
Hypothalamic AMP-Activated Protein Kinase Regulates
Glucose Production
Clair S. Yang,

1,2
Carol K.L. Lam,

1,2
Madhu Chari,

1,2
Grace W.C. Cheung,

1,2
Andrea Kokorovic,

1,2

Sun Gao,
3

Isabelle Leclerc,
3

Guy A. Rutter,
3

and Tony K.T. Lam
1,2,4

OBJECTIVE—The fuel sensor AMP-activated protein kinase
(AMPK) in the hypothalamus regulates energy homeostasis by
sensing nutritional and hormonal signals. However, the role of
hypothalamic AMPK in glucose production regulation remains to
be elucidated. We hypothesize that bidirectional changes in
hypothalamic AMPK activity alter glucose production.

RESEARCH DESIGN AND METHODS—To introduce bidirec-
tional changes in hypothalamic AMPK activity in vivo, we first
knocked down hypothalamic AMPK activity in male Sprague-
Dawley rats by either injecting an adenovirus expressing the
dominant-negative form of AMPK (Ad-DN AMPK�2 [D157A]) or
infusing AMPK inhibitor compound C directly into the medio-
basal hypothalamus. Next, we independently activated hypotha-
lamic AMPK by delivering either an adenovirus expressing the
constitutive active form of AMPK (Ad-CA AMPK�1312 [T172D])
or the AMPK activator AICAR. The pancreatic (basal insulin)-
euglycemic clamp technique in combination with the tracer-
dilution methodology was used to assess the impact of
alternations in hypothalamic AMPK activity on changes in glu-
cose kinetics in vivo.

RESULTS—Injection of Ad-DN AMPK into the hypothalamus
knocked down hypothalamic AMPK activity and led to a signifi-
cant suppression of glucose production with no changes in
peripheral glucose uptake during the clamps. In parallel, hypo-
thalamic infusion of AMPK inhibitor compound C lowered
glucose production as well. Conversely, molecular and pharma-
cological activation of hypothalamic AMPK negated the ability of
hypothalamic nutrients to lower glucose production.

CONCLUSIONS—These data indicate that changes in hypotha-
lamic AMPK activity are sufficient and necessary for hypotha-
lamic nutrient-sensing mechanisms to alter glucose production in
vivo. Diabetes 59:2435–2443, 2010

A
MP-activated protein kinase (AMPK) is an evo-
lutionarily conserved cellular energy sensor
that regulates cellular metabolism (1). Consist-
ing of a catalytic � subunit and two regulatory

� and � subunits, AMPK responds to an increase in
intracellular AMP-to-ATP ratio and phosphorylates intra-

cellular targets involved in cellular metabolism to promote
ATP-generating processes and inhibit energy-consuming
pathways. AMPK is expressed in a variety of tissues
including the liver, skeletal muscles, adipose tissue, and
the hypothalamus (1). AMPK phosphorylates and inhibits
acetyl-CoA carboxylase (ACC) (1), which prevents the
conversion of acetyl-CoA to malonyl-CoA. A decrease in
malonyl-CoA relieves the inhibition of carnitine palmitoyl-
transferase-1 (2) and favors the transfer of long-chain fatty
acyl-CoA (LCFA-CoA) into the mitochondria for �-oxida-
tion. Conversely, direct inhibition of AMPK increases
malonyl-CoA and LCFA-CoA levels (3).

Studies have emerged implicating that AMPK in the
hypothalamus integrates nutritional and hormonal signals
to regulate food intake (4–8). In particular, direct inhibi-
tion of hypothalamic AMPK lowers food intake (8),
whereas selective activation of hypothalamic AMPK ne-
gates the ability of leptin to activate hypothalamic ACC,
increase hypothalamic malonyl-CoA levels, and lower food
intake (9). In light of the fact that the hypothalamus
integrates nutritional and hormonal signals to not only
regulate energy (10–12) but also glucose (13–17) ho-
meostasis, and that accumulation of hypothalamic malo-
nyl-CoA and LCFA-CoA levels lowers food intake as well
as hepatic glucose production (18–20), a possibility arises
that direct inhibition of hypothalamic AMPK activity could
alter hepatic glucose production (Fig. 1A). This working
hypothesis was first tested in the current study.

Second, hypothalamus glucose metabolism to lactate,
and the subsequent conversion of lactate to pyruvate and
acetyl-CoA, have been reported to lower hepatic glucose
production (21). However, the downstream biochemical
pathways that mediate the ability of hypothalamic glucose/
lactate sensing to lower glucose production remain un-
clear, although it was hypothesized that the formation of
malonyl-CoA via the enhanced flux of acetyl-CoA could be
a necessary step (3,15). Given the well-established regula-
tory role of AMPK on the formation of malonyl-CoA from
acetyl-CoA and that hypothalamic malonyl-CoA regulates
glucose production (18), we next tested the possibility that
direct activation of hypothalamic AMPK negates the ability
of central nervous system glucose/lactate sensing to reg-
ulate glucose production.

In summary, we tested the hypothesis that molecular
and pharmacological changes in hypothalamic AMPK ac-
tivity are sufficient and necessary for hypothalamic nutri-
ent-sensing mechanisms to regulate glucose production in
vivo.

RESEARCH DESIGN AND METHODS

The animal experimental protocols were reviewed and approved by the
institutional animal care and use committee of the University Health Network.
Adult 8-week-old male Sprague-Dawley rats were obtained from Charles River
Laboratories (Montreal, Quebec, Canada) and maintained on a 12-h/12-h
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day/night cycle with access to rat diet and water ad libitum. The rats
underwent stereotaxic surgeries for insertion of bilateral catheters into the
mediobasal hypothalamus (MBH), as previously described (22) (Figs. 1B and
3B). The coordinates used for MBH cannulation are 3.1 mm posterior of
bregma, 0.4 mm lateral of midline, and 9.6 mm below skull surface. Immedi-
ately poststereotaxic surgery, a group of rats received MBH administration of
3 �l of adenovirus expressing the dominant-negative form of AMPK (Ad-DN
AMPK�2 [D157A], 1.1 � 1013 plague-forming units/ml) (23), the constitutive
active form of AMPK (Ad-CA AMPK�1312 [T172D], 3.83 � 1010 plague-forming
units/ml) (23), or green fluorescent protein (Ad-GFP, 1.4 � 109 plague-forming
units/ml) (23) on each side of the MBH catheter. Adenoviral MBH injections
were performed as previously described (18), indicating that using this MBH
adenoviral animal injection protocol, GFP is localized in the MBH and not
other regions of the brain. Five days later, catheters were placed in the
internal jugular vein and the carotid artery for infusion and sampling during
the clamps. Recovery from surgery was monitored by measuring daily food
intake and weight gain.
Clamp procedure. Infusion studies lasted a total of 210 min (Figs. 1B and
2B), and all rats were restricted to �60 kcal of food the night before the

infusion studies to ensure the same nutritional status. MBH infusions were
initiated at 0 min and maintained throughout the experiments at a rate of 0.006
�l/min. Treatments included 5% DMSO, 50 �mol/l AMPK inhibitor compound
C (dissolved in 5% DMSO; Calbiochem), 2 mmol/l glucose or 5 mmol/l lactate
alone, 25 mmol/l AMPK activator AICAR (dissolved in saline; Sigma) plus 2
mmol/l glucose, 25 mmol/l AICAR plus 5 mmol/l lactate, and vehicle (either
saline or 25 mmol/l AICAR). A primed-continuous intravenous infusion of
3-3H-glucose (40 �Ci bolus, 0.4 �Ci/min; Perkin Elmer) was also initiated at 0
min and maintained throughout the study to assess glucose kinetics. At 90
min, the pancreatic clamp was initiated to assess the effect of MBH treatments
on glucose metabolism independent of differences in glucoregulatory hor-
mones. This was done by the continuous intravenous infusion of exogenous
insulin (0.8 mU/kg/min) and somatostatin (3 �g/kg/min). A total of 25%
glucose was infused intravenously and adjusted periodically to maintain
plasma glucose levels comparable among groups. Plasma samples for deter-
mination of [3H]-glucose–specific activity and plasma glucose levels were
obtained at every 10-min interval to assess the glucose kinetics (glucose
infusion rate needed to maintain euglycemia, glucose production, and glucose
uptake) under basal (60–90 min) and clamped (180–210) conditions. Of note,
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FIG. 1. Molecular knockdown of hypothalamic AMPK by the dominant-negative form of AMPK (DN AMPK) is sufficient to lower glucose
production. A: Schematic representation of the working hypothesis: Inhibition of hypothalamic AMPK activity by DN AMPK or compound C leads
to the lowering of hepatic glucose production. B: Experimental procedure and clamp protocol. A bilateral MBH catheter was implanted on day
0. Adenovirus tagged with GFP (Ad-GFP) or adenovirus-expressing DN AMPK (Ad-DN AMPK) was injected into the MBH of a group of rats
immediately after MBH catheter implantation. Venous and arterial cannulations were done on day 5, and the pancreatic clamp protocol was
performed on day 8. In the Ad-GFP and Ad-DN AMPK–injected rats, no MBH infusions were given during the clamp experiments. In rats with no
adenovirus injection, 5% DMSO control or compound C was infused into the MBH during the clamps. C: Hypothalamic AMPK activity was
significantly diminished in animals injected with Ad-DN AMPK, compared with control animals with injection of Ad-GFP (*P < 0.001).
Hypothalamic injection of Ad-DN AMPK led to an increase in glucose infusion rate (D) (*P < 0.01) and a decrease in glucose production (E) (*P <
0.001) compared with the GFP control. F: Suppression of glucose production during the clamp period (180–210 min) expressed as percentage
reduction from basal steady state (60–90 min) (*P < 0.01 vs. GFP control). G: Glucose uptake was not significantly different from that of GFP
control. Values are shown as means � SEM. (A high-quality color representation of this figure is available in the online issue.)
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since the clamp studies were performed in the presence of basal insulin
replacement, any observable changes in glucose kinetics due to hypothalamic
treatments are not under insulin-stimulated conditions. At the end of all
studies, rats were anesthetized and 3 �l of diluted bromophenol blue was
injected through each side of the MBH catheter to ensure the correct
placement of the catheter. The MBH wedges were obtained and stored at
�80°C for subsequent AMPK activity assay.
AMPK activity assay. AMPK activity was determined essentially as previ-
ously described (24). In brief, MBH wedge samples were lyzed in 200–500 �l
ice-cold lysis buffer (in mmol/l: 50 Tris HCl [pH 7.4, 4°C], 250 sucrose, 50 NaF,
1 Na pyrophosphate, EDTA, 1 EGTA, 1 dithiothreitol, 0.1 benzamidine, and 0.1
phenylmethanesulfonyl fluoride or phenylmethylsulfonyl fluoride, 5 �g/ml
soybean trypsin inhibitor, and 1% [vol/vol] Triton X-100), and cell debris was
removed by centrifugation at 13,200 rpm for 5 min at 4°C. Protein concentra-
tion was determined using a bicinconinic acid–based protein assay kit
(Pierce, Rockford, IL). Total extract (10 �g protein) was used for activity
measurement by phosphotransfer, with synthetic “SAMS” peptide (HMR-
SAMSGLHLVKRR) as substrate (24). Results were analyzed by linear regres-
sion using GraphPad software and were expressed in counts per minute.
Background (in the presence of lysis buffer only, non–AMPK dependent)
incorporation of radioactivity was subtracted from all values. Assays were
performed in triplicate.
Immunohistochemistry. Male Sprague-Dawley rats with Ad-GFP injections
in the MBH were anesthetized 8 days after and perfused transcardially with
saline (40 ml) and 4% parafomaldehyde (35 ml) for tissue fixation. Brains were
removed and 4-mm-thick coronal sections containing the mediobasal hypo-
thalamus were embedded and frozen in optimal cutting temperature com-
pound (Tissue-Tek) and stored at �80°C. Ten-micrometer-thick coronal tissue
sections mounted on glass slides were obtained via cryostat sectioning of the
frozen brain sample. To costain GFP with AgRP or proopiomelanocortin
(POMC), tissues were first blocked for 1 h with 10% normal goat serum and
0.2% Triton X-100 and then incubated overnight at 4°C with a combination of
either chicken anti-GFP (1:1,800; Abcam) plus rabbit anti-POMC (1:1,500;
Phoenix Pharmaceuticals) antibodies or chicken anti-GFP (1:1,800) plus
rabbit anti-AgRP (1:200; Phoenix Pharmaceuticals) antibodies. On the follow-
ing day, tissues were washed and incubated with goat anti-chicken IgG
(1:1,000; Alexa-Fluor 488) and goat anti-rabbit IgG (1:1,000 for POMC and
1:700 for AgRP; Alexa-Fluor 546) secondary antibodies. The slides were
viewed under the fluorescence microscope.
Biochemical analysis. Plasma glucose concentrations were measured using
the glucose oxidase method (Glucose analyzer GM9; Analox Instruments,
Lunenbertg, MA). Plasma insulin and glucagon concentration was measured
using a radioimmunoassay (Linco Research, St. Charles, MO).
Statistical analysis. Data are presented as means � SE. Statistical analysis
was done by two-way ANOVA followed by Tukey post hoc test. Statistical
analysis was accepted as significant with P 	 0.05.

RESULTS

Molecular inhibition of hypothalamic AMPK lowers

glucose production. We first examined whether inhibi-
tion of hypothalamic AMPK activity is sufficient to alter
glucose production in vivo. Adenovirus expressing the
dominant-negative form of AMPK (Ad-DN AMPK) was
injected directly into MBH of rats immediately after the
stereotaxic surgery (Fig. 1B). The infusion clamp studies
were carried out 8 days after brain surgery and adenoviral
injections and 3 days after vascular surgery (Fig. 1B). On
the morning of the infusion clamp studies (day 8), there
was an observable trend (although not statistically signif-
icant) in the Ad-DN AMPK–injected rats to weigh less than
Ad-GFP–injected control rats (P 
 0.07) (Table 1). In
addition, we detected a 40.7 � 10.5% decrease in overnight
food intake of Ad-DN AMPK–injected rats versus Ad-GFP–
injected control rats only on day 8 (P 	 0.05).

Direct Ad-DN AMPK hypothalamic injection reduced
hypothalamic AMPK activity compared with Ad-GFP injec-
tion immediately following the clamp studies (Fig. 1C). In
addition, we performed immunohistochemistry against
GFP in our rat hypothalamic slices injected with Ad-GFP.
GFP staining was discovered in the mediobasal hypotha-
lamic regions, and �40% of the GFP was colocalized with
AgRP-positive neurons and another �40% was colocal-
ized with POMC-positive neurons (supplementary Fig. 1
in the online appendix, available at http://diabetes.
diabetesjournals.org/cgi/content/full/db10-0221/DC1). Us-
ing the tracer dilution methodology in combination with
the pancreatic (basal insulin)-euglycemic clamp tech-
nique, we assessed the effects of Ad-DN AMPK on glucose
kinetics (Fig. 1B). During the clamps, the exogenous
glucose infusion rate required to prevent hypoglycemia
and maintain euglycemia was approximately threefold
higher in comparison with the Ad-GFP–injected rats (Fig.
1D). The increase in the glucose infusion rate was fully
accounted for by an inhibition in the rate of glucose
production (Fig. 1E and F) and was independent of
differences among groups in peripheral circulating insulin

TABLE 1
Body weights and plasma insulin, glucagon, and glucose concentrations of rats treated with Ad-GFP or Ad-DN AMPK in the
mediobasal hypothalamus

Body weight (kg) Insulin (ng/ml) Glucagon (pg/ml) Glucose (mg/dl)

Ad-GFP (n 
 6)
Basal 0.282 � 0.004 0.8 � 0.2 60 � 2 146 � 4
Clamp 0.8 � 0.1 53 � 4 140 � 6

Ad-DN AMPK (n 
 14)
Basal 0.254 � 0.012 0.8 � 0.1 82 � 9* 153 � 8
Clamp 0.8 � 0.1 54 � 5 128 � 7

Data are means � SE. Basal (t 
 0); clamp (t 
 180–210). *P 	 0.05 vs. Ad-GFP at basal.

TABLE 2
Body weights and plasma insulin, glucagon, and glucose concentrations of rats treated with 5% DMSO or compound C in the
mediobasal hypothalamus

Body weight (kg) Insulin (ng/ml) Glucagon (pg/ml) Glucose (mg/dl)

5% DMSO (n 
 6)
Basal 0.298 � 0.014 0.9 � 0.1 58 � 3 144 � 10
Clamp 0.7 � 0.1 51 � 3 124 � 16

Compound C (n 
 6)
Basal 0.306 � 0.004 0.9 � 0.1 56 � 2 132 � 6
Clamp 0.7 � 0.1 47 � 1 110 � 7

Data are means � SE. Basal (t 
 0); clamp (t 
 180–210).
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and glucagon levels (Table 1) as well as the rate of
peripheral glucose uptake (Fig. 1G). Our results indicate,
for the first time, that molecular inhibition of hypotha-
lamic AMPK activity is sufficient to suppress glucose
production in vivo.
Pharmacological inhibition of hypothalamic AMPK
lowers glucose production. To evaluate whether direct
inhibition of hypothalamic AMPK lowers glucose pro-
duction independent of changes in food intake and body
weight, AMPK inhibitor compound C was directly in-
fused at 50 �mol/l (dissolved in 5% DMSO) into the
hypothalamus of rats that had similar food intake (all
rats were restricted to �60 kcal of food the night before
the infusion experiments to ensure the same nutritional
status) and body weight (Fig. 1B) (Table 2). During the
pancreatic (basal insulin) clamps, hypothalamic com-
pound C potently increased the glucose infusion rate
required to maintain euglycemia compared with 5%
DMSO (Fig. 2A). This elevation of the glucose infusion
rate was due to a suppression of glucose production
(Fig. 2B and C) and was independent of differences
among groups in peripheral circulating insulin and
glucagon levels (Table 2) as well as the rate of periph-
eral glucose uptake (Fig. 2D). Thus, pharmacological
inhibition of hypothalamic AMPK lowers glucose pro-
duction independent of changes in food intake and body
weight.
Pharmacological activation of hypothalamic AMPK
negates the ability of hypothalamic glucose/lactate to
lower glucose production. Since inhibition of hypotha-
lamic AMPK mimics the ability of hypothalamic metab-
olism of glucose to lactate and pyruvate to lower
glucose production (21) (Fig. 3A), we next addressed
whether activation of hypothalamic AMPK via the phar-
macological activator AICAR would negate the ability of
central glucose/lactate to lower glucose production
(Fig. 3A and B). First, consistent with previous findings
(21), MBH glucose/lactate increased glucose infusion
rate (Fig. 3C) and lowered glucose production during
the clamps (Fig. 3D and E) in the presence of compa-
rable levels of plasma insulin, glucagon, glucose, and

body weights (Table 3). In contrast, when the AMPK
activator AICAR (25 mmol/l) was coadministered with
glucose or lactate into the MBH (Fig. 3A and B), MBH
infusion of glucose/lactate completely failed to increase
the glucose infusion rate (Fig. 3C) and to lower glucose
production (Fig. 3D and E) in the presence of compa-
rable levels of plasma insulin, glucagon, glucose, and
body weight (Table 3). Of note, MBH AICAR infused
alone at 25 mmol/l (n 
 3) had minimal effects on basal
glucose production (13.9 � 1.0 mg/kg/min), clamp glu-
cose production (10.8 � 0.3), and glucose uptake
(13.2 � 0.9) compared with the MBH saline–infused
group (n 
 3) (12.4 � 0.7, 11.5 � 1.3, and 12.7 � 1.0,
respectively). Thus, MBH AICAR and saline infusion
clamp experiments were pooled together into a single
vehicle group as reported in Table 3 and Fig. 3C–F.
Glucose uptake was comparable among groups (Fig.
3F). These data indicate that pharmacological activation
of hypothalamic AMPK blocked the ability of hypotha-
lamic glucose/lactate to lower glucose production.
Molecular activation of hypothalamic AMPK negates
the ability of hypothalamic glucose/lactate to lower
glucose production. To alternatively evaluate whether
activation of hypothalamic AMPK negates nutrient-sensing
mechanisms to regulate glucose production, hypothalamic
AMPK was activated through the injection of adenovirus
expressing the constitutively active form of AMPK (Ad-CA
AMPK) (Fig. 3A and B). First, infusion of MBH glucose or
lactate injected with Ad-GFP significantly increased the
glucose infusion rate needed to maintain euglycemia (Fig.
4A) during the clamp studies in the presence of similar levels
of plasma insulin and glucagon as well as body weight (Table
4). The increase in the glucose infusion rate was in associa-
tion with a reduction in the rate of glucose production (Fig.
4B and C) and not a change in glucose uptake (Fig. 4D). In
rats injected with Ad-CA AMPK, however, MBH infusion of
glucose or lactate during the clamps failed to increase the
glucose infusion rate and lower glucose production (Fig.
4A–C) in the presence of similar levels of plasma insulin and
glucagon as well as body weight (Table 4). Ad-GFP or Ad-CA
AMPK injected alone into the MBH did not alter glucose
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FIG. 2. Hypothalamic administration of compound C, the pharmacological inhibitor of AMPK, lowers glucose production. Direct infusion of
compound C (Cmpd C), the pharmacological inhibitor of AMPK, into the MBH significantly increased the glucose infusion rate (A) (*P < 0.001)
and decreased the glucose production (B) (*P < 0.05) during the clamps compared with the 5% DMSO control group. C: Suppression of glucose
production during the clamp period (180–210 min) expressed as the percentage reduction from the basal steady state (60–90 min) (*P < 0.001).
D: Glucose uptake in the compound C–treated group did not differ significantly from that of the 5% DMSO treated–control group. Values are
shown as means � SE.
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glucose infusion rate (C) and lower glucose production (D) compared with those of vehicle treatments. E: Suppression of glucose production
during the clamp period (180–210 min) expressed as the percentage reduction from the basal steady state (60–90 min) (*P < 0.05 vs. other
groups). F: Glucose uptake was comparable in all groups. Values are shown as means � SE. (A high-quality color representation of this figure is
available in the online issue.)
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kinetics in our experimental settings (Fig. 4A–D). Together
with the pharmacological gain-of-function data, these molec-
ular gain-of-function experiments indicate that selective ac-

tivation of hypothalamic AMPK negates the ability of central
nervous system glucose/lactate sensing to regulate glucose
production.

TABLE 3
Body weights and plasma insulin, glucagon, and glucose concentrations of rats treated with vehicle, glucose, lactate, AICAR plus
glucose, or AICAR plus lactate in the mediobasal hypothalamus

Body weight (kg) Insulin (ng/ml) Glucagon (pg/ml) Glucose (mg/dl)

Vehicle (n 
 6)*
Basal 0.291 � 0.010 1.0 � 0.1 63 � 5 144 � 2
Clamp 0.9 � 0.1 56 � 5 146 � 6

Glucose (n 
 5)
Basal 0.294 � 0.007 1.0 � 0.1 60 � 7 145 � 9
Clamp 0.9 � 0.1 49 � 4 149 � 6

Lactate (n 
 5)
Basal 0.295 � 0.014 0.9 � 0.1 58 � 3 143 � 3
Clamp 0.9 � 0.1 45 � 3 140 � 9

AICAR � glucose (n 
 5)
Basal 0.306 � 0.002 0.9 � 0.1 56 � 7 150 � 5
Clamp 0.8 � 0.2 42 � 7 152 � 7

AICAR � lactate (n 
 5)
Basal 0.314 � 0.003 0.8 � 0.1 61 � 9 142 � 5
Clamp 0.8 � 0.1 49 � 3 140 � 8

Data are means � SE. Basal (t 
 0); clamp (t 
 180–210). *Vehicle includes saline or AICAR infusion alone.
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FIG. 4. Hypothalamic administration of the constitutively active form of AMPK (CA AMPK) negates the ability of hypothalamic glucose/lactate-
sensing mechanisms to decrease glucose production. Direct MBH administration of glucose or lactate to the GFP treatment groups increased
glucose infusion rate (A) (*P < 0.01) and lowered glucose production (B) (*P < 0.001) compared to those of GFP/saline and CA AMPK/saline
groups during the clamps. Direct MBH administration of glucose or lactate during the clamps to the CA AMPK treatment groups failed to increase
glucose infusion rate (A) and lower glucose production (B). C: Suppression of glucose production during the clamp period (180–210 min)
expressed as the percentage reduction from the basal steady state (60–90 min) (*P < 0.01 vs. other groups). D: Glucose uptake was comparable
in all groups. Values are shown as means � SE.
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DISCUSSION

In the recent decade, the role of AMPK has expanded
from being a simple gauge of cellular energy status to a
key regulator of whole-body energy homeostasis. Spe-
cifically, in the hypothalamus, nutrients and anorexi-
genic signals decrease AMPK activity, whereas
orexigenic signals stimulate AMPK to regulate energy
homeostasis (4 – 8,19). Selective knockout of AMPK in
POMC or AgRP neurons also leads to a disruption of
energy balance (25), further highlighting the importance
of hypothalamic AMPK as an integrator to control
energy homeostasis. In addition to the hypothalamic
control on food intake by AMPK, hypothalamic AMPK
regulates glucocounterregulatory responses to acute
hypoglycemia induced by hyperinsulinemia (26) as well
as neuronal survival and cognitive ability (27). The
metabolic regulatory role of hypothalamic AMPK in
the presence of basal insulin levels is now extended by the
current study to glucose production regulation. Specifi-
cally, molecular and pharmacological inhibition of hypo-
thalamic AMPK lowered glucose production, whereas
selective activation of hypothalamic AMPK negated hypo-
thalamic glucose/lactate-sensing mechanisms to lower glu-
cose production independent of changes in plasma insulin
and glucagon levels compared with the appropriate
controls.

Although molecular knockdown of hypothalamic AMPK
in our experimental setting decreased glucose production
in association with hypophagia, pharmacological inhibi-
tion of hypothalamic AMPK still potently lowered glucose
production independent of changes in food intake and
body weight. Furthermore, molecular and pharmacologi-
cal activation of hypothalamic AMPK negated the hypo-
thalamic nutrient-sensing mechanism to lower glucose
production independent of changes in food intake and
body weight as well. In addition, we performed infusion
clamp studies to Ad-GFP–injected rats (n 
 4) who had
similar body weight and food intake (on day 8) as the
Ad-DN AMPK–injected rats. We found that the glucose
production during the clamps of these weight-matched

Ad-GFP–injected rats was 10.4 � 1.9 mg/kg/min, and this
rate of glucose production was comparable to the Ad-
GFP–injected rats reported in Fig. 1. This finding indicated
that molecular knockdown of hypothalamic AMPK in our
experimental settings lowered glucose production inde-
pendent of changes in food intake and body weight. Thus,
these data overall suggest that bidirectional changes in
hypothalamic AMPK activity alter glucose production in-
dependent of changes in food intake and body weight.

Of note, in contrast to the ability of inhibition of
hypothalamic AMPK, per se, to lower glucose production,
both molecular and pharmacological activation of hypo-
thalamic AMPK did not increase glucose production but
were sufficient to negate the metabolic effects of hypotha-
lamic nutrient-sensing mechanisms. Future studies are
required to explore this discrepancy in details, but it is
important to point out that a selective lowering of malonyl-
CoA levels in the hypothalamus via overexpression of
malonyl-CoA decarboxylase, per se, also did not increase
glucose production but was sufficient to negate hypotha-
lamic nutrient-sensing mechanisms to lower glucose pro-
duction (18).

Within the mediobasal hypothalamus, AgRP and POMC
neurons are implicated to sense hormonal and nutritional
signals to regulate energy as well as glucose homeostasis
(11,28). Our current study did not evaluate whether bidi-
rectional changes of hypothalamic AMPK activity within
the AgRP and/or POMC neurons regulate glucose produc-
tion. However, we reported that Ad-GFPs that were in-
jected via the current MBH adenoviral injection protocol
were colocalized either with AgRP or POMC. Thus, the
data raises the possibility that hypothalamic AMPK in the
AgRP and/or POMC neurons may regulate glucose produc-
tion in our experimental settings, but future studies are
required to address this working hypothesis. In addition,
the current study used the pancreatic (basal insulin)-
euglycemic clamp technique to evaluate the regulatory
impact of hypothalamic AMPK activity on glucose produc-
tion regulation. Thus, the physiological relevance of hypo-

TABLE 4
Body weights and plasma insulin, glucagon, and glucose concentrations of rats treated with Ad-GFP plus saline, Ad-CA AMPK plus
saline, Ad-GFP plus glucose, Ad-GFP plus lactate, Ad-CA AMPK plus glucose, or Ad-CA AMPK plus lactate in the mediobasal
hypothalamus

Body weight (kg) Insulin (ng/ml) Glucagon (pg/ml) Glucose (mg/dl)

Ad- GFP � saline (n 
 5)
Basal 0.270 � 0.014 0.8 � 0.2 60 � 2 146 � 4
Clamp 0.9 � 0.1 54 � 5 141 � 5

Ad-CA AMPK � saline (n 
 6)
Basal 0.273 � 0.017 0.7 � 0.2 54 � 4 127 � 14
Clamp 0.7 � 0.1 46 � 2 121 � 9

Ad-GFP � glucose (n 
 6)
Basal 0.283 � 0.016 0.8 � 0.2 54 � 4 152 � 10
Clamp 0.7 � 0.1 52 � 3 144 � 11

Ad-GFP � lactate (n 
 6)
Basal 0.284 � 0.013 0.8 � 0.1 58 � 5 142 � 4
Clamp 0.9 � 0.1 46 � 2 136 � 7

Ad-CA AMPK � glucose (n 
 6)
Basal 0.262 � 0.014 0.5 � 0.1 59 � 5 144 � 8
Clamp 0.5 � 0.1 46 � 2 125 � 4

Ad-CA AMPK � lactate (n 
 7)
Basal 0.278 � 0.024 0.8 � 0.2 56 � 4 156 � 13
Clamp 0.7 � 0.1 54 � 4 136 � 10

Data are means � SE. Basal (t 
 0); clamp (t 
 180–210).
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thalamic control of glucose homeostasis by AMPK remains
to be assessed.

In summary, molecular and pharmacological modula-
tion of hypothalamic AMPK regulates glucose production.
These findings suggest that inhibition of AMPK in the
hypothalamus could potentially lower glucose production
and plasma glucose levels in diabetes and obesity. It
should be noted, however, that contrary to hypothalamic
AMPK, activation (and not inhibition) of AMPK in the
peripheral tissues lowers glucose levels. For example,
hepatic AMPK activation inhibits gluconeogenesis and
reduces blood glucose levels (29,30). An increase in skel-
etal muscle AMPK activity also mediates some of the
beneficial effects of exercise on glucose uptake (31). Due
to these differential roles of peripheral and hypothalamic
AMPK in glucose regulation, caution should be taken in
developing drugs that target AMPK to lower glucose levels
in diabetes and obesity.
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