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Role of Pannexin-1-P2X7R
signaling on cell death and
pro-inflammatory mediator
expression induced by
Clostridioides difficile toxins
in enteric glia

Andrea V. Loureiro1†, Lauro I. Moura-Neto1†,
Conceição S. Martins1, Pedro I. M. Silva1, Matheus B.S. Lopes1,
Renata F. C. Leitão1, Juliana M. Coelho-Aguiar2,
Vivaldo Moura-Neto2, Cirle A. Warren3, Deiziane V.S. Costa3*‡

and Gerly A. C. Brito1,4*‡

1Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará,
Brazil, 2Paulo Niemeyer Brain Institute, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro,
Rio de Janeiro, Brazil, 3Division of Infectious Diseases and International Health, University of
Virginia, Charlottesville, VA, United States, 4Department of Physiology and Pharmacology,
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Clostridioides difficile (C. difficile) produces toxins A (TcdA) and B (TcdB), both

associated with intestinal damage and diarrhea. Pannexin-1 (Panx1) channels

allows the passage of messenger molecules, such as adenosine triphosphate

(ATP), which in turn activate the P2X7 receptors (P2X7R) that regulate

inflammation and cell death in inflammatory bowel diseases. The aim of this

study was to verify the effect of C. difficile infection (CDI) in the expression of

Panx1 and P2X7R in intestinal tissues of mice, as well as their role in cell death

and IL-6 expression induced by TcdA and TcdB in enteric glial cells (EGCs).

Male C57BL/6 mice (8 weeks of age) were infected with C. difficile VPI10463,

and the control group received only vehicle per gavage. After three days post-

infection (p.i.), cecum and colon samples were collected to evaluate the

express ion of Panx1 by immunohistochemistry . In v i tro , EGCs

(PK060399egfr) were challenged with TcdA or TcdB, in the presence or

absence of the Panx1 inhibitor (10Panx trifluoroacetate) or P2X7R antagonist

(A438079), and Panx1 and P2X7R expression, caspase-3/7 activity and

phosphatidylserine binding to annexin-V, as well as IL-6 expression were

assessed. CDI increased the levels of Panx1 in cecum and colon of mice

compared to the control group. Panx1 inhibitor decreased caspase-3/7

activity and phosphatidylserine-annexin-V binding, but not IL-6 gene

expression in TcdA and TcdB-challenged EGCs. P2X7 receptor antagonist

accentually reduced caspase-3/7 activity, phosphatidylserine-annexin-V

binding, and IL-6 gene expression in TcdA and TcdB-challenged EGCs. In

conclusion, Panx1 is increased during CDI and plays an important role in the
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effects of C. difficile toxins in EGCs, participating in cell death induced by both

toxins by promoting caspase-3/7 activation via P2X7R, which is also involved

in IL-6 expression induced by both toxins.
KEYWORDS

Clostridioides difficile, Clostridioides difficile infection, Pannexin-1, P2X7R,
Enteric glia
Introduction

Clostridioides difficile (C. difficile) is a gram-positive, spore-

forming, toxin-producing, anaerobic bacillus and is one of the

main causes of antibiotic use-associated nosocomial diarrhea (1,

2) exhibiting an incidence of 8.3 C. difficile infection (CDI) cases

per 10000 patient-day, costing approximately US $ 4 billion per

year in the US (3). The main virulence factors of C. difficile are

toxin A (TcdA), toxin B (TcdB) and binary toxin (CDT) (4, 5).

The intestinal disease caused by CDI can range from mild

diarrhea to fulminant disease (2).

The enteric nervous system (ENS) is composed by enteric

neurons and enteric glial cells (EGCs) that together control the

intestinal reflex (peristalsis), secretion and inflammatory

response (6). Enteric glial cells (EGCs), as an important

cellular component of ENS, play a key role in regulating

intestinal homeostasis, inflammatory response due its ability in

interacting with other intestinal cells, as well as in responding to

bacteria stimuli (7–11). Complete ablation of EGCs promoted

fulminant colitis in mice (12), showing the potential role of these

cells in regulating key functions in the gut. It is known that TcdB

induces EGCs death via reactive oxygen species (ROS)/

nicotinamide adenine dinucleotide phosphate (NADPH)

oxidase (NOX)/c-Jun N-terminal kinase (JNK) in a caspase-

dependent manner but mitochondria-independent pathway, as

well as senescence (13–15). In vitro, co-culture of ileum mucosal

and submucosal layer challenged with TcdB presented higher IL-

8 secretion than the culture of each layer alone (16). The fact that

EGCs can be found on these two layers (6), suggest a potential

role of these cells in the inflammatory response to C.

difficile toxin.

Pannexin-1 (Panx1) is a well-characterized membrane

protein that participates in cell-extracellular environment

communication (17–19) and is part of an important

mechanism for release of ATP (adenosine triphosphate), an

endogenous P2X7 receptor (P2X7R) agonist, to the

extracellular environment. P2X7R is involved in many cellular

functions, such as metabolism, proliferation, migration,

neurotransmitters release and cytokine synthesis (20–24). In

the gut, P2X7R can be found in epithelial cells, neurons,
02
macrophages, T cells and EGCs (25–27). Activation of P2X7R

begins with the release of ATP through Panx1 channels, which

are activated via Ca2+ signaling (6, 28). In high levels, ATP via

P2X7 activation, promotes tissue damage by stimulating cell

death (29). In a colitis murine model, activation of P2X7R in

EGCs resulted in inflammatory response and cell death (28).

However, it is still unknown the role of Panx1 and P2X7R in

EGCs death and inflammatory response induced by C.

difficile toxins.

Given that TcdA and TcdB induces cell death (13, 14) and

upregulation of pro-inflammatory mediators (such as IL-6) in

EGCs (30), we investigated whether Panx1/P2X7R signaling is

involved in these deleterious effects.
Materials and methods

Mice

Male C57BL/6 mice (Jackson Laboratory, Farmington, US, 8

weeks old) were housed in temperature-controlled rooms under

12 h light-dark cycles. The animals received water and food ad

libitum. All surgical procedures and treatments performed with

C57BL/6 mice were conducted in accordance with the Guidelines

for Institutional and Animal Care and Use of the University of

Virginia, Charlottesville, US. The protocol has been approved by

the committee on the Ethics of Animal Experiments of the

University of Virginia (Protocol number: 4096).
C. difficile infection model

Our murine CDI model is broadly used due to the ability to

mimic severe diarrhea presented by humans and was performed

as previously described (31–35). C57BL/6 mice (n=6 for each

group) received an antibiotic treatment (0.035 mg per mL

gentamicin, 850 U per mL colistin, 0.215 mg per mL

metronidazole, and 0.045 mg per mL vancomycin) in the

drinking water for 3 days. After 1 day off antibiotics, an

intraperitoneal injection of clindamycin (32 mg per kg) was
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given 1 day before C. difficile challenge. Then, 105 CFU (in 100

mL of Chopped meat broth, a pre-reduced medium) of the

vegetative C. difficile strain VPI10463 (ATCC 43255, tcdA

+tcdB+cdtB-) was given by oral gavage (Figure 1A). The

inoculum was prepared as previously described (30). Control

mice received chopped meat broth (100 mL). Mouse weights and

the development of disease symptoms were monitored daily. The

animals were euthanized three days after infection using

ketamine and xylazine (180 and 15 mg/kg, i.p.).
Immunohistochemistry

Sections (4 µm thick) were prepared from paraffin-

embedded mouse colon and cecum tissues . Af ter

deparaffinization, antigens were recovered by incubating the

slides in citrate buffer (pH 9.0) for 20 min in PT link tank

(DAKO). Endogenous peroxidase was blocked with 3% H2O2

for 30 min to reduce nonspecific binding. The sections were then

incubated with an Panx-1 antibody (R&D system) for 3 hours.

The sections were then incubated for 30 min with polymer

(K4061, Dako). The antibody binding sites were visualized by

incubating the samples with diaminobenzidine–H2O2 (DAB,

Dako) solution. Sections incubated with antibody diluent

without a primary antibody were used as negative controls.

Immunohistochemical images were captured using a light

microscope coupled to a camera with a LAZ 3.5 acquisition

system (LEICA DM1000, Germany). To quantify the positive

immunostaining area for Panx-1, the Adobe Photoshop 8.0

program was used to obtain the total tissue and the positive

area. The percentage of immunopositive area was calculated by
Frontiers in Immunology 03
dividing the number of DAB-positive pixels (immunostaining-

positive pixels) by the number of pixels per total tissue image

and multiplying the result by 100, as previously described (36).
Rat enteric glial cell culture
and treatment

The immortalized rat enteric glial cell (EGC) line

PK060399egfr (ATCC CRL-2690, VA, United States), which

has been shown to exhibit similar morphology and functional

properties to primary enteric glial cells (37), was cultured in

Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco) and

supplemented with 10% fetal bovine serum, 1% antibiotics

(100 mg/mL penicillin and 100 mg/mL streptomycin, Gibco)

and 1 mM sodium pyruvate (Gibco) at 37°C in a humidified

incubator under 5% CO2 for no more than 16 passages. For all

experiments, EGCs were released using 0.05% trypsin-EDTA for

5 min. Cells were incubated with 10 and 50 µM 10Panx

trifluoroacetate (Panx1 inhibitor, Sigma-Aldrich SML2152) or

300 µM A438079 (P2X7R antagonist, Tocris 2972) 1 h before

incubation with TcdA (50 ng/mL) or TcdB (1 ng/mL). All drug

concentrations used were based on MTT assay results (Figure

S1). Purified TcdA and TcdB (TechLab, VA, United States)

produced by C. difficile strain VPI10463 were used in this study.
MTT assay

EGCs line (5x103 cells/well) were seeded in 96-well plates

and treated with 10Panx trifluoroacetate (10, 100 and 300µM)
A

B

C

FIGURE 1

CDI increases Panx1 expression in mouse colon and cecum samples. (A) Experimental protocol of the infection model. (B) CDI increases Panx1
immunostaining in the cecum and colon of mice. The data are the mean ± SEM of the percentage of the immunopositive area for Panx1 in the
cecum and colon of mice submitted to CDI and uninfected in relation to the total area; t test of Student; the value of p is represented in the
graph. (C) immunohistochemical imaging for Panx1 in mouse colon and cecum tissues with CDI (Bars=100 mm).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.956340
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Loureiro et al. 10.3389/fimmu.2022.956340
and A438079 (1, 3, 10, 30, 100 and 300mM) for 18h. Then, the

cells were incubated with thiazolyl blue tetrazolium bromide

(MTT, 0.5 mg/mL reconstituted in supplemented DMEM,

Sigma-Aldrich, M2128) for 2 h at 37°C in a humidified

incubator under 5% CO2. After removal of the MTT solution,

150 µL of dimethylsulfoxide was added to each well. The plates

were then shaken for 2 min at room temperature, and the

absorbance of the reaction at 570 nm was measured using an

ELISA reader.
Quantitative real-time PCR

EGCs line (6x105 cells/well) were seeded in 6-well plates and

treated with TcdA or TcdB and pharmacologic modulators.

After incubation, total RNA was extracted with a RNeasy Plus

Mini Kit (Qiagen, Hilden, Germany) using QIAcube (Qiagen).

RNA was quantified with a Qubit 3.0 fluorometer (Life

Technologies) using a Qubit RNA BR Assay Kit (Invitrogen,

Q10211). After DNA contamination was removed by RNA

treatment with DNase I (Invitrogen, 18068-015), a total of 600

ng of RNA was then reverse transcribed using an iScript cDNA

Synthesis Kit (Bio-Rad, 1708891) according to the

manufacturer’s protocol. qPCR amplification of Panx-1, IL-6

and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in

cell samples was performed in a CFX Connect system (Bio-Rad)

with the following conditions: 95°C for 30 s, 40 cycles of 95°C for

5 s and 60°C for 30s, and melt curve analysis from 65-95°C in

0.5°C increments for 2 s each. All PCRs were performed with

iTaq Universal SYBR Green Supermix (Bio-Rad, 172-5124). The

primer sets are listed in Supplementary Material.
Immunofluorescence

EGCs line (4x104 cells/well) plated on 8-chamber glass tissue

culture slides in a polystyrene vessel and treated with TcdA or

TcdB for 18 h were fixed in 4% PFA solution (Alfa Aesar) in PBS

for 30 min at room temperature and permeabilized with 0.5%

Triton X-100 (Sigma-Aldrich) and 3% bovine serum albumin

(BSA, Sigma) in PBS for 10 min at 4°C. After blocking with 5%

normal bovine serum albumin in PBS for 40 min at room

temperature, the cells were incubated with anti-Panx-1

antibody (1:100, Invitrogen, 488100), anti-P2X7 antibody

(1:50, Millipore, AB5246), anti-IL-6 (1:20, R&D system,

AF506) or phosphorylated NFkB (1:100, Thermo Scientific,

PA537718) overnight at 4°C. After three washes with washing

buffer (0.01% Tween 20 in PBS), the cells were incubated for 2h

with secondary antibody conjugated with Alexa Fluor 488 or 594

(1:400, Invitrogen, A21206/abcam, ab150129/abcam, ab150064)

at room temperature, washed with PBS and mounted with

ProLong Gold antifade reagent containing DAPI (Thermo
Frontiers in Immunology 04
Scientific, P36931). The samples were visualized by

fluorescence microscopy (Zeiss).
Caspase 3/7 activity assay

Caspase 3/7 activity was measured by using a Caspase-Glo

assay kit (Promega, G8091) following the manufacturer’s

instructions. EGCs (104 cells/well) seeded in a white tissue

culture-treated 96-well plates (Falcon, solid white bottom)

were treated with TcdA or TcdB alone or in the presence with

10Panx (50µM) or A438079 (300µM) for 18 h. Then, the plates

containing the cells were removed from the incubator for

30 min. A volume of 100 µL of Caspase-Glo reagent was

added to each well, and the wells were mixed with a plate

shaker at 500 rpm for 30 s. The plates were incubated for 2 h at

room temperature. Then, the luminescence of each sample was

acquired in a plate-reading luminometer (Promega) to obtain

the relative luminescent units (RLUs) subtracted by

the background.
RealTime-Glo annexin V apoptosis assay

Apoptosis was evaluated with a live cell real-time assay

(RealTime-Glo annexin V apoptosis assay, Promega, JA1000),

following the manufacturer’s instructions. EGCs (104 cells/well)

were treated with TcdA or TcdB alone or in the presence of

10Panx (50 µM) or A438079 (300 µM) 1h prior to toxin

challenge. Then, 200 µL of 2x detection reagent was added to

each well, and the cells were incubated at 37°C in a humidified

incubator under 5% CO2. The luminescence was recorded using

a luminometer (NanoLuc technology ready, Promega), and the

intrinsic reagent luminescence (no-cell, no-compound

background control) was subtracted from the luminescence

signals in the sample wells to obtain the relative luminescent

units (RLUs).
Measurement of extracellular ATP

Level of extracellular ATP was measured with a live cell real-

time assay (RealTime-Glo extracellular ATP assay, Promega,

GA5010), following the manufacturer’s instructions. EGCs (104

cells/well) were treated with TcdA or TcdB alone or in the

presence of 10Panx (50 µM) or A438079 (300 µM) 1h prior to

toxin challenge. Then, 50 µL of 4x RealTime-Glo extracellular

ATP assay reagent was added to each well, and the cells were

incubated at 37°C in a humidified incubator under 5% CO2. The

luminescence was recorded using a luminometer (NanoLuc

technology ready, Promega), and the intrinsic reagent

luminescence (no-cell, no-compound background control) was
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subtracted from the luminescence signals in the sample wells to

obtain the relative luminescent units (RLUs) and the data was

normalized by the control cells to obtain the fold change.
Western blot analysis

EGC lines (6×105 cells/well) were seeded in six-well plates

and treated with TcdA or TcdB in the presence or absence of

P2X7R antagonist (A438079) 1h prior to toxin challenge. After

incubation, the supernatant was removed and the cells were

lysed using RIPA lysis buffer (Thermo Fisher Scientific,

containing EDTA and phosphatase-free protease inhibitor),

centrifuged (17 min, 4°C, 13000 rpm) and the supernatant was

collected. Protein concentrations were determined through the

bicinchoninic acid assay according to the manufacturer’s

protocol (Thermo Fisher Scientific). 40 µg of protein

(previously prepared with Laemmil sample buffer and b-
mercaptoethanol) were denatured at 95°C for 5 min, separated

on 10% BIS-Tris gel and transferred to PVDF membranes for

2 h. After blocking with 5% blocking solution (BioRad) at room

temperature for 1 h, the membranes were incubated overnight

with the primary antibodies (anti-b-actin 1:500, Millipore

EP1123Y and cleaved caspase-3 1:1000, Sigma-Aldrich PC679)

at 4°C and secondary antibodies (anti-mouse 1:500 and anti-

rabbit 1:500) for 1 h and 30 min. Membranes were washed in

Tris-buffered saline containing 0.05% Tween 20 (TSB-T) and

incubated with Enhanced Chemiluminescence – ECL (Biorad

1705060). The chemiluminescence signal was detected using a

ChemiDoc system (BioRad). Densitometric quantification of

bands was performed using ImageLab software (BioRad).
Statistical analysis

Analyses were performed using GraphPad software 9.0 (San

Diego, CA, USA). The data are presented as the mean ± standard

error of the mean (SEM). Student’s t test or one- or two-way

analysis of variance (ANOVA) followed by the Tukey test was

used to compare means. P< 0.05 was considered to

indicate significance.
Results

C. difficile toxins increase Panx1
expression in mouse intestinal tissues

Cecum and colon are the intestinal segments more affected

by CDI in mice and in human (38–40). To investigate if levels of

Panx1 in the intestine was affected by CDI, we performed an

immunohistochemistry analysis. Using a CDI pre-clinical model

(Figure 1A), we found increased positive immunostaining for
Frontiers in Immunology 05
Panx1 in the cecum (p = 0.01, Figure 1B) and in the colon (p =

0.04, Figure 1B) of infected mice compared to the control group

(Figure 1B). Cecum and colon samples from mice with CDI

showed notable increased immunostaining for Panx1 in the

lamina propria and submucosa layer compared to the control

group, together with epithelial cell disruption, inflammatory cell

infiltrate, and submucosal edema (Figure 1C).
C. difficile toxins increases Panx1
expression in EGCs in vitro

Next, we evaluated whether C. difficile toxins induce

alteration on the gene expression of Panx1 in EGCs. We found

that TcdA and TcdB upregulated the gene expression of Panx1

in EGCs at 18h incubation compared to the control cells (p =

0.03 TcdA; p<0.0001 TcdB, Figure 2A). However, TcdB, but not

TcdA, reduced the gene expression of Panx1 at 12h incubation

compared to the control group (p = 0.01, Figure 2A). The

immunofluorescence data also showed increased positive

immunostaining for Panx1 in EGCs incubated with TcdA and

TcdB at 18h (Figures 2B, C). Due to the higher deleterious effects

of C. difficile toxins occurred on the later time point, we focused

on 18h incubation time, as shown by others (13, 14, 30).
Panx1 inhibitor decreases EGCs death,
but not IL-6 expression, induced by TcdA
and TcdB

To assess whether Panx1 participate on cell death and IL-6

expression induced by C. difficile toxins in EGCs, we used a

pharmacological approach (10Panx) to inhibit Panx1 before

challenge EGCs with TcdA or TcdB. Inhibition of Panx1 (50

µM 10Panx) decreased phosphatidylserine-annexin V binding

(p = 0.01 TcdA; p = 0.001 TcdB, Figure 3A) and the levels of

caspase 3/7 activity (p=0.02 TcdA; p = 0.002 TcdB, Figure 3B),

markers of cell death, induced by TcdA and TcdB in EGCs. The

Panx1 inhibitor (50 µM 10Panx) did not prevent TcdA and

TcdB-induced IL-6 upregulation in EGCs (Figure 3C).

Taken together, these data demonstrated that Panx1 is

involved in TcdA and TcdB-induced EGC death but not IL-6

expression (Figure 3D).
C. difficile toxins upregulates P2X7R
expression in EGCs in vitro

Once activated, Panx1 releases ATP, which in turn promotes

P2X7R activation (41, 42). As shown in our Supplementary

Data, inhibition of Panx1, in fact, decreased the levels of

extracellular ATP in EGCs challenged by C. difficile toxins

(Figure S2A). Next, we investigated if C. difficile toxins affected
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the expression of P2X7R. Our qPCR data showed that TcdA (p =

0.005) and TcdB (p<0.0001) upregulated P2X7R at 12h, which

persisted at 18h incubation (p<0.0001) compared to control cells

(Figure 4A). Confirming these findings, increased fluorescence

intensity for P2X7R was found in EGCs challenged with TcdA

and TcdB (p = 0.04 TcdA; p = 0.0004 TcdB, Figures 4B, C).
P2X7R blockage decreases EGCs death
induced by C. difficile toxins

To determine whether P2X7R participated on the

deleterious effects induced by TcdA and TcdB in EGCs, we

inhibited this receptor using a selective antagonist (300 µM

A438079) before challenging EGCs with the toxins. In fact,

A438079 did not decrease the levels of extracellular ATP in

EGCs challenged by C. difficile toxins (Figure S2B). Blockage of

P2X7R markedly decreased the caspase 3/7 activity (p<0.0001,

Figure 5A), as well as the levels of protein expression of cleaved

caspase-3 (Figures 5B–D), in EGCs challenged by TcdA

(p = 0.003) and TcdB (p<0.05). A438079 (P2X7R antagonist)

also prevented cell death analyzed by phosphatidylserine-

annexin V binding (p<0.0001, Figure 5E).
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Inhibition of P2X7R attenuates IL-6
upregulation induced by C. difficile
toxins in EGCs

WhenweevaluatedwhetherP2X7Rparticipatesonupregulation

of IL-6 induced by TcdA and TcdB on EGCs, we found that the

inhibition of this receptor decreased IL-6 gene expression induced by

both toxins in the enteric glia (p<0.03 TcdA, p<0.007 TcdB,

Figure 6A). Our protein analysis of IL-6 also showed similar

findings (p<0.0001 TcdA, p=0.0003 TcdB, Figures S3, S4).

Finally, when we analyzed whether P2X7R blockage decreased

the cells with nuclear phosphorylated NFkB, we found that A438079
reduced the percentage of EGCs with positive nuclear NFkBp65
staining induced by TcdA and TcdB (p<0.0001, Figures 6B, S4).

Thus, these data together indicated that P2X7R is involved in

EGCs death, as well as on upregulation of IL-6 induced by both

C. difficile toxins.
Discussion

In the present study, high expression of Panx1 was found in

colon and cecum samples from animals infected with C. difficile.
A

B

C

FIGURE 2

TcdA and TcdB alter Panx1 gene expression in EGCs in vitro. (A) Gene expression of Panx1 were evaluated by qPCR in EGC incubated with
DMEM only (control), TcdA (50 ng/mL) and TcdB (1 ng/mL). The data are the mean ± SEM. p value is represented in the graph; the one-way
ANOVA test followed by the Tukey test was used. (B) Fluorescence intensity of Panx1 immunostaining in EGCs measured by ImageJ software.
The data are the mean ± SEM. One-way ANOVA followed by the Tukey test was used. p value is represented in the graph. (C) Representative
photomicrographs of Panx1 (green) immunostaining and DAPI (blue) nuclear staining in EGCs exposed to TcdA and TcdB after 18 h of
incubation.
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The cecum, in fact, is the region of the intestine most affected by

CDI (30, 38–40), with extensive rupture of the intestinal

epithelium, hemorrhage, edema and recruitment of

inflammatory cells. Increased Panx1 has been reported in

several conditions, such as cerebral ischemia (43, 44), in

metastatic cell lines of patients with breast cancer (45), in

Crohn’s disease and in ulcerative colitis (9, 46).

We detected an increase in Panx1 protein levels on intestinal

mucosa and submucosa layer. Given that EGCs is one of the ENS

component that can be found on these two layers (6), we

hypothesized that EGCs expressing Panx1 could have a role in

CDI pathogenesis. Enteric glia is an intriguing population of

cells that act modulating intestinal physiological processes such

as motility, secretion, and maintenance of barrier function (9,

47). The importance of EGC on CDI has been demonstrated

previously. Von Boyen et al. (48) showed that Glial fibrillary
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acidic protein (GFAP), an enteric glial marker is increased in

colonic tissue from patients with CDI. Study from our group

reported that S100B expression is increased in colonic biopsies

and on fecal samples from patients with CDI, and in colon

tissues from C. difficile-infected mice (30). We also

demonstrated that S100B signaling is involved in EGC

inflammatory response and that its inhibition attenuates the

intestinal injury and diarrhea caused by C. difficile toxins (30).

The Panx1 channel establishes a communication between

the cytosol and extracellular environment (17, 49). Furthermore,

it is essential for the release of signaling molecules such as ATP

(50–52). By detecting cellular danger signals, such as ATP, EGCs

can be activated releasing other mediators that induce neuronal

death and inflammatory response (47).

Here, the activation of Panx1 led to EGCs death induced by

TcdA and TcdB. In an experimental colitis model, Panx1 was
A

B

DC

FIGURE 3

Panx1 inhibitor on caspase 3/7 activity and annexin V phosphatidylserine binding in EGCs challenged by TcdA and TcdB in vitro. (A) Cell death
was analyzed by RealTime-Glo annexin V apoptosis assay in EGCs incubated for 18 h with TcdA, TcdB and 10Panx trifluoroacetate (10Panx;
50µM), a Panx1 antagonist, one hour prior to toxin challenge. For statistical analysis, the one-way ANOVA test was used followed by the Tukey
test; the p value is represented in the graph. (B) The activity of caspase 3/7 was analyzed by luminescence assay in EGCs incubated for 18 h with
TcdA, TcdB and 10Panx (50µM), one hour prior to toxin challenge. (C) IL-6 gene expression was evaluated by qPCR in EGCs challenged by TcdA
and TcdB for 18h, previously incubated or not with Panx1 inhibitor (10Panx, 50 mM). The data are the mean ± SEM. For statistical analysis, the
one-way ANOVA test was used followed by the Tukey test; the p value is represented in the graph. (D) Proposed model of the role of Panx1
signaling in TcdA and TcdB-induced cell death in EGCs. TcdA and TcdB activate Panx1 in EGCs. Its activation results in the activation of caspase
3/7 and phosphatidylserine expose related to cell death.
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associated with enteric neurons death via caspase activation (9,

46) as also shown here. Cleaved caspase 3/7 target multiple

cytoskeletal proteins, including key components of actin

filaments, intermediate filaments, and microtubules (53). Both

Caspase 3 and 7 are considered executor caspases, which are

activated by initiator caspases arising from intrinsic or extrinsic

apoptosis (54). It has been demonstrated that TcdA induces

apoptosis in human epithelial cell line (T84) through intrinsic

and extrinsic pathway via activation of initiator caspases 8 and 9

followed by activation of executor caspases 3 and 6, and bid

cleavage (55). TcdB-promoted cell death has also been shown to

occur via caspase 3 activation (13, 15, 56). The catalytic activity of

executor caspases promotes cell death as they are responsible for a

variety of morphological and biochemical changes that favor this

process, such as DNA fragmentation, phosphatidylserine

exposure and formation of apoptotic bodies (54, 57–59). In the

present work, we demonstrated that Panx1 is involved in caspase

3/7 activation and in phosphatidylserine (PS) exposure. Caspase-

3-mediated phosphatidylserine (PS) exposure through the

activation of proteins related to its externalization, such as

scrambling phospholipids, or inactivation of factors that
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promote its internalization, such as phospholipid flipases (60–

62). Unlike caspase 3, which is the main caspase activated in the

apoptosis process, caspase 7 is responsible for disintegrating cells

from their extracellular component and their adhesion to other

cells, as demonstrated in an in vitro study using embryogenic

fibroblasts (63). Therefore, our data agree with previous

demonstration that the opening of Panx1 channels can lead to

cell death via release of ATP, which results in activation of

purinergic receptors and increased intracellular calcium flow

that stimulate the activation of initiator and effector caspases

culminating in the apoptotic process (44, 49, 51, 54, 64).

Accordingly, we identified that both TcdA and TcdB

stimulated the expression of P2X7R in EGCs. P2X7R has been

extensively investigated due to its upregulation in a variety of

diseases, such as Crohn’s disease, ulcerative colitis, systemic

lupus erythematosus, depression and Alzheimer’s disease

(65–69).

Interestingly, the P2X7R antagonist (A438079) decreased

the EGCs death, as demonstrated here by reduced PS and

annexin V binding and caspase 3/7 activity, showing the

potential role of this receptor in promotes EGCs death
A

B

C

FIGURE 4

TcdA and TcdB upregulate P2X7R expression in EGCs. (A) Gene expression of P2X7R were evaluated by qPCR in EGCs incubated with DMEM
only (control), TcdA (50 ng/mL) and TcdB (1 ng/mL). The data are the mean ± SEM. Two-way ANOVA followed by the Tukey test was used.
(B) Fluorescence intensity of P2X7R immunostaining in EGCs measured by ImageJ software. The data are the mean ± SEM. One-way ANOVA
followed by the Tukey test was used. p value is represented in the graph (C) Representative photomicrographs of P2X7R (green) immunostaining
and DAPI (blue) nuclear staining in EGCs exposed to TcdA and TcdB after 18 h of incubation.
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induced by C. difficile toxins. The involvement of P2X7R in cell

death has also been shown in other cells such as podocytes (70),

macrophages (71), cerebellar astrocytes (72) and in neurons (73,

74). Mitogen-activated protein kinase (MAPKs) such as

extracellular signal-regulated kinase (ERK) 1/2 and JNK have

also been associated with cell death mediated by this receptor. In

primary cortical neurons, P2X7R agonists mediate nuclear

condensation and DNA fragmentation by expressing a

functioning P2X7R and activating ERK1/2 and JNK1 in a

manner dependent on caspase 8/9/3 activation (74). This

could be one of the mechanisms of caspase 3 activation in

EGCs challenged with TcdA and TcdB. In addition, a previous

study showed that TcdB-induced EGCs apoptosis via NADPH

oxidase/ROS/JNK/caspase-3 (15). Unlike this study that

identified the intracellular signaling pathway involved in

TcdB-induced EGCs death, here we showed a membrane

receptor, P2X7R, involved in this process not only induced by

TcdB, but also by TcdA.

However, further investigations are needed to verify the

involvement of this receptor in CDI clinical outcomes, having

in mind that drugs that block membrane receptors may be

potentially more tolerable with fewer side effects than drugs that

block components of the intracellular pathways, since they may
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participate in other processes important to the physiological

functions of the cell.

Here we also show that Panx1 did not participate in IL-6

upregulation induced by TcdA and TcdB. IL-6 can be

synthesized by a variety of cells, including EGCs (30, 37, 75).

IL-6 is a pleiotropic cytokine considered a predictor of CDI

severity (76). The effects of IL-6 vary between promoting cell

survival and pro-inflammatory effect (77–79). Consistent with

our data, it was shown that Panx1 is not required for

inflammasome activation, but participates in cell apoptosis

(80, 81)

In contrast, P2X7R has been shown to regulate the expression

and secretion of several cytokines and inflammatory mediators,

including IL-2, IL-4, IL-13, IL-18, TNF-a, NO and IL-6 (82–86).

Here, the P2X7R antagonist reduced the expression of IL-6 induced

by TcdA and TcdB. These data suggest the important role of this

receptor in regulating the expression of this cytokine. In agreement

with our findings, P2X7R has indeed been implicated in the

regulation of IL-6 in various cell types including fibroblasts (87),

skeletal muscle cells (88), macrophages (89) and microglia (90).

Our study is the first to show the involvement of Panx1/

P2X7R signaling in cell death of EGCs challenged by TcdA and

TcdB. TcdA and TcdB activate Panx1, releasing ATP, which in
A

B

D EC

FIGURE 5

A438079, a P2X7R antagonist, prevents TcdA- and TcdB-induced EGCs death. (A) Activity of caspase 3/7 analyzed by luminescence assay in
EGCs incubated for 18 h with TcdA, TcdB by qPCR. A438079, a P2X7R antagonist, was added to EGCs one hour prior to toxin challenge. (B)
Representative Western Blot images showing the prevention of TcdA and TcdB induced cleavage of caspase 3 protein expression by A438079, a
P2X7R antagonist. b-actin was used as a loading control. The WB images for the control group are the same for both toxins. (C, D) Graphs
represents cleaved relative protein expression of caspase 3. The data are the mean ± SEM. One-way ANOVA followed by the Tukey test was
used. (E) A438079 (P2X7R antagonist) prevented cell death analyzed by RealTime-Glo annexin V apoptosis assay in EGCs. The data are the mean
± SEM. Two-way ANOVA followed by Tukey test was used. p value is represented in the graph.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.956340
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Loureiro et al. 10.3389/fimmu.2022.956340
turn activates P2X7R leading to activation of caspase-3/7,

culminating in exposure of PS in the plasma membrane, which

characterizes EGC in process of cell death (Figure 6C). Further,

activation of P2X7R promotes IL-6 expression induced by C.

difficile toxins. Further research on exploring Panx1/P2X7R

signaling using pre-clinical model of CDI are needed to better

understating the participation of these molecules in the

pathogenesis of this disease.
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FIGURE 6

A438079, a P2X7R antagonist, inhibits TcdA- and TcdB-induced IL-6 upregulation in EGCs. (A) IL-6 mRNA expression in EGCs incubated for 18h
with TcdA, TcdB and A438079 (300µM) 1h prior to toxin challenge, as analyzed by qPCR. The data are the mean ± SEM.; one-way ANOVA
followed by the Tukey test was used. (B) Percentage of cells with positive nuclear phosphorylated NFkBp65 staining. The data are the mean ±
SEM. p value is represented in the graph. (C) Proposed model of the role of Panx1/P2X7R signaling in TcdA- and TcdB-induced IL-6 expression
and in EGC death. TcdA and TcdB activate Panx1 in EGCs, promoting the release of ATP, which in turn activates P2X7R. Its activation results on
nuclear translocation of NFkB and IL-6 expression, as well as caspase 3/7 activation that promotes cell death.
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