA on real-world datasets
3.3.1 Ipop infection multi-omics cohort

As an application for our proposed method, we used the integrative
Personal Omics Profiling (iPOP) cohort, a longitudinal cohort that
aims to characterize the complex host–microbial interactions in type
2 diabetes mellitus (T2DM) (Zhou et al., 2019). The iPOP cohort
was established to better understand T2DM at its earliest stages,

where healthy or prediabetic individuals are sampled over �4 years
in a deep multi-omics profiling of transcriptomes, metabolomes,
proteomes and cytokines, as well as gut and nasal microbiome. In a
total of 1091 visits, 105 participants (25–75 years old, body mass
index of 19–41 kg/m2, 55 females and 50 males) were profiled dur-
ing healthy periods and extensively during periods of respiratory
viral infection (RVI), immunization and other situations that perturb
human host–microbial physiology.

We leveraged the power of the longitudinal multi-omics nature
of the iPOP study to reveal sexual dimorphism at the molecular level
following RVI episodes. Sex is considered to be an important epi-
demiological factor that can determine the risk for some diseases.
However, the sex-dependent responses to RVIs are not well
explored, especially in a multi-omics and microbiological fashion.
Most of the previous studies were based on epidemiological strategy
and reported the prevalence of RVI in different sex
(Channappanavar et al., 2017; Chiarella et al., 2017; Granados
et al., 2017; Wang et al., 2016). In this work, we utilized
OmicsLonDA to identify longitudinal transcriptomic, metabolomic,
cytokines and microbial changes between females and males follow-
ing RVI. In the context of this work, we included 25 (12 male and
13 female) participants who were followed before and after RVI (44
episodes of RVI in a total of 180 RVI visits; Fig. 3). We selected epi-
sodes that have at least three samples during the first 39 days after
RVI. We first adjusted each feature using min–max normalization
(Eq. 2). Each feature (gene, protein, metabolite, cytokine or

Fig. 2. Examples of simulated features from the 5 patterns we have in this study. The first pattern indicates that the change between the two groups happened 50 days from the

start of the perturbation and lasts till 150 days, Pattern 2 shows differences between 100 and 200, Pattern 3 shows differences between 150 and 250, Pattern 4 shows differen-

ces between 200 and 300, Pattern 5 has no change at all between the two groups and act as a negative control
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microbe) was tested independently. Time interval inference is based
on an empirical distribution that is built for all intervals of the same
feature as described previously. We tested 38 intervals (between Day
1 and Day 39). For proteins, metabolites, cytokines and microbes,
we tested all quantified features from the iPOP cohort. In our ana-
lysis, we used B¼1000 permutations to construct the empirical dis-
tribution, significance level a ¼ 0:05, and adjusted for multiple
testing using BH method.

In total, 104 features (36 genes, 29 proteins, 35 metabolites, 3
cytokines and 1 microbe) exhibit temporal differences between
males and females following RVI. Figure 4 shows a timeline sum-
mary of omic features that show the difference between males and
females after RVI episodes (Supplementary Table S1). The results re-
veal that females were more responsive to RVI with 58 omic features
being overexpressed, while 44 features were over-expressed in
males, and 2 genes (MFSD7 and SCN5A) flipped their over-
expression trajectory during the course of the infection episode.
Females have stronger antibody responses IGLV3-19 (LV319) and
IGHV3-53 (HV353). Females have a stronger adaptive response
early than males, while males have more innate responses than
females with increased complement proteins and increased red
blood cells (HBA1, HBB, HBD). Interestingly, males have over-
expression of vitamin D3 (dihydroxyvitamin) during the early infec-
tion period (Day 1 to Day 21). Females have higher leptin during the
whole course of infection (1–39 days).

Table 1. Performance evaluation of identifying significant time intervals from simulated features

r¼ 5 r¼ 1

Sensitivity Specificity Sensitivity Specificity

Pattern_1

(early change)

OmicsLonDA (SSANOVA) 0.976 0.998 0.982 0.993

OmicsLonDA (GAMM) 0.945 0.991 0.965 0.990

MetaLonDA 0.993 0.833 0.992 0.881

splinectomeR 1 0.698 1 0.735

Pattern_2

(middle change)

OmicsLonDA (SSANOVA) 0.924 0.999 0.952 0.998

OmicsLonDA (GAMM) 0.948 0.995 0.963 0.997

MetaLonDA 0.991 0.818 0.991 0.818

splinectomeR 0.999 0.682 1 0.699

Pattern_3

(late change)

OmicsLonDA (SSANOVA) 0.906 0.999 0.921 0.999

OmicsLonDA (GAMM) 0.934 0.995 0.957 0.998

MetaLonDA 0.984 0.805 0.991 0.876

splinectomeR 0.965 0.804 1 0.772

Pattern_4

(very late change)

OmicsLonDA (SSANOVA) 0.870 0.998 0.902 0.999

OmicsLonDA (GAMM) 0.725 0.999 0.774 0.999

MetaLonDA 0.926 0.795 0.932 0.829

splinectomeR 0.995 0.729 1 0.765

Pattern_5

(no change)

OmicsLonDA (SSANOVA) — 0.982 — 0.983

OmicsLonDA (GAMM) — 0.989 — 0.994

MetaLonDA — 0.972 — 0.981

splinectomeR — 0.959 — 0.962

Table 2. Evaluation of adjusting subject’s profile

OmicsLonDA

(log-ratio)

OmicsLonDA

(min–max)

Sensitivity Specificity Sensitivity Specificity

Pattern_1 (early change) 0.97 0.96 0.97 0.99

Pattern_2 (middle change) 0.93 0.96 0.93 0.99

Pattern_3 (late change) 0.88 0.98 0.9 0.99

Pattern_4 (very late change) 0.81 0.99 0.88 0.99

Pattern_5 (no change) — 0.98 — 0.99

Fig. 3. Study design of the iPOP infection cohort. Time points distributions of 44 in-

fection episodes whose corresponding subject has at least three timepoints within

40 days following and infection incidence. Total of 180 samples from 25 subjects

(12 male and 13 female). Timeline annotation of RVI episodes, where Day 0 is the

first day of infection
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3.3.2 Preeclampsia lipidomics cohort

We applied OmicsLonDA on a longitudinal lipidomics study on
preeclampsia (Maric et al., 2021) as a case study to demonstrate the
value of OmicsLonDA for the identification of time intervals that
lipids are significantly different between pregnancy with and with-
out preeclampsia. Preeclampsia is a serious pregnancy complication
affecting 5–10% of pregnant women, accounting for approximately
40% of fetal deaths worldwide. It not only harms maternal health
but also inhibits fetal growth and causes babies to be born with im-
mature development. Therefore, detection of preeclampsia bio-
markers at early gestational age and identification of the time
intervals with dramatic lipid changes in preeclampsia is crucial for
preeclampsia early diagnosis and treatment.

In this longitudinal prospective study, the cohort was previously
described (Maric et al., 2021) with 27 and 20 women with and with-
out preeclampsia, respectively. The plasma samples were collected
from each subject at two or three-time points during pregnancy. The
gestational age distribution of the preeclampsia and control groups in
each trimester is shown in Figure 5A. For each plasma sample, we con-
ducted target lipidomics analysis by applying the Lipidyzer platform
for 750 lipid species composed of 13 diverse lipid classes (Figure 5B).

Following OmicsLonDA analysis workflow, we first adjusted
the levels of each lipid at later time points using min–max normal-
ization method (Eq.2) and normalized them to baseline. The
OmicsLonDA test was conducted for each lipid independently. We
set 1 week as one time interval unit and tested on 30 time intervals
(Week 8–38). In our analysis, we used 1000 times permutations to

construct the empirical distribution for each lipid. All the results
were adjusted for multiple testing using BH method with a signifi-
cance level a ¼ 0:05.

We identified 19 lipid species, accounting for eight lipid classes,
with significant temporal differences between preeclampsia and con-
trol groups during pregnancy. Figure 5C demonstrates the time inter-
vals of these 19 lipids that have significantly different profiles
between preeclampsia and control groups (Supplementary Table S2).
Interestingly, we found that most of the significant lipids belonging
to the same lipid classes exhibit the same changing trends, indicating
homogeneity of chemical properties and potential biological roles of
lipid species from the same classes. There are two exceptions: one is
CER (14:0) and CER (24:0), which may be due to the different
lengths of fatty acid chains in these two ceramides. Another interest-
ing exception is TAG 46:3 (FA 18:2), TAG 50:5 (FA16:1) and TAG
56:6 (FA20:4), showing the higher levels of the first two triglycerides
in the preeclampsia group at later gestational age compared to the
control group. In contrast, TAG 56:6 (FA20:4) displays the increased
abundance at early pregnancy in control subjects. Further experi-
ments are needed to investigate the explicit reasons.

4. Discussion

In this work, we have developed a statistical method that provides
robust identification of time intervals where omics features are sig-
nificantly different between groups in longitudinal multi-omics. The

Fig. 4. Significant time intervals of features that show differences between males and females following RVI. Each row represents a feature. Pink shaded cells indicate the corre-

sponding feature is over-expressed in the female group, while the gray cells indicate the corresponding feature is over-expressed in the male group (A color version of this figure

appears in the online version of this article.)

3808 A.A.Metwally et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac403#supplementary-data


method is able to simultaneously identify time intervals and differen-
tial signatures by analyzing each feature separately, but across all
patients. The proposed method is based on a semi-parametric ap-
proach, where using smoothing splines to model longitudinal data
and infer significant time intervals of omics features based on an em-
pirical distribution constructed through the permutation procedure.
A critical need in longitudinal omics is for robust frameworks that
incorporate the time dimension in statistical significance analysis.
Our method was evaluated through extensive simulations (five pat-
terns). The performance evaluation demonstrated that OmicslonDA
has achieved a correctly calibrated type I error rate and is robust to
data collection inconsistencies that commonly occur in longitudinal
human studies. Moreover, the sensitivity is high in Pattern 1 and
then declines slightly through Pattern 4. This decrease in sensitivity
can be explained due to the decreasing number of samples collected
towards the end of the study (i.e. patient dropout).

We further applied OmicsLonDA on two real-world datasets: (i)
the iPOP longitudinal omics study for investigating sexual dimorphism
on molecular response following RVI and (ii) preeclampsia cohort to
identify time intervals that lipids are significantly different between
pregnancy with and without preeclampsia. Recently, OmicsLonDA
has been utilized to identify the seasonal time intervals of differentially
abundant/expressed omics features between insulin-resistant and
insulin-sensitive individuals (Sailani et al., 2020).

Sex differences in response to infection are known (Casimir et al.,
2013). For both viral and bacterial infections, males are more suscep-
tible than females, while females produce a more vigorous inflamma-
tory response (Casimir et al., 2013). Sexual dimorphism in infection
response likely arises from differences in hormone status, with both tes-
tosterone and estrogen shown to modulate infection and inflammatory
processes (Chrousos, 2010). Our study further adds evidence that sex-
ual dimorphism may contribute to stages of inflammatory responses
(Klein and Flanagan, 2016), with females having a stronger adaptive
response early but less innate responses than male. Our analysis is the
first to our knowledge that revealed a multitude of sex differences in
RSV infection response with frequent temporal sampling and delinea-
tion of the dynamic infection response for each sex.

Preeclampsia is a potentially life-threatening complication dur-
ing pregnancy identified by increased blood pressure and

proteinuria. It is one of the leading causes of maternal and perinatal
mortality and morbidity (Ghulmiyyah and Sibai, 2012). Substantial
efforts have been made to detect molecular changes of preeclampsia
during pregnancy at gene, protein and metabolite levels (He et al.,
2020; Lapaire et al., 2012; Nobakht M. Gh, 2018). Nowadays, lip-
ids are growingly recognized as key players involved in pathophysi-
ology of preeclampsia (Anand et al., 2016; Wojcik-Baszko et al.,
2018). For instance, arachidonic acid and its downstream products
were reported to be significantly changed in preeclampsia (Balazy,
2004). Oxidized lipid species were also selected as biomarkers of
preeclampsia which are related to increased reactive oxygen species
(Butterfield and Lauderback, 2002). However, most of these studies
mainly focused on single timepoint instead of monitoring dynamic
molecular changes with multiple timepoints during pregnancy.
Herein, in this study, we applied the developed OmicsLonDA on a
longitudinal lipidomics dataset to compare lipid levels in women
with and without preeclampsia. We successfully identified 19 dis-
tinct lipid species that are significantly different in preeclampsia
pregnancy compared to normal pregnancy with different time inter-
vals. Interestingly, most of the significant lipids that belong to the
same lipid classes exhibit the same changing trends, indicating po-
tentially similar biological functions these lipids may exert in pree-
clampsia progression. Importantly, by OmicsLonDA, we detected
several lipids that harbored significantly different time intervals at
early pregnancy phase (i.e. the first trimester) such as CE (20:4), PC
(17:0/20:4), PC (18:0/20:4) and PC (18:1/20:4), which may serve as
clinically meaningful biomarkers for preeclampsia early diagnosis.
Intriguingly, all of these four lipid biomarkers share the same fatty
acid chain arachidonic acid (fatty acid 20:4). Arachidonic acid is a
polyunsaturated fatty acid-containing 20 carbons and four double
bonds with a final double bond in the x�6 position. It is well-
documented that arachidonic acid and its products eicosanoids play
important roles in inflammatory processes (Higgins and Lees,
1984). They have been reported as biomarkers of preeclampsia pre-
viously (Balazy, 2004). Our results not only support the previous
findings but also revealed more potentially involved lipid bio-
markers by leveraging the advantages of the longitudinal data as
well as the merit of OmicLonDA.

A B

C

Fig. 5. A case study of the longitudinal lipidomics data on the preeclampsia cohort. (A) The gestational age distribution of the collected plasma samples from the control and

preeclampsia (PE) groups in each trimester in this study. (B) Lipids from the plasma samples were extracted and measured by the target lipidomics profiling platform Lipidyzer

for 750 different lipids. (C) The 19 lipid species exhibit significantly different profiles between the control and preeclampsia groups by applying OmicsLonDA
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There are two factors that need to be considered before applying
OmicsLonDA to any longitudinal dataset: (i) baseline adjustment
method and (ii) number of permutations. Firstly, if subjects have sam-
ples right before perturbation, baseline adjustment based on log-ratio
(Eq. 1) would be preferred since the adjusted time series would reflect
the perturbation effect for each person. However, obtaining a sample
right before perturbation may not be accessible in many longitudinal
multi-omics studies. Hence, adjusting based on min–max (Eq. 2) would
be a more feasible solution. The downside of using the min–max
method is that the adjusted time series may not be following normal
distribution, violating the assumption of Gaussian smoothing spline.
This may not be a concern for OmicsLonDA since the identification of
significant time intervals is based on a non-parametric permutation
test. Secondly, the running time of OmicsLonDA depends primarily on
the number of permutations. In our simulations and real-world data-
sets, we used 1000 permutations to ensure stable null distribution con-
struction. However, we have seen that a similar stable null distribution
can be achieved with 100 permutations, which can be used as a fast ap-
proach to identify time intervals. However, we do not recommend run-
ning OmicsLonDA with less than 100 permutations since the results
may not be consistent between different runs.

OmicsLonDA elucidates not only differentially regulated mole-
cules but indicates the temporal window over which the differential
regulation occurs to provide a nuanced and detailed understanding
of biological dynamics. In the future, we plan to utilize the identified
multi-omics features and their significant time intervals through
non-parametric Bayesian dynamic networks to infer the causality of
phenotypes based on a phased correlation between features’ time
intervals and phenotype onset. Another avenue for improving the
proposed method is to incorporate auto-correlation between longi-
tudinal samples into the model fitting. Also, in the proposed
method, time intervals to be tested are a user-defined parameter. In
the future, we plan to develop a learning method that selects non-
trivial intervals that span several timepoints. OmicsLonDA is pub-
licly available on the Bioconductor repository (https://bioconductor.
org/packages/OmicsLonDA).
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