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The salivary scavenger and agglutinin (SALSA), also known as gp340, salivary agglutinin
and deleted in malignant brain tumor 1, is a 340-kDa glycoprotein expressed on mucosal
surfaces and secreted into several body fluids. SALSA binds to a broad variety of microbes
and endogenous ligands, such as complement factor C1q, surfactant proteins D and A, and
IgA. Our search for novel ligands of SALSA by direct protein-interaction studies led to the
identification of mannan-binding lectin (MBL) as a new binding partner. We observed that
surface-associated SALSA activates complement via binding of MBL. On the other hand,
soluble SALSA was found to inhibit Candida albicans-induced complement activation.Thus,
SALSA has a dual complement activation modifying function. It activates the lectin pathway
when bound to a surface and inhibits it when free in the fluid phase. These activities are
mediated via a direct interaction with MBL. This suggests that SALSA could target the
innate immune responses to certain microorganisms and simultaneously limit complement
activation in the fluid phase.

Keywords: complement regulation, gp340, lectin pathway, mannan-binding lectin, mucosal immunity, salivary
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INTRODUCTION
The scavenger receptor cysteine-rich (SRCR) protein, known
as gp340, salivary agglutinin (SAG) and deleted in malignant
brain tumor 1 (DMBT1; GenBank accession no. BAA78577.1),
is a 340-kDa glycoprotein expressed on mucosal surfaces
(Ericson and Rundegren, 1983; Holmskov et al., 1997). It is found
associated to alveolar macrophages as well as to epithelial cells of,
e.g., the salivary glands, trachea, small intestine, and the genital
tract (Holmskov et al., 1999; Mollenhauer et al., 2001; Bikker et al.,
2002; Stoddard et al., 2007). Furthermore, gp340 is secreted into
several body fluids such as saliva, lacrimal fluid, pancreatic juice,
and bronchoalveolar secretions (Ericson and Rundegren, 1983;
Holmskov et al., 1997; Schulz et al., 2002; Gronborg et al., 2004).
Because of the discrepancies of names mentioned above we wish
to suggest the name SALSA (salivary scavenger and agglutinin) for
this protein based on its initial discovery in saliva and its function
as a scavenger and agglutinin.

SALSA is a protein with 8–13 N-terminal SRCR domains,
followed by two CUB-domains surrounding an additional SRCR
domain. It thus belongs to the SRCR-protein family (Holm-
skov et al., 1999). Many members of this family are located on
immune cells, and several of them have known functions as
pattern recognition receptors (Resnick et al., 1994). SALSA was

early on described as an agent that agglutinates Streptococcus
mutans, but has since then been shown to bind a broad spec-
trum of microbes including Gram-positive and -negative bacteria
as well as viruses (Ericson and Rundegren, 1983; Nagashun-
mugam et al., 1998; Prakobphol et al., 2000; Hartshorn et al., 2003;
Bikker et al., 2004; Loimaranta et al., 2005; Leito et al., 2008).
Part of the wide ligand binding capacity of SALSA is based
on its ability to recognize conserved repeat motives on bacte-
rial surface proteins (Loimaranta et al., 2009). A specific peptide
sequence motif within the SRCR domains, VEVLXXXXW (X for
any amino acid), has been shown to confer bacterial binding
(Bikker et al., 2004).

SALSA has also been shown to interact with several endoge-
nous ligands. Many of these are involved in innate immunity,
such as surfactant proteins D and A (SP-D and SP-A), secre-
tory IgA, trefoil factors, mucin-5B, lactoferrin, and complement
factor C1q (Rundegren and Arnold, 1987; Boackle et al., 1993;
Holmskov et al., 1997; Tino and Wright, 1999; Thim and Mortz,
2000; Thornton et al., 2001; Oho et al., 2004). The specific func-
tion of SALSA remains unknown. However, the identified ligands
together with the localization of SALSA on mucosal surfaces sug-
gest a role in the first-line immune defense, similar to that of other
SRCR-family proteins.
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The complement (C) system comprises more than 40 soluble
and surface bound proteins (reviewed in Ricklin et al., 2010).
It is organized into three activation pathways, the classical, the
alternative, and the lectin pathway. The C system maintains a
wide array of functions ranging from elimination of microorgan-
isms, immune complexes and apoptotic cells to enhancing and
directing adaptive immunity through opsonization and leuko-
cyte chemotaxis. The three pathways are activated through
distinct mechanisms. The classical pathway is activated via bind-
ing of C1q to targets, either directly or through antibodies or
C-reactive protein (reviewed in Walport, 2001). The alternative
pathway can be initiated spontaneously by hydrolysis and acti-
vation of C3 into active C3b. Subsequent activation depends
on the absence of inhibitory structures from the target sur-
faces, which allows amplification of C3 cleavage to C3b (Walport,
2001). The lectin pathway is activated by binding of mannan-
binding lectin (MBL) or ficolins to mannose, N-acetylglucosamine
(GlcNAc), or other carbohydrate-containing structures on the
surfaces of a wide array of target microbes, e.g., yeasts like
Candida albicans and bacteria like Staphylococcus aureus and cer-
tain types of Escherichia coli. In the lectin pathway, MBL/ficolins
associate with MBL-associated serine proteases 1 and 2 (MASP-
1 and MASP-2). The MBL/MASP or ficolin/MASP complexes
cleave C2 and C4 to generate the C4b2a complex, which in
turn cleaves C3 into C3b on the surfaces of target microbes
(reviewed in Thiel, 2007).

Although soluble complement components are present mainly
in blood, they are also found in serous exudates on mucosal sur-
faces, such as in the oral cavity or in the airways (Boackle, 1991;
Persson et al., 1991). This is particularly seen under pathological
conditions, for example following mechanical damage or dur-
ing infection, e.g., in periodontitis (Courts et al., 1977; Negut
et al., 2007). When serous exudates filter through to the mucosal
surfaces, soluble innate immune proteins bind to their targets
and thereafter interact with mucosal surface receptors. This cre-
ates a specific interplay of defense mechanisms against invading
microorganisms. Our search for novel functions of SALSA led
to the identification of an interaction with the C lectin path-
way. In this study the aim was to investigate how SALSA interacts
with the lectin pathway to control C activation on the mucosal
surfaces.

Our results show that SALSA has a dual role in regulating
the lectin pathway. It acts as an activator on surfaces and as an
inhibitor in the fluid phase. This suggests that SALSA could tar-
get the innate immune responses to certain microorganisms while
simultaneously limiting inflammation in the fluid phase.

MATERIALS AND METHODS
PROTEINS, ANTIBODIES, AND SERA
SALSA was purified from human parotid saliva by bacterial
binding and EDTA-elution as described previously (Prakobphol
et al., 2000). Recombinant SALSA (rSALSA) was expressed
in Chinese hamster ovary cells using a vector system (End
et al., 2005) and purified as above. Recombinant MBL (rMBL;
Jensenius et al., 2003), recombinant M-ficolin (rM-ficolin;
Wittenborn et al., 2010), plasma purified L-ficolin and H-ficolin
(Matsushita et al., 2000; Zacho et al., 2012), recombinant MASP-2

(rMASP-2; Thiel et al., 2009), plasma purified C4 (Dodds,
1993), and plasma purified C3 (Tack and Prahl, 1976) were
obtained as described previously. C1q was purchased from Quidel
(San Diego, CA, USA).

Mouse monoclonal anti-M-ficolin (7G1) was produced as
described previously (Wittenborn et al., 2010). Mouse mon-
oclonal anti-MBL (Hyb 131-01) and anti-SALSA (Hyb 213-
06) antibodies were from Bioporto, Denmark. Mouse mono-
clonal anti-H-ficolin (4H5) and rat monoclonal anti-MASP-2
(8B5) were obtained from Hycult Biotechnology, The Nether-
lands. Rabbit anti-C3c, anti-C4c, and anti-C1q antibodies
were purchased from Dako, Denmark. HRP-conjugated rab-
bit anti-mouse IgG and goat anti-rabbit IgG antibodies were
from Jackson ImmunoResearch Laboratories (West Grove, PA,
USA). Alexa 488-coupled goat anti-mouse IgG and goat anti-
rabbit IgG antibodies were obtained from Invitrogen (Carlsbad,
CA, USA).

Normal human serum (NHS) was taken from healthy vol-
unteers with written informed consent, pooled, and aliquoted
for storage at −70◦C. MBL-deficient serum was obtained from
a person known to lack MBL by screening individual sera from
healthy volunteers. To block the classical and lectin pathways
of complement, EGTA with MgCl2 (in final concentrations of
10 mM and 5 mM, respectively) was added to NHS (MgEGTA-
serum). Heat-inactivated serum (HIS) was made by incubating
a sample from the above described serum pool at 56◦C for
30 min.

MEASUREMENT OF COMPLEMENT ACTIVATION
The effect of SALSA in the fluid phase on the three activation path-
ways of complement was tested using the Wieslab® Complement
System Screen ELISA assay (Euro-Diagnostica, Sweden). This
assay measures how SALSA affects the activation of complement
on surfaces coated with pathway-specific activators. Deposition
of C5b-9 in the wells is measured as the end-point. SALSA was
diluted in serum at concentrations of 0, 1.0, 3.0, and 10 μg/ml,
and the samples were subsequently added to ELISA wells coated
with specific activators for the three different complement path-
ways. The lectin pathway activation was additionally investigated
using SALSA at concentrations of 0.003, 0.03, and 0.3 μg/ml.
Activation of complement was measured as generation of the ter-
minal C complex onto the activating surfaces according to the
manufacturer’s instructions.

ELISA BINDING ASSAYS
For SALSA binding studies rMBL, rM-ficolin, L-ficolin, H-ficolin,
C1q, C4, and C3 (each 1 μg/ml) in coating buffer (15 mM
Na2CO3, 35 mM NaHCO3, pH 9.6) were coated onto a Max-
isorp plate (Nunc, Denmark). Additional binding sites on the
plate were blocked with 5% non-fat milk in Tris-buffered saline
(TBS; 140 mM NaCl, 5 mM Tris, pH 7.4) containing 1 mM Ca2+
and 0.05% Tween-20 (TBS/Ca/Tween). The Ca2+-dependency of
the binding was investigated by omitting Ca2+ from the buffer
and having 10 mM EDTA added instead. Thus, the wells were
washed with either TBS/Ca/Tween or TBS/EDTA/Tween. rSALSA
(0.5 μg/ml) in TBS/Ca or TBS/EDTA was added and incubated for
1 h at 37◦C. Binding was detected using anti-SALSA (0.1 μg/ml)
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and HRP-conjugated rabbit anti-mouse antibodies (1:10,000 in
TBS/Ca or TBS/EDTA). OPD tablets (Dako) were used for
development and the color reaction was measured with an iEMS
Reader MF (Labsystems, Espoo, Finland) at an OD of 492 nm.

ELISA COMPETITION ASSAYS
The effect of monosaccharides on MBL binding to solid phase
SALSA was tested in an ELISA assay. For this 0.1 μg/ml of rSALSA
or 10 μg/ml of mannan (Sigma, St. Louis, MO, USA) were used for
coating onto wells of Maxisorp plates as described above. rMBL
at 1 μg/ml was mixed in the fluid phase with mannose, GlcNAc,
or glucose (all from Sigma) in concentrations ranging between 0
and 100 mM in TBS/Ca. The samples were added to the plate and
incubated for 1 h at 37◦C. Binding was detected with anti-MBL
(0.1 μg/ml) followed by HRP-conjugated rabbit anti-mouse IgG
antibodies (1:10,000 in TBS/Ca).

The effect of fluid-phase SALSA on the binding of the
MBL/MASP-2 complex to mannan was tested in an ELISA
assay. Mannan (10 μg/ml) was coated in Maxisorp wells. rMBL
(0.5 μg/ml) was mixed with rMASP-2 (0.1 μg/ml) in TBS/Ca and
rSALSA was added in final concentrations of 0, 0.05, 0.15, 0.5,
and 1.5 μg/ml. Subsequently, the samples were incubated for 1 h
at 37◦C on the mannan-coated plate. Binding was detected with
anti-MBL or anti-MASP-2 (both 0.1 μg/ml) and HRP-conjugated
rabbit anti-mouse IgG antibodies (1:10,000 in TBS/Ca).

INHIBITION OF MBL BINDING TO MICROORGANISMS BY SALSA
The effect of SALSA on the binding of MBL to C. albicans and
E. coli was studied in a flow cytometry assay. C. albicans and
E. coli were clinical blood culture isolates from the Helsinki Uni-
versity Central Hospital Laboratory (HUSLAB). Both strains were
identified using routine microbiological techniques. C. albicans
was grown in yeast-extract peptone dextrose medium overnight
at 30◦C with shaking. E. coli was grown in LB medium overnight
at 37◦C with shaking. Both microbes were washed with veronal-
buffered saline (VBS; 142 mM NaCl, 5.0 mM sodium barbital,
pH 7.4) containing 1 mM Ca2+ (VBS/Ca) by centrifugation for
5 min at 1,000 × g. C. albicans was resuspended to 5 × 107

cells/ml and E. coli was resuspended to 2.4 × 108 cells/ml. Vol-
umes of 100 μl of these dilutions were used for each sample.
rMBL (0.9 μg/ml, which corresponds to 20% of the Finnish aver-
age serum MBL level; Aittoniemi et al., 1996) was mixed with
rSALSA in final concentrations of 0, 0.05, 0.15, 0.5, 1.5, and
4.5 μg/ml. The proteins were incubated with the microbes for
30 min at 37◦C with shaking. After washing with VBS/Ca anti-
MBL antibody (5 μg/ml in VBS/Ca) was added and incubated for
30 min at 37◦C. Alexa 488-coupled goat-anti-mouse IgG antibody
(1:400 in VBS/Ca) was used as a secondary antibody. The microbes
were fixed in 1% paraformaldehyde and analyzed by CyAn ADP
(Dako). Forward and sideward scatters were used to define the cell
population and 10,000 events were routinely counted. The mean
fluorescence intensity (MFI) values were used for quantification of
the data.

SALSA-MEDIATED COMPLEMENT ACTIVATION ASSAY
The ability of surface-coated SALSA to interfere with C4 and C3
deposition was tested in an ELISA assay. Mannan (10 μg/ml) and

rSALSA (0.5 μg/ml) were coated on a Maxisorp plate as described
above. NHS, MBL-deficient serum, MgEGTA-serum, and HIS
were diluted 1:10 in TBS/Ca and incubated on the plates for 30 min
at 37◦C. Complement C4 and C3 deposition was detected by incu-
bation with polyclonal anti-C4c and C3c antibodies (1:5000) for
1 h at 37◦C, followed by HRP-conjugated goat anti-rabbit anti-
bodies (1:10,000 in TBS/Ca). The enzyme reaction was developed
as described above.

The complement regulating property of SALSA was also tested
using flow cytometry. C. albicans was grown as described above.
rSALSA was diluted in 10% NHS,MBL-deficient serum, MgEGTA-
serum, or HIS. The final rSALSA concentrations were 0, 0.05, 0.15,
0.5, and 1.5 μg/ml. The serum samples were incubated with C.
albicans for 30 min at 37◦C. C4 and C3 deposition was measured
using anti-C4c and C3c antibodies (1:200 in VBS/Ca) followed by
detection using Alexa 488-conjugated goat-anti-rabbit IgG anti-
body (1:400). The yeast cells were fixed in 1% paraformaldehyde
and analyzed by CyAn ADP as described above.

STATISTICAL ANALYSIS
Student’s paired, two-tailed t-test was used to calculate statistical
significance of complement activation mediated by surface-coated
SALSA.

RESULTS
THE EFFECT OF FLUID-PHASE SALSA ON COMPLEMENT ACTIVATION
The complement regulating properties of SALSA were initially
studied in an ELISA assay separating the three distinct path-
ways of complement activation: the classical, the lectin, and
the alternative pathway. Complement activation was measured
by C5b-9 deposition in the absence or presence of purified
SALSA. The presence of 1 μg/ml of SALSA in serum inhibited
the lectin pathway by 57% but had no effect on the classical or
the alternative pathway (Figure 1A). The effect of SALSA on the
lectin pathway was investigated in greater detail using lower con-
centrations (Figure 1B). This revealed a clear dose-dependent

FIGURE 1 | Inhibition of complement activation by fluid-phase SALSA.

In an ELISA assay (Wieslab®) SALSA (0–10 μg/ml) was diluted in NHS and
the activation of the classical, the lectin, and the alternative pathway of
complement was measured. Inhibition of the lectin pathway but not the
classical or the alternative pathways was observed when SALSA was
added (A). The effect on the lectin pathway was investigated with further
dilutions of SALSA. This revealed a clear dose-dependency (B). Data from
single experiments performed in duplicate are shown. The results are
expressed as percentage of activation in a standardized control serum pool
supplied by the manufacturer.
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inhibition of the lectin pathway when SALSA was in the
fluid phase.

BINDING OF SALSA TO COMPLEMENT COMPONENTS
To identify the specific interactions involved in SALSA-mediated
inhibition of the lectin pathway, an ELISA assay was used. MBL,
H-, L-, and M-ficolin, C1q, C4, and C3 were coated on a plate
and varying concentrations of rSALSA were added with or with-
out Ca2+. Previous binding of SALSA to the classical pathway
component C1q has been observed (Boackle et al., 1993) and
this was added as a positive control (Figure 2). We observed a
strong binding of SALSA to MBL, and also some binding to all
three ficolins and C1q. Only a weak binding was seen to C4 and
C3. Ca2+-depletion by EDTA abolished all of the protein–protein
interactions. Similar results were obtained using purified SALSA
instead of recombinant SALSA (data not shown).

INHIBITION OF THE MBL–SALSA INTERACTION
BY CARBOHYDRATES
In order to pinpoint whether SALSA binds to the carbohy-
drate recognition site in MBL, the MBL–SALSA interaction was
compared with the MBL–mannan interaction. For this purpose,
mannan and rSALSA were coated in wells and binding of MBL
in the presence of varying concentrations of mannose, GlcNAc

FIGURE 2 | Interaction of SALSA with complement proteins. MBL,
M-ficolin, L-ficolin, H-ficolin, C1q, C4, and C3 (1 μg/ml) were coated on a
plate followed by incubation with rSALSA (0.5 μg/ml) in either a Ca2+- or
EDTA-containing buffer. SALSA bound strongly to MBL, but also binding to
all three ficolins and C1q was observed. Only a weak interaction with C4
and C3 could be seen. In the presence of EDTA, no binding of SALSA
occurred. The averages and standard deviations (SDs) of two experiments
performed in duplicate are shown.

FIGURE 3 |The effect of monosaccharides on MBL binding to mannan

and SALSA. In an ELISA assay mannan (A) or rSALSA (B) were coated on
a microtiter plate. rMBL (1 μg/ml) was mixed with mannose, GlcNAc, or
glucose (all 0–100 mM). Binding was detected with anti-MBL antibody. The
presence of mannose and GlcNAc inhibited dose-dependently the binding
of MBL to mannan while glucose had no effect (A). In contrast, the binding
of MBL to SALSA was not inhibited even by high concentrations of the
saccharides (B). Averages and SDs of three experiments performed in
duplicate are shown.

and glucose was tested. Mannose and GlcNAc are known carbo-
hydrate ligands for the carbohydrate recognition domain (CRD)
part of MBL, whereas glucose shows a much weaker interaction.
As expected, both mannose and GlcNAc inhibited the binding
of MBL to mannan, whereas glucose had no effect (Figure 3A).
When rSALSA was coated on a plate and the MBL–carbohydrate
mixtures were added the presence of mannose, GlcNAc, or glu-
cose had no effect, even at 100 mM concentration, on the binding
of MBL to SALSA (Figure 3B). Similar results were obtained
when purified SALSA was used instead of recombinant SALSA
(data not shown).

THE EFFECT OF SALSA ON THE MBL–MANNAN INTERACTION
Next, we wanted to test whether SALSA would interfere with the
MBL–mannan interaction. In an ELISA assay MBL was mixed
with MASP-2 and varying concentrations of rSALSA and then
added to a mannan-coated microtiter plate. The binding of MBL
to the mannan-coated surface was measured using monoclonal
anti-MBL and anti-MASP-2 antibodies (Figure 4). MBL forms
a complex with MASP-2 under physiological conditions. There-
fore, we also measured the binding of MASP-2 to verify the result.
A clear binding of both MBL and MASP-2 to the mannan sur-
face was observed, suggesting the formation of the MBL/MASP-2
complex. When increasing amounts of rSALSA were added, a dose-
dependent decrease of both MBL and MASP-2 binding to mannan
was seen. The slight difference seen in the absorbance of MBL and
MASP-2 is due to the ELISA technique and the different antibodies
used for detection. The similar inhibition tendency suggests that
both the MBL and MASP-2 measurements represent the binding
of the whole complex to mannan.

SALSA INHIBITS THE BINDING OF MBL TO C. ALBICANS
AND E. COLI
To verify the above observation using a more physiological
approach, a similar assay was performed using known microbial
targets of MBL. The binding of MBL to C. albicans and E. coli in the
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FIGURE 4 |The effect of fluid-phase SALSA on the binding of the

MBL/MASP-2 complex to mannan. In an ELISA assay mannan was
coated in microtiter wells. rMBL was mixed with rMASP-2 and varying
amounts of rSALSA were added. Binding was detected with an anti-MBL
antibody. A dose-dependent inhibition of MBL binding by rSALSA was
observed. As a control, a similar analysis using an anti-MASP-2 antibody
confirmed the inhibition. The results are expressed as percentage of MBL
or MASP-2 binding in the absence of SALSA. Averages and SDs of three
experiments performed in duplicate are shown.

presence of SALSA was tested in a flow cytometry assay. rSALSA
and rMBL were mixed and then incubated with the microbes.
MBL binding was detected using a monoclonal anti-MBL anti-
body (Figure 5). Binding of MBL in the absence of rSALSA was
observed both to C. albicans and E. coli with average MFIs of 18.5
and 31.0, respectively. However, the addition of rSALSA inhibited
the binding of MBL to C. albicans and E. coli dose-dependently.
Since our carbohydrate inhibition assay showed that GlcNAc and
mannose inhibit the binding of MBL to mannan, we wanted to
rule out an inhibitory effect of a possible sugar contamination in
the SALSA preparation. Therefore, a similar experiment was done
using heat-treated SALSA. Boiling for 5 min destroys the protein
but would not affect carbohydrates. Boiled SALSA (0.1–45 μg/ml)
had no inhibitory effect on the binding of MBL to C. albicans
(data not shown).

SALSA MEDIATES COMPLEMENT ACTIVATION WHEN
BOUND TO A SURFACE
To see the effect of surface-coated SALSA on C activation rSALSA
was coated on a microtiter plate and C4 and C3 deposition were
measured after incubation of 10% NHS, MBL-deficient serum,
MgEGTA-serum, or HIS. A parallel experiment was done using a
mannan-coated plate. On both SALSA- and mannan-coated plates
deposition of C4 and C3 was seen from NHS (Figures 6A,B).
C4 and C3 deposition was reduced when MBL-deficient serum
was used. The C4 deposition, read as absorbance, to SALSA

FIGURE 5 |The effect of SALSA on the binding of MBL to its microbial

targets C. albicans and E. coli. In a flow cytometry assay C. albicans and
E. coli were incubated with a mixture of rMBL (0.9 μg/ml) and rSALSA
(0–45 μg/ml). Binding of MBL was detected with an anti-MBL antibody.
The binding of MBL to C. albicans and E. coli decreased dose-dependently
when SALSA was present. The results are expressed as percentage of MFI
in the absence of SALSA. Averages and SDs of three separate experiments
are shown.

FIGURE 6 | Complement activation by surface-bound SALSA. In an
ELISA assay mannan (A) or rSALSA (B) were coated in microtiter wells.
NHS, MBL-deficient serum, MgEGTA-serum, or HIS (all 10%) was added
and C4 and C3 deposition was measured using specific antibodies.
Averages and SDs of three experiments performed in duplicate are shown.

and mannan from MBL-deficient serum was decreased when
compared with NHS by 32 and 24%, respectively. For C3 the
similar absorbance values decreased by 29 and 23%, respectively.
Thus, a substantial amount of C4 and C3 remained bound.
When MgEGTA-serum was used C4 and C3 deposition to both
SALSA and mannan was almost completely abolished which ver-
ifies that the observed activation is due to classical and lectin
pathway activation. When HIS was used some deposition of C4
and C3 to both SALSA and mannan could still be seen. The
loss of this direct interaction when MgEGTA serum was used is
in line with the direct C4-SALSA and C3-SALSA binding assay
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(Figure 2). Thus we observed MBL-mediated complement acti-
vation as measured by C4 and C3 deposition to surface-coated
SALSA.

SALSA INHIBITS COMPLEMENT ACTIVATION IN THE FLUID PHASE
The flow cytometry assay using E. coli and C. albicans showed
that SALSA in the fluid phase inhibits the binding of MBL to
microbes (see above). To measure the effect of this inhibition on
the overall complement activation against microbes, we used a flow
cytometry assay measuring C4 and C3 deposition on C. albicans
in the presence of varying concentrations of SALSA.

Normal human serum, MBL-deficient serum, MgEGTA-serum,
or HIS (all at 10%) was used. C4 deposition to C. albicans was
observed from NHS (Figure 7A). When using MBL-deficient
serum, MgEGTA-serum, or HIS no C4 deposition was observed.
The effect of adding varying concentrations of rSALSA showed
a weak inhibition of the C4 deposition from an initial average
MFI of 20.7–15.2. In the case of C3 (Figure 7B) a small amount
of C3 deposition was still observed when HIS was used, but no
deposition was observed when MBL-deficient or MgEGTA-sera
were used. Using NHS a clear C3 deposition was observed. When
rSALSA was added a dose-dependent decrease of C3 deposition
was seen from an initial average MFI of 72.6–29.0. The experi-
ments were repeated using 20% serum (data not shown), giving
similar results. These data suggest that the presence of SALSA in
the fluid phase inhibits the activation of MBL-mediated comple-
ment activation and subsequent deposition of complement factors
C4 and C3 on C. albicans.

DISCUSSION
In this report we have been studying the interplay between SALSA
and the complement system. We have especially concentrated
on the effect of SALSA on complement activation and how
this is mediated. We observed that SALSA can bind directly
to MBL. This interaction has a dual effect on MBL-mediated

FIGURE 7 | Complement inhibition by fluid-phase SALSA. In a flow
cytometry assay C. albicans was incubated in 10% NHS, MBL-deficient
serum, MgEGTA-serum, or HIS with rSALSA (0–15 μg/ml). Complement
deposition was measured using anti-C4 (A) and anti-C3 (B) antibodies. In
(A) an inhibition of C4 deposition was observed when SALSA was added to
NHS. (B) shows a dose-dependent inhibition of C3 deposition from NHS.
The results are expressed as percentage of MFI in the absence of SALSA.
Averages and SDs of three separate experiments are shown.

complement activation. SALSA bound to a surface may lead
to activation of the lectin pathway of complement. However,
when SALSA is in the fluid phase, lectin pathway activation can
be inhibited.

Using an ELISA assay measuring complement activation we
initially observed a specific SALSA-mediated inhibition of the
lectin pathway (Reichhardt et al., 2011). SALSA has been described
to bind to a wide range of both endogenous and microbial
ligands (reviewed in Madsen et al., 2010). In order to under-
stand the underlying mechanism of the lectin pathway inhibition
we investigated SALSA interactions with complement compo-
nents. We found that SALSA bound to surface-coated MBL,
H-ficolin, L-ficolin, M-ficolin, and C1q. Binding to these comple-
ment components was also observed in the reverse configuration
with surface-bound SALSA (data not shown). These binding
interactions were tested with both recombinant and purified
SALSA with similar results (data not shown). All the observed
interactions were Ca2+-dependent. Together with the already
known SALSA ligands, SP-D and SP-A, these proteins form a
group of structurally very similar soluble proteins functioning
as pattern recognition receptors. They all resemble bouquets
of flowers comprising N-terminal collagen-like “stalks” linked
to C-terminal globular “head” domains, CRD for MBL, SP-A,
and SP-D, fibrinogen-like recognition domains for the ficolins
and globular region for C1q (reviewed in Holmskov et al., 2003;
Wallis et al., 2010). The interactions between MBL/ficolins/C1q
and their respective associated serine proteases, MASPs and
C1r/C1s, are also known to be calcium-dependent. In the case
of the serine proteases the calcium-dependency of the binding
is mediated through an epidermal growth factor-like module,
which is embedded between two CUB domains (Feinberg et al.,
2003; Gregory et al., 2003). SALSA contains two similar CUB
domains surrounding a SRCR domain. Thus, it is likely that
the calcium-dependency of the binding is mediated through
this site.

Since SALSA bound to MBL and vice versa, we proceeded to
investigate the effect of SALSA on MBL binding to its known
monosaccharide ligands mannose and GlcNAc and to the yeast
surface structure mannan. Even 100 mM concentrations of
mannose or GlcNAc did not inhibit the binding of MBL to
surface-coated SALSA. In the control setting, 100 mM man-
nose and GlcNAc inhibited the binding of MBL to mannan, as
expected. Based on these data, the binding site for SALSA on MBL
would be different from the binding site for carbohydrates in the
CRD. However, when SALSA was mixed in fluid phase with MBL
and MASP-2, SALSA inhibited the binding of the MBL–MASP-
complex to surface-coated mannan dose-dependently. When MBL
was mixed with mannose before addition to the SALSA-coated
plate, SALSA was still able to bind to MBL. MBL does there-
fore not appear to utilize the same site for binding to SALSA and
mannan. However, when MBL/MASP-2 interacted with SALSA
prior to exposure to mannan, the binding was inhibited. This
suggests that although the binding site is different, the binding
of SALSA influences the interaction between MBL and mannan.
This could either be through steric hindrance by the big SALSA
molecule (340 kDa) or by an impact of SALSA on the tertiary
structure of MBL.
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The function of MBL depends on its recognition of micro-
bial targets, such as C. albicans or E. coli (reviewed in Jack and
Turner, 2003). To further elucidate the physiological consequences
of SALSA binding to MBL, we investigated the effect of SALSA
on MBL binding to these microbial targets. Binding of SALSA
to both E. coli and C. albicans was tested using flow cytometry
but no binding was observed (data not shown). However, we
observed a dose-dependent inhibition of MBL binding to both
C. albicans and E. coli, suggesting that SALSA binds MBL in solu-
tion and blocks the interaction of MBL with the microbes. The
physiological concentration of SALSA in saliva has been estimated
to be 0.5 μg/ml (Hartshorn et al., 2003). At this concentration
an inhibition was observed. Thus, MBL can bind to certain
microbes and activate complement but in the case of, e.g., C.
albicans, SALSA inhibits MBL binding and activation of the lectin
pathway.

The interaction between C1q and SALSA has previously been
suggested to be sufficient to initiate complement activation
through the classical pathway. This was observed by utilizing
an assay measuring disappearance of native C4 and appearance
of C4b in a Western blot assay (Boackle et al., 1993). Another
study showed activation of complement through the lectin path-
way (Leito et al., 2011). Since we had initially observed inhibition
of the lectin pathway we now investigated the overall effect of
SALSA on complement activation. The deposition of C4 and C3
was measured in an ELISA assay with surface-bound SALSA. By
comparing NHS, MBL-deficient serum (where no MBL-mediated
complement activation occurs), Mg/EGTA serum (where no clas-
sical or lectin pathway activation occurs), and HIS (where no
complement activation at all occurs) the amount of complement
deposition mediated by each distinct pathway could be eluci-
dated. In the solid-phase assay the use of SALSA-coated plates
and mannan-coated plates provided a platform for comparing
the effects of SALSA to a known lectin pathway activator. The
clear deposition of C4 and C3 from NHS on both plates showed
that SALSA as well as mannan on the solid phase was able to
activate the complement system. Our results suggested that sev-
eral mechanisms are involved, including activation mediated by
MBL. In line with others (Leito et al., 2011) we observed a dif-
ference in the C4 and C3 deposition when MBL-deficient serum
was used. Approximately 30% of the total complement activa-
tion was based on the presence of MBL, confirming the relevance
of our observed interaction between SALSA and MBL. However,
substantial C activation occurred even when MBL-deficient serum
was used. This supports the previously described SALSA-mediated
C activation through C1q and the classical pathway (Boackle
et al., 1993). Others have previously tried to block this residual
activation by utilizing specific classical pathway inhibiting anti-
bodies but they were unable to block all the C4 deposition (Leito
et al., 2011). The interaction of SALSA with all the three ficolins
that we observed could be the reason for this residual activation.
A substantial amount of C4 and C3 binding was observed from
HIS. This correlates with the weak calcium-dependent interaction
between SALSA and C4 and C3, and could be another explanation
for the residual complement deposition. However, the appear-
ance of similar C4 and C3 deposition on the mannan-coated
surface implies that this simply could represent the background

level of binding in the assay. The loss of activation in Mg/EGTA
serum supports our earlier finding of the Ca2+-dependency of the
interactions between SALSA and MBL, ficolins and C1q. How-
ever, part of the lower level of complement activation must be
accredited to the Ca2+-dependency of the C1qrs and MBL/ficolin–
MASP complexes. In conclusion, we suggest that surface-bound
SALSA acts as a complement activator through the classical
and lectin pathways via direct interactions with C1q, MBL, and
the ficolins.

In our initial experiment we observed inhibition of the lectin
pathway by fluid-phase SALSA but no effect on the classical
or alternative pathway activation. However, we also confirmed
the SALSA-mediated classical and lectin pathway activation as
described previously (Boackle et al., 1993; Leito et al., 2011). With
SALSA in the fluid phase the classical pathway is initiated by C1q
bound to targets, for example to LPS or surface-bound antibodies
and SALSA has no effect. Boackle et al. (1993) showed the ability of
surface-coated SALSA to interact with C1q directly. This was also
confirmed by our assays with surface-bound SALSA (Figures 2
and 6). Also, Leito et al. (2011) measured the effect of SALSA
coated to a surface and showed that it activates the lectin pathway.
This was also confirmed by our assay with surface-coated SALSA.
However, fluid-phase SALSA was capable of preventing MBL bind-
ing to the surface carbohydrates and thus inhibiting lectin pathway
activation. Thus, complement activation or inhibition by SALSA
seems to depend on whether SALSA is on the surface or in the
fluid phase, respectively.

In order to understand the role of fluid-phase SALSA we investi-
gated its effect on complement activation by measuring C4 and C3
deposition on C. albicans by flow cytometry. We observed an inhi-
bition of C4 and C3 deposition from NHS on C. albicans by SALSA.
The lack of classical pathway activity in the MBL-deficient serum
activation suggests that this serum does not have antibodies against
C. albicans. SALSA thus inhibits MBL binding to C. albicans and
the end effect is decreased complement activation. This result
verifies that soluble SALSA could function as a physiologically
relevant inhibitor of the lectin pathway of complement. Inhi-
bition is mediated through an inhibition of MBL binding and
leading to decreased C4 and C3 deposition on the surface of
C. albicans.

The experimental work presented here shows that soluble
SALSA is a novel regulator of the lectin pathway of complement.
However, SALSA appears to have a dual physiological role. We find
that SALSA acts as an activator of complement when it is bound to
a surface. In contrast, when SALSA is free in the fluid phase it acts
as an inhibitor of the lectin pathway of complement. The direct
binding to MBL, C1q and possibly ficolins may account for the C
activating effects. SALSA has been shown to mediate aggregation
of bacteria. It has been suggested that the repeating structure of
SALSA may enable the protein to interact with several ligands at
the same time (Edwards et al., 2008). The lectin pathway inhibi-
tion is likely due to formation of similar soluble complexes with
MBL. This hypothesis is depicted in Figure 8.

It has previously been shown that the binding properties of
SALSA differ depending on whether the protein is bound to a
surface or is free in the fluid phase. The fluid-phase and surface-
adsorbed SALSA displayed different aggregating and adhering
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FIGURE 8 | A graphical presentation of the dual function of SALSA. Binding of SALSA to a surface allows recruitment of MBL, C1q, and ficolins and
subsequent complement activation. In contrast, soluble SALSA interacts with MBL in the fluid phase drawing it away from the surface. Consequently, the lectin
pathway of complement is inhibited.

potential toward bacteria. It was speculated that this disparity
correlated with the pathogenicity of the strains (Loimaranta
et al., 2005). The fact that SALSA does not bind to C. albi-
cans, but inhibits complement in the fluid phase could, in fact,
be one of the mechanisms underlying the property of C. albi-
cans to commonly cause infections in the oral and other body
cavities.

The targeting of SALSA to a certain surface, e.g., to a microbe,
would allow SALSA to assist in the recruitment of MBL, C1q and
ficolins to the surface and subsequently enable complement acti-
vation on the surface of the microbe. In contrast, when SALSA
is free in the fluid phase it interacts with MBL and possibly C1q
and ficolins. This interaction could lead to protein aggregation
thus keeping the complement initiators from interacting with their

targets and in doing so inhibiting the complement response and
subsequent inflammation. On the other hand, suppression of C
activation would help microbes, e.g., those in the “normal flora”
or C. albicans to escape C attack.
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