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Theperformance evaluation of fusion detection algorithms fromhigh-throughput sequencing data crucially relies on the availability
of data with known positive and negative cases of gene rearrangements. The use of simulated data circumvents some shortcomings
of real data by generation of an unlimited number of true and false positive events, and the consequent robust estimation of accuracy
measures, such as precision and recall. Although a few simulated fusion datasets from RNA Sequencing (RNA-Seq) are available,
they are of limited sample size.Thismakes it difficult to systematically evaluate the performance of RNA-Seq based fusion-detection
algorithms. Here, we present SimFuse to address this problem. SimFuse utilizes real sequencing data as the fusions’ background to
closely approximate the distribution of reads from a real sequencing library and uses a reference genome as the template fromwhich
to simulate fusions’ supporting reads. To assess the supporting read-specific performance, SimFuse generates multiple datasets
with various numbers of fusion supporting reads. Compared to an extant simulated dataset, SimFuse gives users control over the
supporting read features and the sample size of the simulated library, based on which the performance metrics needed for the
validation and comparison of alternative fusion-detection algorithms can be rigorously estimated.

1. Introduction

A gene fusion, also referred to as chromosomal translocation,
denotes the event whereby two normally separated genes are
joined together as a consequence of a genomic rearrangement
following DNA replication. Gene fusions are known to play
an important role in tumorigenesis in nearly all tumor
types [1, 2]. Because RNA Sequencing (RNA-Seq) provides
high coverage and reveals expressed gene fusion transcripts,
RNA-Seq based fusion-detection is a standard component of
functional cancer genomic research.

Currently, there are more than 15 RNA-Seq based fusion-
detection tools published [3–9]. Most of these tools were
tested only on real data (cell-lines or patient samples)
with RT-PCR validations of a limited number of predicted
fusions, which precluded the accurate estimation of recall
and precision. Therefore, real data are useful to test whether
a method is successful in detecting specific events but are
not sufficient to comprehensively estimate the method’s

predictive performance. A statistically powerful simulated
dataset containing large numbers of known true positives and
true negatives is the complementary solution.

Some of the published fusion-detection tools [9–11] uti-
lized an RNA-Seq based simulated fusion dataset generated
as part of the evaluation of FusionMap [5]. However, this is
a small dataset representing a single sample and a total of
50 fusions. A fusion simulator able to automatically generate
multiple datasets with various numbers and types of fusion
supporting reads could facilitate the performance evaluation
of new and existing fusion-detection algorithms. Here, we
propose SimFuse, a novel fusion simulator, to address this
gap.

SimFuse uses real data to generate background reads.
SimFuse can generate multiple fusion events with differ-
ent numbers and types of supporting reads. With suffi-
cient sampling, users can minimize random effects and
accurately estimate the performance of a fusion-detection
algorithm. Additionally, with SimFuse generated data, users
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Figure 1: Definition of essential terms. (a) Definition of fragment,
read, and insert size. A fragment is sequenced in both directions
to get a pair of reads in the paired-end sequencing. The size of the
nonsequenced portion between the paired ends is called insert size.
(b) Definition of spanning read and splitting read pairs. The fusion
boundaries are in the insert region in a spanning read pair, while the
fusion boundaries fall within one of the reads in a splitting read pair.

can precisely estimate fusion-detection recall and precision
rates as a function of the numbers or types of supporting
reads. Availability: SimFuse is free for noncommercial use at
(https://github.com/yuxiangtan/SimFuse).

2. Methods

We begin by defining some essential terms used throughout
the paper (Figure 1). We define a fragment as a contiguous
sequence of nucleotides from a cDNA molecule. The dis-
tribution of fragment lengths should approximately follow
a Gaussian distribution. We define a read as the sequenced
end of a fragment. We define pair-end sequencing as the
procedure of sequencing both ends of the same fragment, and
the two sequenced ends as paired ends. We define insert-size
as the size of the nonsequenced fragment portion between
the paired ends. We define fusion boundaries as the precise,
nucleotide-level genomic breakpoint coordinates on both
sides of the fusion gene pair. Lastly, we define spanning reads
as those reads that have the fusion boundaries in the gap
between the paired ends. Conversely, a splitting read has the
fusion boundaries within one of the paired-end reads.

The input to SimFuse consists of a pair-end aligned BAM
file with known read length and distribution of fragment
lengths (the insert-size must be positive in order to simulate
spanning reads following this distribution). This BAM file
can be the pure SAM/BAM output from aligners without
additional filtering. SimFuse consists of the following four
modules (Figure 2):

(1) Extraction of Fusion-Free Reads (from the Input BAM
File, to Build the Background Read Distribution).
Generally, a real dataset from patients or cell-lines is
preferred. The benefit of using real data to generate
the background is that it mimics the background
noise in real data and also captures the realistic
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Figure 2: SimFuse workflow. (a) Fusion free reads are extracted
from the real data. (b) The expression quantification from real data
and a genome reference are used to simulate fusion reads. (c) Fusion-
free reads and simulated fusion reads are merged. (d) Running
a fusion-detection algorithm on the simulation dataset generates
results of detected fusions. Comparison of these results with the list
of simulated fusions yields fusion-detection performance estimates
(recall and precision) for the algorithm.
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Figure 3:Workflow of generating fusion supporting reads. An exon
in gene 𝑋 and an exon in gene 𝑌 are randomly selected. Exon
boundaries are used as the fusion boundaries. Spanning reads are
randomly generated from within a prespecified range (read-length
∗ 3 by default) from the boundaries. To generate a splitting read,
two fragments from the two genes𝑋 and 𝑌 are generated, with their
sum length being equal to the required read-length. A spanning read
is randomly generated from either of the two exons to match the
splitting read into a splitting read pair.

variation in gene expression levels. To filter all the
potential fusion-supporting reads from the real data,
only the pair-end aligned reads consistent with the
distribution of fragment lengths are kept.

(2) Simulation of Fusion Supporting Reads. To fully con-
trol the simulation, SimFuse uses a genome reference
(e.g., hg19.fa) as the template to generate supporting
reads for simulated fusions (Figure 3). First, genes
are binned into 𝑀 expression subgroups based on
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the corresponding number of raw reads in the input
data. In the default setting, raw read counts are
grouped into the 𝑀 ranges [0 ∼ 10), [10 ∼
10
2), [102 ∼ 103), . . ., [10𝑀−1 ∼ 10𝑀]. For each

expression subgroup, 𝑁 (the number of fusions to
be simulated in a group; 𝑁 = 100 as default)
genes are randomly picked without replacement as
the fusion genes. For each fusion gene, a fusion
gene partner is randomly selected from each of the
expression subgroups. For each pair of genes, splitting
and spanning read pairs are simulated by using the
reference sequence of these genes (see supplementary
material in Supplementary Material available online
at http://dx.doi.org/10.1155/2015/780519). At the end
of this process, a total of 𝑀 × 𝑁 × 𝑀 fusion events
are generated, with 𝑁 fusion events for each of the
𝑀×𝑀 combinations of expression groups. Finally, all
the simulated reads are merged with the background
reads into a newly created FASTQ file, and a list of
fusion-gene pairs is generated.

(3) Wrapper for the Automatic Simulation of Multiple
Datasets (with Different Supporting Reads). To fully
estimate the performance of a fusion-detection algo-
rithm, a simulated dataset with large enough sample
size is needed. Additionally, the performance of a
fusion-detection algorithm may be dependent on the
number and the types (i.e., spanning or splitting) of
supporting reads. To be user friendly, SimFuse has
a wrapper function that simultaneously generates 𝐾
simulations with 𝐿 different combinations of support-
ing read numbers, which yields a total of𝑀×𝑁×𝑀×
𝐿 × 𝐾 fusion events.

(4) Generation of a Summary of Fusion-Detection Results
(from a Given Algorithm for the Whole Simulation).
To compare fusion-detection results from different
algorithms efficiently, we convert these results to a
uniform format and then use a SimFuse function
for summarization (see supplementary Table 1 and
Figure S1).

To estimate the performance of a fusion-detection algorithm,
we use recall and precision rates instead of sensitivity and
specificity [12]. Precision is more informative than specificity,
since in the fusion-detection problem the number of true
negatives (TN) is always much larger (∼20K genes in the
human genome) than the number of true positives (TP). As
a result, unless the number of false positives (type I errors)
is extremely large, the specificity will always be close to 1 and
will not adequately capture the difference among competing
detection algorithms:

recall: true positive/(true positive + false negative),
precision: true positive/(true positive + false positive).

3. Results

3.1. A Simulation Example from SimFuse. We used an
ENCODE MCF-7 cell-line dataset (SRR521521) to extract

the background reads to be included in the simulation.
This dataset consists of 76 bp pair-end reads, with a median
fragment size of 192 bp and a standard deviation of 29 bp.
Accordingly, we used a splitting-to-spanning read ratio of
19 : 5 for the generation of the fusion supporting reads
(see supplementary materials). We next generated 𝐾 =
100 independent simulations, and, for each simulation, we
generated 𝐿 = 10 combinations of supporting read numbers,
ranging from 1 splitting read and no spanning reads (1 : 0)
to 100 splitting reads and 26 spanning reads (100 : 26),
with 𝑁 = 100 fusion events for each combination (see
supplementary Table 2). Grouping based on expression levels
is not considered and we set 𝑀 = 1, since the data already
has 100,000 (1 × 100 × 1 × 10 × 100) fusions. The entire
data generation procedure was run on a 16-core 2.3 GHz
AMD Opteron 6276 machine with 64GB memory. Because
SimFuse does not currently support parallel processing, it
took 18.5 hours to complete this task using a single core.

We used deFuse [3] and TophatFusion [8] as the
two fusion-detection algorithms to analyze the simulated
datasets, with default parameter settings (see supplementary
materials). Figure 4 summarized the recall and precision rates
of the two algorithms. The recall rate of deFuse was lower
than TophatFusion in the low supporting read range but
increased and surpassed the recall rate of TophatFusion in the
detection of fusionswith at least 100 splitting and 26 spanning
reads. Conversely, TophatFusion achieved a 75% recall rate
with as few as 3 splitting and 1 spanning reads. However, it
plateaued at a lower 84% recall rate with 20 splitting and 5
spanning reads. The precision of deFuse was relatively low
in the low supporting read range but reached a maximum
of 95% when detecting fusions with at least 20 splitting and
5 spanning reads. The precision of TophatFusion was always
high but slightly decreased as the number of supporting reads
increased.The likely explanation for this phenomenon is that
as the number of supporting reads increases, the chance of
detecting multiple alignment events also increases.

3.2. Comparisonwith Existing SimulatedData. Thesimulated
dataset from FusionMap is the most accessible and popular
simulated RNA-Seq fusion dataset currently available [5, 11].
Hence, we aimed to evaluate our SimFuse-based comparison
of deFuse and TophatFusion against the analogous compar-
ison based on the FusionMap simulated dataset. To make
the comparison fair, deFuse and TophatFusion were run
with the same parameter settings used with the SimFuse
datasets. On the other hand, because the FusionMap dataset
has only one sample with 50 fusions and no replicates, it
was not possible to estimate the corresponding distributions
of recall and precision rates. The overall recall rate was
68% (34/50) for deFuse and 70% (35/50) for TophatFusion,
and the overall precision rate was 97.1% (34/35) for deFuse
and 97.2% (35/36) for TophatFusion. These estimates from
the FusionMap dataset are concordant with those from
the SimFuse datasets. Additionally, in these 50 fusions, the
supporting read numbers range from2 to 1587,whichmakes it
not possible to rigorously estimate recall and precision rates at
different supporting read levels. Nevertheless, the analysis on
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Figure 4: Barplot of recall and precision rates for deFuse and TophatFusion. Blue bars indicate deFuse results and red bars indicate
TophatFusion results. The 𝑥-axis is indexed by the supporting read groups, with each group corresponding to the indicated splitting-to-
spanning read ratio. The 𝑦-axis reports precision and recall rates. The red dash line shows estimates for TophatFusion from the FusionMap
dataset, while the blue dash line shows estimates for deFuse.

the FusionMap dataset revealed that deFuse could not detect
fusions with fewer than 10 reads while TophatFusion could,
thus confirming the more detailed conclusions drawn from
the SimFuse datasets.

4. Discussion

We have presented a new fusion simulator, SimFuse, for the
evaluation and comparison of fusion-detection algorithms
from RNAseq data. To our knowledge, this is the first
publicly available tool for the simulation of RNAseq libraries
enriched for fusion events. The simulator’s main selling
point is its capability of generating large numbers of fusion
events with customizable characteristics, including number
of supporting reads and ratio of splitting-to-spanning reads,
among others. An additional advantage is SimFuse’s ability to
simultaneously generate a large number of samples, providing
great statistical power for fusion-detection algorithm perfor-
mance estimation. The capability of generating fusions with
a tunable number of supporting reads also allows users to
estimate the minimum number of reads necessary to achieve
desired rates of fusion-detection recall and precision. More-
over, SimFuse provides detailed individual supporting read
information for each simulated fusion, and as a result, users
can evaluate the fusion-detection algorithm performance on
every single supporting read. This is a unique feature that no
other simulated RNA-Seq fusion dataset provides.

We used SimFuse to generate a large dataset of fusion-
rich samples, which was used to compare two state-of-the-art

fusion-detection tools, TophatFusion [8] and deFuse [3].
By comparing the number of known fusion-supporting reads
in the SimFuse dataset with those identified by deFuse
and TophatFusion, we found that deFuse and TophatFusion
could detect splitting and spanning reads well in most cases.
However, in some cases, these two methods reported more
supporting reads than the actual number of simulated reads,
which might suggest a propensity of these algorithms to
report false positives.

SimFuse already allows for the control of fusion param-
eters (such as number of supporting reads and ratio of
splitting-to-spanning reads) and relies on a reference genome
template for the generation of the fusion supporting reads,
but additional parameters will be included in future improve-
ments to more closely approximate real data. For example,
we can introduce tunable mutation rates for each base in the
template genome reference, or relax the location requirement
of fusion boundaries, or offer the option of alternative splicing
conjunction between exons.

SimFuse is available as open source software on github,
and input from any developers is welcome. Our hope is
that this package will provide for a starting point and that
additional functions and improvements will be contributed
by the community.
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