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Abstract

There has been a recent explosion in the use of artificial intelligence (AI), which is

now part of our everyday lives. Uptake in medicine has been more limited, although

in several fields there have been encouraging results showing excellent perfor-

mance when AI is used to assist in a well‐defined medical task. Most of this work has

been performed using retrospective data, and there have been few clinical trials

published using prospective data. This review focuses on the potential uses of AI in

the field of fetal cardiology. Ultrasound of the fetal heart is highly specific and

sensitive in experienced hands, but despite this there is significant room for

improvement in the rates of prenatal diagnosis of congenital heart disease in most

countries. AI may be one way of improving this. Other potential applications in fetal

cardiology include the provision of more accurate prognoses for individuals, and

automatic quantification of various metrics including cardiac function. However,

there are also ethical and governance concerns. These will need to be overcome

before AI can be widely accepted in mainstream use. It is likely that a familiarity of

the uses, and pitfalls, of AI will soon be mandatory for many healthcare pro-

fessionals working in fetal cardiology.

Key Points

What's already known about this topic?

� Artificial intelligence (AI) is rapidly becoming part of everyday life, and interest is growing in

its use in improving medical outcomes.

� AI may be a useful tool in fetal cardiology to improve rates of antenatal diagnosis of

congenital heart disease, as well as other potential benefits.

� Potential pitfalls exist however, and future clinicians will likely need to have a thorough

understanding of the risks and benefits of AI.

What does this study add?

� This review article summarizes the fundamentals of AI, the potential uses of AI in fetal

cardiology, and what the future may hold.
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1 | ULTRASOUND TO SCREEN FOR CONGENITAL
HEART DISEASE: A VITAL TOOL, BUT STILL FAILING

The use of ultrasound to image the fetal heart was first reported in

1964, initially using M‐mode techniques to characterize fetal heart

rate and heart size.1 The routine use of B‐mode ultrasound to

accurately diagnose structural congenital heart disease (CHD) in the

fetus began in the 1980s, with groups in the UK and USA publishing

case series demonstrating the utility of this technique.2,3 Since then,

there have been constant incremental technical developments with

the introduction of spectral Doppler, color Doppler, and three‐
dimensional (3D) imaging techniques, all of which are now in wide-

spread clinical use. Fetal echocardiography in expert hands is a highly

sensitive and specific diagnostic test.4,5 However, when views of the

fetal heart are incorporated as part of anomaly screening programs,

both sensitivity and specificity in the detection of CHD are lowered

substantially.

Fetal echocardiography is now considered a core component of

the routine fetal anomaly scan. Although obstetric practice varies

widely, most countries worldwide offer a mid‐trimester fetal

anomaly screening ultrasound scan with the aim of detecting serious

malformations, and international guidelines recommend that such

scans include specific views of the fetal heart.6,7 Despite this,

antenatal CHD detection rates remain lower than for most other

major structural anomalies. International registry‐based data sug-

gest a wide variation in antenatal detection rates, with some coun-

tries detecting only 14% of severe CHD cases before birth.8

Significant geographical variation within countries has also been

demonstrated.9,10

This is a problem, because evidence suggests that infants with

many forms of serious CHD diagnosed postnatally rather than

antenatally are less likely to survive long enough to undergo heart

surgery, are less likely to survive after such surgery, and are more

likely to have an adverse long‐term neurological outcome.11‐15 In

addition, accurate antenatal diagnosis allows the parents to make an

informed decision regarding the continuation of pregnancy, and can

also allow therapeutic intervention in selected cases.16

There are complex reasons behind the failure of fetal echocar-

diography to achieve universal antenatal detection of CHD. Recent

data have shown that the most frequent reasons for CHD to be

overlooked during routine mid‐trimester anomaly scans are poor

adaptational skills of the sonographer to acquire and optimize the

correct sonographic plane, or failure to recognize an abnormality

which is present on the ultrasound image.17 Thus, in the majority of

cases of missed CHD, either the correct cardiac view was not

correctly obtained, or the defect was clearly demonstrated but not

recognized by the operator.17 Previous work has shown the positive

impact of operator experience and programs of staff training to

improve recognition of cardiac lesions.17‐21 However, such programs

are labor and time intensive and need to be repeated with staff

turnover.

A complementary strategy would be to alter the paradigm, for

example by making ultrasound systems “smarter” via the integration

of artificial intelligence (AI). Such an approach could have the

potential to assist the sonographer in recognizing cardiac abnor-

malities, whilst remaining unobtrusive, quick, and easy to learn. By

combining this approach with continued education and training, it

may be possible improve antenatal detection rates of CHD through

multiple mechanisms simultaneously.

2 | CORE CONCEPTS IN AI

AI can be defined broadly as the field of science that aims to use

computer programs to learn complex tasks and make predictions

based on data.22 Although the field of AI research has existed for

over 70 years, in the last decade there has been an “AI boom” with

extremely rapid progress in multiple fields.23 This has been largely

driven by three factors: (1) hardware development, with the

production of affordable graphical processing units, optimized to

perform a huge amount of simultaneous calculations, (2) the growing

collection and availability of “big data” (especially data that has been

labeled), essential in order to train AI systems, and (3) the application

of complex AI methods, including neural networks, which we will

discuss below.

Machine learning (ML) can be seen as an integral part of AI. ML

can be defined as the use of computer programs that automatically

improve with experience, so over time will become more successful in

their defined task. A more formal way of stating this is to say a

machine can be said to learn from experience E with respect to a task

T and performance measure P, if its performance of T, as measured by

P, improves with E.24 Deep learning (DL) is a specific type of ML that

uses neural networks (explained below) arranged into many layers

(typically more than five, up to hundreds).25 Each layer can extract

more abstract and high‐level features from the input data, allowing

complex interpretation and prediction from the supplied data, for

example image classification in the field of computer vision. Figure 1

outlines the relationship between AI, ML, and DL, showing some

examples of ML methods such as random forests, support vector

machines, and logistic regression, and examples of DL methods such

as convolutional neural networks and recurrent neural networks.

Many other ML methods have been developed, all which have

strengths and weaknesses when applied to a specific problem. A full

description of these methods is beyond the scope of this review, but

we refer the reader to excellent online learning resources.26

ML methods can be broadly categorized into “supervised” and

“unsupervised” learning methods. Supervised learning is best used

when large amounts of labeled training data are available, and the

algorithm uses this data to learn how to make specific predictions

when presented with new, unlabeled data. “Unsupervised learning” is

a different approach, where the ML algorithm is shown unlabeled

data and asked to identify clusters within it, without generating

specific predictions. This review is mostly concerned with supervised

learning, as this predominates in the medical AI literature, however

unsupervised learning can be a powerful tool in the identification of

previously unseen patterns within patient data.
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Neural networks represent the current state‐of‐the‐art in the

field of medical AI, and the development of these models has resulted

in super‐human performance in certain medical tasks (although

whether this translates to an actual clinical improvement is debat-

able, as we will discuss later).27 There are many varieties of neural

networks that have been developed to perform optimally in specific

tasks (e.g., convolutional networks for computer vision, recurrent

networks for language processing). A full discussion of these network

architectures is also outside the scope of this review, but more in-

formation can be found at the online learning resources mentioned

above.26

Neural networks use labeled data (X, the raw data; Y, the label) to

develop a complex model that describes the relationship between X

and Y. The basic building block of the neural network is the per-

ceptron, first described in 1958. A perceptron takes the weighted

sum of multiple inputs (X), using a vector of weights (W), adds a bias

(b), and passes the resulting sum through an activation function, to

give an output.25 These weights and biases are known as the

parameters of the network, and these are what the neural network is

learning. Neural networks are composed of multiple perceptrons,

arranged into multiple layers, with deeper layers of the network

receiving the outputs of the previous layer as an input. Figure 2

demonstrates how imaging data from a fetal echocardiogram might

be incorporated into a neural network, and how the neural networks

are composed of multiple layers of perceptrons.

Neural networks are trained starting with random values for the

parameters. Training involves presenting the network with training

data (e.g. image data) and comparing the network predictions to the

known ground truth, to calculate an error. Using this error, each

parameter can be altered slightly in order to reduce the error. As

more labeled training data is passed through, over time the perfor-

mance of the network will improve in an iterative fashion. The final

performance of the network can then be tested by passing previously

unseen data (test data) through it and measuring how the predictions

compare to the known ground truth values.

3 | AI IN MODERN MEDICINE

Early attempts to use AI in medicine were disappointing, with rule‐
based systems unable to cope with the complexity of medical

scenarios, and performed poorly when confronted by large volumes

of new data.22,25 The development of neural networks has resulted in

more success, although real‐world implementations of AI solutions

are scarce, with the majority of research papers testing the perfor-

mance of algorithms using retrospectively acquired labeled data.28 In

very well‐defined, consistent, and repetitive tasks (such as X‐ray or

retinal/skin photograph classification) ML algorithms have been

shown to achieve or even exceed human expert‐level

performance.29‐33

Adult cardiology is another area that has shown rapid develop-

ment in the use of AI, raising hope that fetal cardiology may have

similar promise.34,35 Both specialties have a large focus on echocar-

diography, which has the potential to utilize AI to give real‐time

feedback to the clinician. Models have been developed that can

classify the correct echocardiographic view, and also identify specific

pathology within these views.36,37

The automatic quantification of cardiac function (in postnatal

cardiology) using AI is another area of cardiology that has received

much interest, both as a potential to reduce the inter‐ and intra-

observer variability seen in current practice, and to reduce the time

taken to perform the study.35,38 Commercially available solutions

that utilize AI are now available.39,40 These AI‐based models can sit

unobtrusively “on‐cart” within the ultrasound machine, aiding the

sonographer by automatically measuring 3D cardiac chamber

volumes and ejection fraction. Such methods have been shown to

be reproducible, and by reducing or removing human error, provide

a means to help standardization across different clinicians or in-

stitutions.39 There is also the potential to alter and streamline

echocardiography workflow, as automated measurements are

faster, and allow the sonographer to focus on other aspects of the

study.

F I GUR E 1 The relationship between
artificial intelligence, machine learning, and

deep learning, with examples of machine
learning and deep learning methods
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AI has also shown promise in the context of CHD (the primary

focus of fetal cardiology). Using supervised DL, Diller et al.41 trained a

convolutional neural network to discriminate accurately between

patients with discordant ventriculoarterial connections post atrial

switch procedure, patients with both discordant atrioventricular and

ventriculoarterial connections, and normal controls. Such direct

image‐based diagnosis of CHD has exciting potential in fetal

cardiology, although with additional challenges. Taking this further,

once the diagnosis is known, AI may be able to extract additional

information from imaging data and use this to inform prognosis, or

perform some other more complex categorization task. As an

example of this (although using magnetic resonance data rather than

ultrasound), AI has been shown to have utility in the automatic

determination of long‐term prognosis in patients with repaired

tetralogy of Fallot.42 And the potential for AI in this context is not

only limited to imaging data. A recent study has shown that by

combining clinical data, text from clinical letters (using text mining

algorithms) and data from other clinical investigations such as elec-

trocardiography and exercise testing, ML algorithms can be trained

to estimate prognosis in a large cohort of adult CHD patients.43 As

well as predicting outcome, these algorithms can also predict medical

interventions, such as the commencement of specific drug therapy.

Although not in current clinical use, there is the clear potential in the

future for such algorithms in not only predicting, but suggesting,

medical treatments and interventions.

4 | INTELLIGENT IMAGING OF THE FETUS

Table 1 outlines some examples of AI methods and how they have

been recently utilized in the field of fetal ultrasound imaging. Given

the suboptimal detection of fetal cardiac defects at the screening

anomaly ultrasound scan, there may be potential for AI to improve

this. AI may also be useful to the fetal cardiac specialist, as although

the performance of fetal echocardiography is excellent in expert

hands, there are still potential routes to AI improving this perfor-

mance further. However, fetal cardiac ultrasound imaging is a

challenging and complex task. There is a high degree of operator

dependency, meaning that different operators may not produce

images that are similar in appearance, despite representing the same

F I GUR E 2 How fetal echocardiogram data (A) might be incorporated into a neural network (B), and how the network is composed of
multiple perceptrons (C). b, bias; w, weight; X, input data; ŷ, prediction [Colour figure can be viewed at wileyonlinelibrary.com]
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anatomic area. The operator can vary several parameters such as

gain, contrast, resolution, depth, and magnification meaning that the

images are not consistent between studies, even of the same patient,

and this is compounded by constant fetal movement relative to the

ultrasound probe. Imaging artefacts such as acoustic shadowing from

bone are common and difficult to avoid, and have the potential to

confuse algorithms. Because of the small fetal size, the fetal heart

takes up a relatively small proportion of the image (certainly when

compared to postnatal echocardiography), meaning that any

algorithm will need to learn to ignore a large proportion of the

available data. A further difference from postnatal echocardiography

is that the orientation and position of the heart in the image is highly

variable, creating further complexity in image analysis.

One approach to improve image acquisition is the use of

automated 2D reconstructions of 3D data volumes. In this technique

the operator obtains a 3D volume of ultrasound data, including the

fetal heart, for example using spatiotemporal image correlation. It is

possible to then manually postprocess this dataset, producing 2D

images that replicate the standard planes of the fetal echocardio-

gram, allowing the operator to examine these for evidence of CHD.

To some extent this technique removes the need for the operator to

be skilled in the subtle and complex movements of the probe that are

necessary for the acquisition of standard cardiac planes. However, in

effect this just swaps one problem for another, as the operator now

needs to become skilled in the difficult task of manually manipulating

the 3D dataset to display to 2D images of interest. Techniques have

been proposed to automate this process.44‐48 These could be

described as a “human support system” rather than ML, as the system

is reliant on a human indicating where specific cardiac landmarks are,

then uses predefined rules to reconstruct the required 2D planes.

Results have been published demonstrating the potential utility of

this technique in fetal cardiac screening.49 However, although case

reports have shown this technique being of use in detecting isolated

cases of CHD, no larger trial demonstrating an improvement in

antenatal detection of CHD has yet been published.50

The acquisition of standard cardiac image planes is the first step

in diagnosing CHD from ultrasound images. Using AI to automatically

retrieve these planes from a stream of ultrasound imaging data is a

potential route improving detection rates. This may have the po-

tential to reduce the “cognitive load” of the sonographer, allowing

them to focus on identification of abnormal anatomy, rather than the

pausing and saving of standard panes. The automatically retrieved

planes may also be of higher quality than the manually obtained ones,

which also may improve diagnostic accuracy. Several groups have

investigated this method,51‐56 including some focusing solely on the

fetal heart.57,58 Our group in collaboration with others has previously

published the SonoNet algorithm.59,60 This uses a deep convolutional

neural network that was trained using labeled routine mid‐trimester

ultrasound images from 2694 volunteers. This achieves real‐time

classification of standard screening planes from a continuous stream

of ultrasound video data. Using this we can automatically save the

required images, without the sonographer having to freeze and

manually save the image. These images can then be automatically

used in a standardized reporting template, further streamlining

workflow.

In addition to automatic plane detection, work has been pub-

lished on automated fetal biometry.61‐63 For similar reasons to above,

this could conceivably improve anomaly detection rates by freeing up

the sonographer from mundane tasks, who may then be more likely

to identify abnormal anatomy. Human‐level performance in

TAB L E 1 AI methods used in some recent key papers using AI in the field of fetal cardiac ultrasound imaging

AI method Reference Training data Application of AI method

Random forests Bridge et al.57 91 Fetal echocardiogram clips from 12 fetuses Automatic detection of fetal cardiac position, orientation

(axis) and phase

Le et al.69 Echocardiograms from 3910 fetuses (14.1%

with CHD)

Differentiation of fetuses with normal hearts from those

with a variety of congenital heart defects

Fully connected

neural network

Sulas et al.70 LV inflow–outflow PW Doppler traces from 5

healthy fetuses

Automatic identification of E, A, and V waves on PW

Doppler traces

Recurrent neural

networks

Chen et al.51 Ultrasound scans of 300 fetuses Automatic detection of standard planes, including the four‐
chamber cardiac view

Convolutional neural

networks

Dong et al.58 2032 Examples of fetal four‐chamber views and

5000 views of other fetal structures

Automatic detection of the four‐chamber cardiac view, and

an automatic assessment of image quality

Baumgartner

et al.59

Ultrasound scans of 1003 healthy fetuses Automatic detection of standard planes, including the four‐
chamber, LV outflow, RV outflow, and three‐vessel view

cardiac views

Arnaout

et al.68

107,832 Images from 1326 ultrasound scans of

fetuses (400 with CHD)

Automatic identification of standard cardiac planes, then

differentiation between normal hearts and those with a

variety of congenital heart defects. Also automatic

segmentation of fetal heart structures to allow

biometric measurement

Abbreviations: AI, artificial intelligence; CHD, congenital heart disease; LV, left ventricle; PW, pulsed wave; RV, right ventricle.
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measurement accuracy has been demonstrated on retrospectively

acquired data. In current practice, we use measurements of cardiac

structures indexed to the gestational age of the fetus. If fetal size is

automatically determined, then such measurements could be more

informatively indexed to the fetal size, and indeed even these cardiac

measurements could potentially be automated. In addition to 2D

biometric measurements, early work has been published on the

automatic segmentation of a 3D volume of ultrasound data.64

Although currently this work focuses on identifying the entire fetus

rather than specific fetal anatomy, it raises exciting future possibil-

ities of being able to automatically segment the complex 3D cardiac

structures, which may be of great use in the identification of fetal

cardiac disease.

The quality of the acquired ultrasound images has been shown to

relate to the likelihood of clinically significant errors, and this is a

particular area of concern in fetal ultrasound scanning as it usually

involves lone and siloed working, and it is not standard practice to

store the entirety of the ultrasound data stream for later review.65 AI

has been investigated as a means to automate the quality‐control

process. Wu et al.66 used deep convolutional neural networks to

assess the quality of abdominal views, based on the relative size of

the region of interest, and key anatomical structures within it.

Focusing on the cardiac four chamber view, Dong et al.58 both

automatically extracted this standard plane from the ultrasound data

stream, and then used convolutional neural networks to assess the

image quality (based on appropriate gain and zoom, and appearance

of key anatomical landmarks). This automatic quantification of image

quality may be a useful adjunct to standard ultrasound scanning

performed by humans, but also will likely form an integral part of any

more automated system.

Relatively little work has been published examining the use of AI

to directly classify fetal hearts into normal or abnormal. Arnaout

et al.67,68 have proposed the use of an ensemble of neural networks

to explore this. Using 107,823 ultrasound images from 1326 echo-

cardiograms, they successfully used supervised learning to train a

model to identify specific cardiac views. They then used a separate

model to differentiate between structurally normal hearts and com-

plex CHD (considered as one group). Good performance was ach-

ieved, with an area under the curve (AUC) of 0.99, sensitivity of 95%,

and specificity of 96%, which is comparable to expert human clinician

performance. Le et al.69 have also published similar work in abstract

form, with good model performance on detecting CHD based on

retrospective data. They trained random forest algorithms

(a different form of ML from neural networks) to differentiate be-

tween normal hearts and a group of congenital heart defects, using

echocardiogram data from 3910 fetuses, achieving an AUC of 0.83,

sensitivity of 93%, and specificity of 72%. As an alternative approach,

Sulas et al.70 have investigated the use of neural networks to auto-

matically interpret pulsed‐wave Doppler traces on the left ventric-

ular inflow and outflow. They postulate that this might be an

alternative method of quantifying cardiac time intervals, given the

difficulties in obtaining fetal electocardiographic data, although the

utility of this technique in identifying fetal disease has not been

tested. How to translate all of these findings into community‐level

screening using prospectively acquired data, and how well this would

work, has not yet been assessed.

Current practitioners of fetal cardiology will know that informa-

tion given to prospective parents about a particular diagnosis is usu-

ally fairly generic, and other than a few well‐described risk factors for

poor outcome or need for early intervention, it is difficult to provide a

personalized description of the likely life course for each individual

fetus. As has been described above for adult CHD patients, AI may be a

means of extracting previously unrecognized information from ultra-

sound imaging data, and perhaps combining this with data from other

sources such as other clinical parameters or fetal magnetic resonance

imaging. This could provide a prediction not only of diagnosis, but

more granular predictions such as life expectancy, need for urgent

intervention, and even quality of life long‐term. Such precision medi-

cine could have great potential in the parental counseling process, and

inform decisions such as place or mode of delivery of the fetus.

5 | SHOULD WE BE WORRIED? ETHICS AND
CONTROVERSIES

AI has now become a common part of our everyday lives. Take‐up

thus far has been more limited in the medical world, partly because of

an understandable degree of caution on the part of clinicians when

introducing a novel technique into a high‐risk situation. Obstetrics is

a particularly litigious branch of medicine, and so it would not be

surprising if caution were even higher in this specialty. And indeed,

there are good reasons to be wary. If there is an error in an algorithm

then the potential for adverse impact is large, either by “missing”

cardiac lesions or by increasing false positive diagnoses in a sys-

tematic manner, compared to individual human error. Confirming this

risk, there have already been cases of commercially available AI tools

performing poorly and potentially causing harm to patients, by

making incorrect decisions when applied to a real‐world scenario.71

This risk is increased by the fact that it is often difficult to identify

exactly why neural networks have made a certain prediction, the so‐
called “black box” problem.27,71 This is a particular challenge in

medicine, where it is likely that clinicians and the public will demand

a degree of “explainability” before an AI tool is considered accept-

able.28 It is also possible to inadvertently introduce unwanted bias

into an algorithm, for example creating a model that works better in

people of certain races, which would clearly be unacceptable for a

medical application.28,72

The vast majority of medical AI research has been performed

using retrospectively acquired data, which has been used both for

training and testing the algorithms. Although many authors have

published very favorable results outlining excellent model perfor-

mance, very little work has been done examining how to apply these

models to a real‐world setting, on prospectively acquired data. And

even fewer studies have demonstrated an actual clinical benefit to

patients by using these new tools.73 Although a model may show

superior performance to an expert clinician in a highly controlled test
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situation using retrospective data, this by no means translates into

superior performance in the chaotic and unpredictable world of

clinical medicine. It is very difficult to interpret model performance in

these terms unless high‐quality randomized controlled trials are

performed in the future. A recent systematic review found only two

published randomized controlled trials comparing the performance of

AI versus humans in medical imaging tasks, and identified a high risk

of bias in the majority of the published literature using retrospective

data.74

6 | THE FUTURE

At the present time there is a lack of a robust framework to help

design and assess clinical trials of AI, and exactly how these trials

should be undertaken is debatable. As we have discussed, there are a

variety of ways that AI could be applied to fetal cardiology, ranging

from automated measurement of cardiac biometry, through to direct

diagnosis of cardiac malformations, with the sonographer using this

information to improve their performance. What we are asking of AI

will define how models are developed in the future, and how the

clinical trials to assess these models are designed.

If we want to train models to detect individual lesions using a

supervised approach, then a large amount of training data will be

required. Crucially, for supervised learning this will need to be labeled

data. For some nonmedical applications of ML it has been possible to

use the general public to provide labeled training data (e.g., clicking on

pictures that contain specified items), but clearly this would not be

possible in fetal cardiology, where a high degree of expertise is

needed, creating a scarcity of labeled data that is an impediment to

algorithm training. One scenario would be AI algorithms that are

completely embedded in the workflow of the fetal cardiology clinic. In

this way, labeled data could be continuously fed to the ML algorithms

that are continuously improving in their performance. Work has been

done specifically exploring this concept in the context of fetal cardi-

ology, and this may be a means by which AI can both inform and learn

simultaneously.75 However, the regulatory framework in most coun-

tries would not currently allow such an approach to be utilized in

clinical practice, as approval so far has only been granted for finalized

“locked” algorithms, but not for those that are constantly changing.

F I GUR E 3 Schematic diagram of how machine learning models could be embedded in fetal cardiology clinic workflow [Colour figure can

be viewed at wileyonlinelibrary.com]
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“Catastrophic forgetting,” where an algorithm abruptly deteriorates in

its performance on the original task when a new task is learned, is a

major barrier to the implementation of such continuous learning.76

Nevertheless, the US Food and Drug Administration last year pub-

lished a discussion paper outlining how such continuously adapting

algorithms might be regulated in future clinical use.77,78 Figure 3

outlines how neural networks could be embedded in either screening

or specialist fetal cardiology workflows, with the potential inputs and

outputs of such models.

There may be other solutions to the problem of labeled data

scarcity, such as using semi‐supervised approaches (where a model

trained on a different task is adapted for a new task by providing a

small amount of new training data), or unsupervised methods (where

the model sorts the data into similar clusters, then the label is

needed only for each cluster). Alternatively, an entirely different

approach may be needed where a model is trained to identify “sig-

natures” that are common amongst many types of CHD, and thus

identifies fetuses at increased risk. For a truly successful

implementation of AI in fetal cardiology, it is likely that novel

methods such as these will be required, and this is an ongoing focus

of our group's research.

7 | CONCLUSION

AI shows great promise for future application in fetal cardiology. As a

specialty, it faces perhaps greater challenges to realize this promise

when compared to other branches of medicine, including the scarcity

of labeled data due to the rarity and heterogeneity of CHD, and

challenges specific to ultrasound imaging. Nevertheless, once these

issues are overcome, along with the development of appropriate

regulatory and governance frameworks, it is likely that AI will form at

least some part of routine fetal cardiac care in the near future. We

envisage a future where AI works in tandem with skilled clinicians to

optimize performance. Although the replacement of clinicians with

algorithms seems a very long way off, it will likely be within our

lifetimes that a familiarity with the uses, and pitfalls, of AI will be

mandatory for many healthcare professionals.

ACKNOWLEDGMENTS

This work was supported by the Wellcome Trust (IEH Award,

102431), by core funding from the Wellcome/EPSRC Centre for

Medical Engineering (WT203148/Z/16/Z) and by the National

Institute for Health Research (NIHR) Biomedical Research Centre

based at Guy's and St Thomas' NHS Foundation Trust and King's

College London and the NIHR Clinical Research Facility. The views

expressed are those of the authors and not necessarily those of the

NHS, the NIHR or the Department of Health and Social Care.

CONFLICT OF INTERESTS

The authors have stated explicitly that there is no conflict of interests

in connection with this article.

ORCID

Thomas G. Day https://orcid.org/0000-0001-8391-7903

REFERENCES

1. Wang X, Xiao J. The use of fetal echocardiography for pregnancy

diagnosis. Chin J Obstet Gynecol. 1964;10(4):267‐269.

2. Allan LD, Tynan MJ, Campbell S, Wilkinson JL, Anderson RH.

Echocardiographic and anatomical correlates in the fetus. Br Heart J.
1980;44(4):444‐451. https://doi.org/10.1136/hrt.44.4.444

3. Kleinman C, Hobbins J, Jaffe C, Lynch D, Talner N. Echocardio-

graphic studies of the human fetus: prenatal diagnosis of congenital

heart disease and cardiac dysrhythmias. Pediatrics. 1980;65:

133‐134.

4. Allan LD, Sharland GK, Milburn A, et al. Prospective diagnosis of

1,006 consecutive cases of congenital heart disease in the fetus. J
Am Coll Cardiol. 1994;23(6):1452‐1458. https://doi.org/10.1016/

0735-1097(94)90391-3

5. Stümpflen I, Stümpflen A, Wimmer M, Bernaschek G. Effect of

detailed fetal echocardiography as part of routine prenatal ultraso-

nographic screening on detection of congenital heart disease. Lancet.
1996;348(9031):854‐857. https://doi.org/10.1016/S0140-6736(96)

04069-X

6. Salomon LJ, Alfirevic Z, Berghella V, et al. Practice guidelines for

performance of the routine mid‐trimester fetal ultrasound scan.

Ultrasound Obstet Gynecol. 2011;37(1):116‐126. https://doi.org/

10.1002/uog.8831

7. International Society of Ultrasound in Obstetrics & Gynecology.

Cardiac screening examination of the fetus: guidelines for per-

forming the “basic” and “extended basic” cardiac scan. Ultrasound
Obstet Gynecol. 2006;27(1):107‐113. https://doi.org/10.1002/

uog.2677

8. Bakker MK, Bergman JEH, Krikov S, et al. Prenatal diagnosis and

prevalence of critical congenital heart defects: an international

retrospective cohort study. BMJ Open. 2019;9(7):1‐12. https://doi.

org/10.1136/bmjopen-2018-028139

9. Quartermain MD, Pasquali SK, Hill KD, et al. Variation in prenatal

diagnosis of congenital heart disease in infants. Pediatrics.
2015;136(2):e378‐85. https://doi.org/10.1542/peds.2014-3783

10. National Congenital Heart Disease Audit. Summary Report. London:

National Institute for Cardiovascular Outcomes Research; 2019.

11. Mahle WT, Clancy RR, McGaurn SP, Goin JE, Clark BJ. Impact of

prenatal diagnosis on survival and early neurologic morbidity in

neonates with the hypoplastic left heart syndrome. Pediatrics.
2001;107(6):1277‐1282. https://doi.org/10.1542/peds.107.6.1277

12. Bonnet D, Coltri A, Butera G, et al. Detection of transposition of the

great arteries in fetuses reduces neonatal morbidity and mortality.

Circulation. 1999;99(7):916‐918. https://doi.org/10.1161/01.CIR.99.

7.916

13. Calderon J, Angeard N, Moutier S, et al. Impact of prenatal diagnosis

on neurocognitive outcomes in children with transposition of the

great arteries. J Pediatr. 2012;161(1):94‐8.e1. https://doi.org/

10.1016/j.jpeds.2011.12.036

14. Hunter LE, Simpson JM. Prenatal screening for structural congenital

heart disease. Nat Rev Cardiol. 2014;11(6):323‐334. https://doi.org/

10.1038/nrcardio.2014.34

15. Holland BJ, Myers JA, Woods CR. Prenatal diagnosis of critical

congenital heart disease reduces risk of death from cardiovascular

compromise prior to planned neonatal cardiac surgery: a meta‐
analysis. Ultrasound Obstet Gynecol. 2015;45(6):631‐638. https://doi.

org/10.1002/uog.14882

16. Simpson J, Zidere V, Miller O. Fetal Cardiology—A Practical Approach
to Diagnosis and Management. New York, NY: Springer International

Publishing.

740 - DAY ET AL.

https://orcid.org/0000-0001-8391-7903
https://orcid.org/0000-0001-8391-7903
https://doi.org/10.1136/hrt.44.4.444
https://doi.org/10.1016/0735-1097(94)90391-3
https://doi.org/10.1016/0735-1097(94)90391-3
https://doi.org/10.1016/S0140-6736(96)04069-X
https://doi.org/10.1016/S0140-6736(96)04069-X
https://doi.org/10.1002/uog.8831
https://doi.org/10.1002/uog.8831
https://doi.org/10.1002/uog.2677
https://doi.org/10.1002/uog.2677
https://doi.org/10.1136/bmjopen-2018-028139
https://doi.org/10.1136/bmjopen-2018-028139
https://doi.org/10.1542/peds.2014-3783
https://doi.org/10.1542/peds.107.6.1277
https://doi.org/10.1161/01.CIR.99.7.916
https://doi.org/10.1161/01.CIR.99.7.916
https://doi.org/10.1016/j.jpeds.2011.12.036
https://doi.org/10.1016/j.jpeds.2011.12.036
https://doi.org/10.1038/nrcardio.2014.34
https://doi.org/10.1038/nrcardio.2014.34
https://doi.org/10.1002/uog.14882
https://doi.org/10.1002/uog.14882
https://orcid.org/0000-0001-8391-7903


17. Nisselrooij AEL, Teunissen AKK, Clur SA, et al. Why are congenital

heart defects being missed? Ultrasound Obstet Gynecol.
2019:747‐757. https://doi.org/10.1002/uog.20358

18. Tegnander E, Eik‐Nes SH. The examiner's ultrasound experience has

a significant impact on the detection rate of congenital heart defects

at the second‐trimester fetal examination. Ultrasound Obstet Gynecol.
2006;28(1):8‐14. https://doi.org/10.1002/uog.2804

19. Uzun O, Kennedy J, Davies C, et al. Training: improving antenatal

detection and outcomes of congenital heart disease. BMJ Open
Qual. 2018;7(4), e000276. https://doi.org/10.1136/bmjoq-2017-

000276

20. Sharland GK, Allan LD. Screening for congenital heart disease pre-

natally. Results of a 2 1/2‐year study in the South East Thames

Region. Br J Obstet Gynaecol. 1992;99(3):220‐225. https://doi.org/

10.1111/j.1471-0528.1992.tb14503.x

21. Hunter S, Heads A, Wyllie J, Robson S. Prenatal diagnosis of

congenital heart disease in the northern region of England: benefits

of a training programme for obstetric ultrasonographers. Heart.
2000;84(3):294‐298. https://doi.org/10.1136/heart.84.3.294

22. Krittanawong C, Johnson KW, Rosenson RS, et al. Deep learning for

cardiovascularmedicine: a practical primer. Eur Heart J.
2019;40(25):2058‐2069C. https://doi.org/10.1093/eurheartj/

ehz056

23. Kulikowski CA. Beginnings of artificial intelligence in medicine

(AIM): computational artifice assisting scientific inquiry and clinical

art—with reflections on present AIM challenges. Yearb Med Inform.

2019;28(1):249‐256. https://doi.org/10.1055/s-0039-1677895

24. Mitchell T. Machine Learning. New York: McGraw Hil Education;

1997.

25. Bizopoulos P, Koutsouris D. Deep learning in cardiology. IEEE Rev
Biomed Eng. 2019;12(c):168‐193. https://doi.org/10.1109/RBME.

2018.2885714

26. www.deeplearning.ai

27. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J
Med. 2019;380(14):1347‐1358. https://doi.org/10.1056/NEJMra

1814259

28. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key

challenges for delivering clinical impact with artificial intelligence.

BMC Med. 2019;17(1):1‐9. https://doi.org/10.1186/s12916-019-

1426-2

29. Hwang UJ, Park S, Jin K‐N, et al. Development and validation of a

deep learning‐based automatic detection algorithm for active

pulmonary tuberculosis on chest radiographs. Clin Infect Dis. 2019;

69(5):739‐747.

30. Nam JG, Park S, Hwang EJ, et al. Development and validation of

deep learning‐based automatic detection algorithm for malignant

pulmonary nodules on chest radiographs. Radiology. 2019;290(1):

218‐228. https://doi.org/10.1148/radiol.2018180237

31. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist‐level classifica-

tion of skin cancer with deep neural networks. Nature.
2017;542(7639):115‐118. https://doi.org/10.1038/nature21056

32. McKinney SM, Sieniek M, Godbole V, et al. International evaluation

of an AI system for breast cancer screening. Nature. 2020;

577(7788):89‐94. https://doi.org/10.1038/s41586-019-1799-6

33. Gulshan V, Peng L, Coram M, et al. Development and validation of a

deep learning algorithm for detection of diabetic retinopathy in

retinal fundus photographs. JAMA. 2016;316(22):2402‐2410.

https://doi.org/10.1001/jama.2016.17216

34. Lopez‐jimenez F, Attia Z, Arruda‐olson AM, et al. Artificial

intelligence in cardiology: present and future. Mayo Clin Proc.
2020;95(May):1015‐1039. https://doi.org/10.1016/j.mayocp.2020.

01.038

35. Alsharqi M, Woodward WJ, Mumith JA, Markham DC, Upton R,

Leeson P. Artificial intelligence and echocardiography. Echo Res
Pract. 2018;5(4):R115‐R125. https://doi.org/10.1530/erp-18-0056

36. Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view

classification of echocardiograms using deep learning. npj Digit Med.

2018;1(1):1‐8. https://doi.org/10.1038/s41746-017-0013-1

37. Zhang J, Gajjala S, Agrawal P, et al. Fully automated echocardiogram

interpretation in clinical practice: feasibility and diagnostic accuracy.

Circulation. 2018;138(16):1623‐1635. https://doi.org/10.1161/

CIRCULATIONAHA.118.034338

38. Knackstedt C, Bekkers SCAM, Schummers G, et al. Fully automated

versus standard tracking of left ventricular ejection fraction

and longitudinal strain the FAST‐EFs multicenter study. J Am Coll
Cardiol. 2015;66(13):1456‐1466. https://doi.org/10.1016/j.jacc.

2015.07.052

39. Medvedofsky D, Mor‐Avi V, Amzulescu M, et al. Three‐dimensional

echocardiographic quantification of the left‐heart chambers using an

automated adaptive analytics algorithm: multicentre validation

study. Eur Heart J Cardiovasc Imaging. 2018;19(1):47‐58. https://doi.

org/10.1093/ehjci/jew328

40. Tsang W, Salgo IS, Medvedofsky D, et al. Transthoracic 3D echo-

cardiographic left heart chamber quantification using an automated

adaptive analytics algorithm. JACC Cardiovasc Imaging.
2016;9(7):769‐782. https://doi.org/10.1016/j.jcmg.2015.12.020

41. Diller GP, Babu‐Narayan S, Li W, et al. Utility of machine learning

algorithms in assessing patients with a systemic right ventricle. Eur
Heart J Cardiovasc Imaging. 2019;20(8):925‐931. https://doi.org/

10.1093/ehjci/jey211

42. Diller GP, Orwat S, Vahle J, et al. Prediction of prognosis in pa-

tients with tetralogy of Fallot based on deep learning imaging

analysis. Heart. 2020;106:1‐8. https://doi.org/10.1136/heartjnl-

2019-315962

43. Diller GP, Kempny A, Babu‐Narayan SV, et al. Machine learning al-

gorithms estimating prognosis and guiding therapy in adult

congenital heart disease: data from a single tertiary centre including

10 019 patients. Eur Heart J. 2019;40(13):1069‐1077. https://doi.

org/10.1093/eurheartj/ehy915

44. Abuhamad A. Automated multiplanar imaging: a novel approach to

ultrasonography. J Ultrasound Med. 2004;23(5):573‐576. https://doi.

org/10.7863/jum.2004.23.5.573

45. Abuhamad A, Falkensammer P, Reichartseder F, Zhao Y. Automated

retrieval of standard diagnostic fetal cardiac ultrasound planes in

the second trimester of pregnancy: a prospective evaluation of

software. Ultrasound Obstet Gynecol. 2008;31(1):30‐36. https://doi.

org/10.1002/uog.5228

46. Yeo L, Romero R. Fetal Intelligent Navigation Echocardiography

(FINE): a novel method for rapid, simple, and automatic examination

of the fetal heart. Ultrasound Obstet Gynecol. 2013;42(3):268‐284.

https://doi.org/10.1002/uog.12563

47. Yeo L, Romero R. Intelligent navigation to improve obstetrical so-

nography. Ultrasound Obstet Gynecol. 2016;47(4):403‐409. https://

doi.org/10.1002/uog.12562

48. Chaoui R, Martins J, Heling S. Recent development in three and four

dimension fetal echocardiography. Fetal Diagn Ther. 2020;47:

345‐353. https://doi.org/10.1159/000500454

49. Garcia M, Yeo L, Romero R, et al. Prospective evaluation of the fetal

heart using fetal intelligent navigation echocardiography (FINE).

Ultrasound Obstet Gynecol. 2016;47(4):450‐459. https://doi.org/

10.1002/uog.15676

50. Yeo L, Luewan S, Markush D, Gill N, Romero R. Prenatal diagnosis of

dextrocardia with complex congenital heart disease using fetal

intelligent navigation echocardiography (FINE) and a literature re-

view. Fetal Diagn Ther. 2018;43(4):304‐316. https://doi.org/10.1159/

000468929

51. Chen H, Dou Q, Ni D, et al. Automatic Fetal Ultrasound Standard

Plane Detection Using Knowledge Transferred Recurrent Neural

Networks. In: Navab N, Hornegger J, Wells WM, Frangi A, eds.

Medical Image Computing and Computer‐Assisted Intervention—MICCAI

DAY ET AL. - 741

https://doi.org/10.1002/uog.20358
https://doi.org/10.1002/uog.2804
https://doi.org/10.1136/bmjoq-2017-000276
https://doi.org/10.1136/bmjoq-2017-000276
https://doi.org/10.1111/j.1471-0528.1992.tb14503.x
https://doi.org/10.1111/j.1471-0528.1992.tb14503.x
https://doi.org/10.1136/heart.84.3.294
https://doi.org/10.1093/eurheartj/ehz056
https://doi.org/10.1093/eurheartj/ehz056
https://doi.org/10.1055/s-0039-1677895
https://doi.org/10.1109/RBME.2018.2885714
https://doi.org/10.1109/RBME.2018.2885714
http://www.deeplearning.ai
https://doi.org/10.1056/NEJMra1814259
https://doi.org/10.1056/NEJMra1814259
https://doi.org/10.1186/s12916-019-1426-2
https://doi.org/10.1186/s12916-019-1426-2
https://doi.org/10.1148/radiol.2018180237
https://doi.org/10.1038/nature21056
https://doi.org/10.1038/s41586-019-1799-6
https://doi.org/10.1001/jama.2016.17216
https://doi.org/10.1016/j.mayocp.2020.01.038
https://doi.org/10.1016/j.mayocp.2020.01.038
https://doi.org/10.1530/erp-18-0056
https://doi.org/10.1038/s41746-017-0013-1
https://doi.org/10.1161/CIRCULATIONAHA.118.034338
https://doi.org/10.1161/CIRCULATIONAHA.118.034338
https://doi.org/10.1016/j.jacc.2015.07.052
https://doi.org/10.1016/j.jacc.2015.07.052
https://doi.org/10.1093/ehjci/jew328
https://doi.org/10.1093/ehjci/jew328
https://doi.org/10.1016/j.jcmg.2015.12.020
https://doi.org/10.1093/ehjci/jey211
https://doi.org/10.1093/ehjci/jey211
https://doi.org/10.1136/heartjnl-2019-315962
https://doi.org/10.1136/heartjnl-2019-315962
https://doi.org/10.1093/eurheartj/ehy915
https://doi.org/10.1093/eurheartj/ehy915
https://doi.org/10.7863/jum.2004.23.5.573
https://doi.org/10.7863/jum.2004.23.5.573
https://doi.org/10.1002/uog.5228
https://doi.org/10.1002/uog.5228
https://doi.org/10.1002/uog.12563
https://doi.org/10.1002/uog.12562
https://doi.org/10.1002/uog.12562
https://doi.org/10.1159/000500454
https://doi.org/10.1002/uog.15676
https://doi.org/10.1002/uog.15676
https://doi.org/10.1159/000468929
https://doi.org/10.1159/000468929


2015. Cham, Switzerland: Springer International Publishing;

2015:507‐514.

52. Chen H, Ni D, Qin J, et al. Standard plane localization in fetal

ultrasound via domain transferred deep neural networks. IEEE J
Biomed Heal Informatics. 2015;19(5):1627‐1636. https://doi.org/

10.1109/JBHI.2015.2425041

53. Yu Z, Wu L, Ni D, et al. Fetal facial standard plane recognition via

deep convolutional neural networks. Chin J Biomed Eng.
2017;36(3):267‐275. https://doi.org/10.3969/j.issn.0258-8021.

2017.03.002

54. Lei B, Tan EL, Chen S, et al. Automatic recognition of fetal facial

standard plane in ultrasound image via Fisher vector. PLoS One.
2015;10(5):85‐88. https://doi.org/10.1371/journal.pone.0121838

55. Yaqub M, Kelly B, Papageorghiou AT, Noble JA. Guided Random

Forests for Identification of Key Fetal Anatomy and Image Catego-

rization in Ultrasound Scans. In: Navab N, Hornegger J, Wells WM,

Frangi AF, eds. Medical Image Computing and Computer‐Assisted
Intervention—MICCAI 2015. Cham, Switzerland: Springer Interna-

tional Publishing; 2015:687‐694.

56. Yaqub M, Kelly B, Papageorghiou AT, Noble JA. A deep learning

solution for automatic fetal neurosonographic diagnostic plane

verification using clinical standard constraints. Ultrasound Med Biol.
2017;43(12):2925‐2933. https://doi.org/10.1016/j.ultrasmedbio.

2017.07.013

57. Bridge CP, Ioannou C, Noble JA. Automated annotation and

quantitative description of ultrasound videos of the fetal heart. Med
Image Anal. 2017;36:147‐161. https://doi.org/10.1016/j.media.

2016.11.006

58. Dong J, Liu S, Liao Y, et al. A generic quality control framework for

fetal ultrasound cardiac four‐chamber planes. IEEE J Biomed Heal
Informatics. 2020;24(4):931‐942. https://doi.org/10.1109/JBHI.2019.

2948316

59. Baumgartner CF, Kamnitsas K, Matthew J, et al. SonoNet: real‐time

detection and localisation of fetal standard scan planes in freehand

ultrasound. IEEE Trans Med Imag. 2017;36(11):2204‐2215. https:

//doi.org/10.1109/TMI.2017.2712367

60. Baumgartner CF, Kamnitsas K, Matthew J, Smith S, Kainz B,

Rueckert D. Real‐Time Standard Scan Plane Detection and

Localisation in Fetal Ultrasound Using Fully Convolutional Neural

Networks. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells

W, eds. Medical Image Computing and Computer‐Assisted Intervention—
MICCAI 2016. Cham, Switzerland: Springer International Publishing;

2016:203‐211.

61. Kim HP, Lee SM, Kwon JY, Park Y, Kim KC, Seo JK. Automatic

evaluation of fetal head biometry from ultrasound images using

machine learning. Physiol Meas. 2019;40(6). https://doi.org/10.1088/

1361-6579/ab21ac

62. Li J, Wang Y, Lei B, et al. Automatic fetal head circumference

measurement in ultrasound using random forest and fast ellipse

fitting. IEEE J Biomed Heal Informatics. 2018;22(1):215‐223. https://

doi.org/10.1109/JBHI.2017.2703890

63. Sinclair M, Baumgartner CF, Matthew J, et al. Human‐level perfor-

mance on automatic head biometrics in fetal ultrasound using fully

convolutional neural networks. Annu Int Conf IEEE Eng Med Biol Soc.
2018;2018:714‐717. https://doi.org/10.1109/EMBC.2018.8512278

64. Yang X, Yu L, Li S, et al. Towards automated semantic segmentation

in prenatal volumetric ultrasound. IEEE Trans Med Imag.
2019;38(1):180‐193. https://doi.org/10.1109/TMI.2018.2858779

65. Dudley NJ, Chapman E. The importance of quality management in

fetal measurement. Ultrasound Obstet Gynecol. 2002;19(2):190‐196.

https://doi.org/10.1046/j.0960-7692.2001.00549.x

66. Wu L, Cheng JZ, Li S, Lei B, Wang T, Ni D. FUIQA: fetal ultrasound

image quality assessment with deep convolutional networks. IEEE
Trans Cybern. 2017;47(5):1336‐1349. https://doi.org/10.1109/

TCYB.2017.2671898

67. Arnaout R, Curran L, Chinn E, Zhao Y, Moon‐Grady A. Deep‐Learning
Models Improve on Community‐Level Diagnosis for Common Congenital
Heart Disease Lesions. arXiv. https://arxiv.org/abs/1809.06993

68. Arnaout R, Curran L, Zhao Y, Levine J, Chinn E, Moon‐Grady A.

Expert‐level prenatal detection of complex congenital heart disease

from screening ultrasound using deep learning. medRxiv. 2020.

https://doi.org/10.1101/2020.06.22.20137786

69. Le TK, Truong V, Nguyen‐Vo T‐H, et al. Application of machine

learning in screening of congenital heart diseases using fetal echo-

cardiography. J Am Coll Cardiol. 2020;75(11):648. https://doi.org/

10.1016/s0735-1097(20)31275-4

70. Sulas E, Ortu E, Raffo L, Urru M, Tumbarello R, Pani D. Automatic

recognition of complete atrioventricular activity in fetal pulsed‐
wave Doppler signals. Annu Int Conf IEEE Eng Med Biol
Soc. 2018;2018:917‐920. https://doi.org/10.1109/EMBC.2018.

8512329

71. Topol EJ. High‐performance medicine: the convergence of human

and artificial intelligence. Nat Med. 2019;25(1):44‐56. https://doi.

org/10.1038/s41591-018-0300-7

72. Barocas S, Selbst AD. Big data's disparate impact. SSRN Electron J.
2018;671:671‐732. https://doi.org/10.2139/ssrn.2477899

73. Shah NH, Milstein A, Bagley PhD SC. Making machine learning

models clinically useful. JAMA. 2019;322(14):1351‐1352. https://doi.

org/10.1001/jama.2019.10306

74. Nagendran M, Chen Y, Lovejoy CA, et al. Artificial intelligence versus

clinicians: systematic review of design, reporting standards, and

claims of deep learning studies in medical imaging. BMJ. 2020;368:

1‐12. https://doi.org/10.1136/bmj.m689

75. Patra A, Noble JA. Hierarchical class incremental learning of

anatomical structures in fetal echocardiography videos. IEEE J Bio-
med Heal Informatics. 2020;24(4):1046‐1058. https://doi.org/

10.1109/JBHI.2020.2973372

76. Kirkpatrick J, Pascanu R, Rabinowitz N, et al. Overcoming

catastrophic forgetting in neural networks. Proc Natl Acad Sci
U.S.A. 2017;114(13):3521‐3526. https://doi.org/10.1073/pnas.1611

835114

77. Minssen T, Gerke S, Aboy M, Price N, Cohen G. Regulatory re-

sponses to medical machine learning. J Law Biosci. 2020:1‐18.

https://doi.org/10.1093/jlb/lsaa002

78. FDA. Proposed regulatory framework for modifications to artificial
intelligence/machine learning (AI/ML) ‐based software as a medical
device (SaMD)—discussion paper and request for feedback. US Food and

Drug Admnistration. 2019:1‐20.

How to cite this article: Day TG, Kainz B, Hajnal J, Razavi R,

Simpson JM. Artificial intelligence, fetal echocardiography,

and congenital heart disease. Prenatal Diagnosis.

2021;41:733–742. https://doi.org/10.1002/pd.5892

742 - DAY ET AL.

https://doi.org/10.1109/JBHI.2015.2425041
https://doi.org/10.1109/JBHI.2015.2425041
https://doi.org/10.3969/j.issn.0258-8021.2017.03.002
https://doi.org/10.3969/j.issn.0258-8021.2017.03.002
https://doi.org/10.1371/journal.pone.0121838
https://doi.org/10.1016/j.ultrasmedbio.2017.07.013
https://doi.org/10.1016/j.ultrasmedbio.2017.07.013
https://doi.org/10.1016/j.media.2016.11.006
https://doi.org/10.1016/j.media.2016.11.006
https://doi.org/10.1109/JBHI.2019.2948316
https://doi.org/10.1109/JBHI.2019.2948316
https://doi.org/10.1109/TMI.2017.2712367
https://doi.org/10.1109/TMI.2017.2712367
https://doi.org/10.1088/1361-6579/ab21ac
https://doi.org/10.1088/1361-6579/ab21ac
https://doi.org/10.1109/JBHI.2017.2703890
https://doi.org/10.1109/JBHI.2017.2703890
https://doi.org/10.1109/EMBC.2018.8512278
https://doi.org/10.1109/TMI.2018.2858779
https://doi.org/10.1046/j.0960-7692.2001.00549.x
https://doi.org/10.1109/TCYB.2017.2671898
https://doi.org/10.1109/TCYB.2017.2671898
https://arxiv.org/abs/1809.06993
https://doi.org/10.1101/2020.06.22.20137786
https://doi.org/10.1016/s0735-1097(20)31275-4
https://doi.org/10.1016/s0735-1097(20)31275-4
https://doi.org/10.1109/EMBC.2018.8512329
https://doi.org/10.1109/EMBC.2018.8512329
https://doi.org/10.1038/s41591-018-0300-7
https://doi.org/10.1038/s41591-018-0300-7
https://doi.org/10.2139/ssrn.2477899
https://doi.org/10.1001/jama.2019.10306
https://doi.org/10.1001/jama.2019.10306
https://doi.org/10.1136/bmj.m689
https://doi.org/10.1109/JBHI.2020.2973372
https://doi.org/10.1109/JBHI.2020.2973372
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1093/jlb/lsaa002
https://doi.org/10.1002/pd.5892

	Artificial intelligence, fetal echocardiography, and congenital heart disease
	1 | ULTRASOUND TO SCREEN FOR CONGENITAL HEART DISEASE: A VITAL TOOL, BUT STILL FAILING
	2 | CORE CONCEPTS IN AI
	3 | AI IN MODERN MEDICINE
	4 | INTELLIGENT IMAGING OF THE FETUS
	5 | SHOULD WE BE WORRIED? ETHICS AND CONTROVERSIES
	6 | THE FUTURE
	7 | CONCLUSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTERESTS


