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Abstract
This study aims to propose the powerMuirheadmean (PMM) operator in the spherical normal fuzzy sets (SNoFS) environment
to solve multiple attribute decision-making problems. Spherical normal fuzzy sets better characterize real-world problems.
On the other hand, the Muirhead mean (MM) considers the relationship between any number of criteria of the operator. Power
aggregation (PA) reduces the negative impact of excessively high or excessively low values on aggregation results. This
article proposes two new aggregation methods: spherical normal fuzzy power Muirhead mean (SNoFPMM) and spherical
normal fuzzy weighted power Muirhead mean (SNoFWPMM). Also, these operators produce effective results in terms of
their suitability to real-world problems and the relationship between their criteria. The proposed operators are applied to
solve the problems in choosing the ideal mask for the COVID-19 outbreak and investment company selection. However,
uncertainty about the effects of COVID-19 complicates the decision-making process. Spherical normal fuzzy sets can handle
both real-world problems and situations involving uncertainty. Our approach has been compared with other methods in the
literature. The superior aspects and applicability of our strategy are also mentioned.

Keywords Multi-attribute decision-making · Normal distribution · Spherical Normal fuzzy set · Muirhead mean · Power
aggregation

Introduction

The multi-attribute decision-making (MADM) mechanism
is the process of finding the most suitable alternatives
in complex scenarios by synthetically evaluating the val-
ues of multiple attributes of all alternatives [18]. In this
decision-making process, subjective and biased attitudes
cause uncertainty and inconsistency in the data. Therefore,
fuzzy sets are used to handle uncertainty and vagueness data.
The fuzzy set was presented by Lotfi Zadeh [66]. Atanassov
proposed intuitionistic fuzzy sets (IFS) because the concept
of fuzzy sets only consists of membership functions and cov-
ers a narrow set [6]. IFSs have the membership degree(μ)
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and the non-membership degree (ν). In IFS, it is obtained
depending on the membership and non-membership degree.
IFSs are generalized as bivariate. Pythagorean fuzzy sets have
a larger domain of μ and ν values [40]. Similarly, a larger
space is represented by Fermatean fuzzy sets [8]. Ultimately,
basic fuzzy sets are insufficient with values of μ = 0.9
and ν = 0.8. Hence, q-rung orthopair fuzzy sets (q-ROFSs)
have been proposed by Yager [58]. However, the sets afore-
mentioned contain a dependent hesitant degree. Because the
membership variables are defined in a narrow space, and the
hesitant degree is dependent, a fuzzy set with three variables
is proposed. Fuzzy sets with an independent hesitant degree
are called spherical fuzzy sets (SFSs) [24]. On the other hand,
SFSs have been used with many aggregation operators. The
interrelationship between any two criteria is considered with
the Bonferroni Mean (BM) operator [16]. Harmonic Mean
can be used to avoid outlier data [13]. tth order generalized
spherical fuzzy sets are combinedwith the powerMMopera-
tor [28]. TheMMoperator takes into account the relationship
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between the desired number of criteria. The interrelationship
between criteria contains at most as many parameter vectors.
Also, SFSs have been used with T-norm-based aggregation
operators. Especially, Dombi [5], Einstein [39], Hamacher
[45] T-norm can be given as instances. In another study, an
Emergency decision support algorithm is proposed in the
spherical fuzzy sets environment [4]. A detailed literature
review regarding themethods presented in the article is exam-
ined in Table 1.

To summarize, normal fuzzy sets were combined bymany
methods. However, normal fuzzy sets are not addressed in
power aggregation, Muirhead Mean, and spherical fuzzy
environments. By adding standard deviation and variance
values to fuzzy sets, decision matrices with normal distri-
bution can be expected to produce more consistent results
for real-world problems. Normal distribution was used with
IFS [46], PFS [60], and q-ROFS [62]. As mentioned before,
because IFSs and their general states contain a dependent
hesitant degree, 3D spherical fuzzy sets give more consistent
and reliable results for decision-makers inMADMproblems.
The normal distribution is applied to spherical fuzzy sets.
In addition, the SNoFS and the BM operator are combined
[64]. The aforementioned comprehensive literature summary
shows that in the SNoFS environment, the powerMM opera-
tor was not used to solveMADM.Aggregation operators and
generalized fuzzy sets are frequently used in MCDM. How-
ever, the fact that there is a wide evaluation space that also
addresses the hesitations in terms of decision-makers makes
the evaluation of the problem more consistent and sensible.
The assumptionof this study is to provide consistent andvalid
solutions to real-life MCDM problems by adding the normal
distribution to the combination of spherical fuzzy sets and
a general aggregation operator structure (Muirhead mean).
The motivation for the proposed method in the paper can be
summarized.

1. The new MADM concept of spherical normal fuzzy sets
with the MM operator is proposed.

2. With the spherical normal fuzzy sets, the degree of inde-
pendent hesitation is handled and more consistent results
are produced for the problems in daily life with the nor-
mal distribution.

3. Power aggregation reduces the negative effects of exces-
sively high and excessively low criteria values and the
MMoperator examines the interrelationship between any
number of criteria.

4. It has been applied to the issues of selecting the idealmask
for the COVID 19 pandemic and investment company
selection.

Preliminaries

This section gives the normal fuzzy number, spherical fuzzy
sets, SNoFSs, and basic operations. Furthermore, power
aggregation and MM are mentioned.

Definition 1 [59]R is the set of real numbers. Let Z = (μ, σ )

be a normal fuzzy number. The membership function of the
normal fuzzy set can be defined as follows.

Z(x) = e
−
(
x−μ
σ

)2
(1)

where x, μ, σ ∈ R and σ > 0.

Definition 2 [3] Let S be a finite space. Spherical fuzzy sets
can be defined as

U = {< x, su(x), iu(x), du(x) > |x ∈ S} (2)

where su(x) is called positive, iu(x) is neutral, du(x) is
negative membership values. su(x), iu(x), du(x) ∈ [0, 1].
ru(x) = √

1 − (s2u (x) + i2u (x) + d2u (x)) is its refusal degree.

Spherical normal fuzzy number

Definition 3 [64] LetX be a finite set, T =< (μt , σt ), (st , it ,
dt ) > is defined as the spherical normal fuzzy set. where
st (x) is called positive, it (x) is neutral, dt (x) is negative
membership values. Also,

st (x) = st e
−
(
x−μ
σ

)2
(3)

it (x) = 1 − (1 − it )e
−
(
x−μ
σ

)2
(4)

dt (x) = 1 − (1 − dt )e
−
(
x−μ
σ

)2
(5)

Definition 4 [64] Let S1 =< (μ1, σ1), (s1, i1, d1) > and
S2 =< (μ2, σ2), (s2, i2, d2) > be two SNoF numbers. The
four basic operations on SNoFS are defined as follows λ ≥ 0.

1. S1⊕S2 =
(

(μ1 + μ2, σ1 + σ2),

√
s21 + s22 − s21s

2
2 , i1i2,

d1d2)

2.
S1 ⊗ S2 =

((
μ1μ2, μ1μ2

√
σ 2
1

μ2
1

+ σ 2
2

μ2
2

)
,

s1s2,
√
i21 + i22 − i21 i

2
2 ,

√
d21 + d22 − d21d

2
2

)

3. λS1 =
(

(λμ1, λσ1), (

√
1 − (1 − s21 )

λ, iλ1 , dλ
1 )

)

4. Sλ
1 =

(
(μλ

1, λ
1
2 μλ−1

1 σ1), sλ
1 ,

√
1 − (1 − i21 )

λ,

√
1 − (1 − d21 )

λ

)
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Table 1 Literature study for normal fuzzy sets

References Approach Application

[49] Induced intuitionistic normal fuzzy Supplier selection

[36] Normal intuitionistic fuzzy Bonferroni mean Stock investment

[67] Normal intuitionistic fuzzy Heronian mean Stock evaluation

[31] Normal interval-valued intuitionistic fuzzy generalized aggregation Supply company selection

[60] Interval-valued Pythagorean normal fuzzy Investment company selection

[62] q-Rung orthopair normal fuzzy aggregation Suitable global partner selection

[63] q-Rung picture normal fuzzy Heronian mean Healthcare product purchase

[30] Normal neutrosophic Bonferroni mean Investment company selection

[32] Normal neutrosophic Heronian mean Investment company selection

[34] Normal neutrosophic frank aggregation Investment company selection

[64] Spherical normal fuzzy Bonferroni mean COVID-19 mask selection

Definition 5 [64] Let S1 =< (μ, σ), (s, i, d) > be a SNoF.
Score and accuracy functions for SNoF can be defined as
follows. Sc1(S) = 1+μ(s2−i2−d2), Sc2(S) = 1+σ(s2−
i2 − d2), Acc1(S) = 1 + μ(s2 + i2 + d2) and Acc2(S) =
1 + σ(s2 + i2 + d2).

The two SNoF values can be compared with the score and
accuracy functions mentioned above as follows.

Definition 6 [64] Let S1 =< (μ1, σ1), (s1, i1, d1) > and
S2 =< (μ2, σ2), (s2, i2, d2) > be two SNoFS.

1. If Sc1(S1) > Sc1(S2), then S1 > S2.
2. If Sc1(S1) = Sc1(S2) and Acc1(S1) > Acc1(S2) then

S1 > S2.
3. If Sc1(S1) = Sc1(S2) and Acc1(S1) = Acc1(S2) then, If

Sc2(S1) < Sc2(S2), then S1 > S2.
If Sc2(S1) = Sc2(S2) and Acc2(S1) < Acc2(S2) then
S1 > S2.

Muirheadmean operator

The MM operator was proposed by Muirhead for classical
numbers [38]. Themotivation of theMMoperator is that con-
sidering the interrelationships of all arguments, it influences
the aggregation result.

Definition 7 [38] Let αi (i = 1, 2, . . . , n) be the set of non-
negative real numbers. P = (p1, p2, . . . , pn) ∈ R

n be a
vector of parameters. The MM operator is expressed as,

MMP (α1, α2, . . . , αn) =
⎛
⎝ 1

n!
∑
φ∈Sn

n∏
j=1

α
Pj

φ( j)

⎞
⎠

1∑n
j=1 Pj

(6)

where Sn is the set of all permutations. and φ( j)( j =
1, 2, . . . , n) is any permutation of (1, 2, . . . , n)

The MM operator provides a general aggregation struc-
ture. Specific cases of the MM according to the P parameter
can be expressed as follows.

1. If P = (1, 0, . . . , 0), The MM operator is reduced to an
arithmetic averaging operator.

MM(1,0,...,0)(α1, α2, . . . , αn)

= 1

n

n∑
i=1

αi . (7)

2. If P = (1/n, 1/n, . . . , 1/n), theMMoperator is reduced
to a geometric averaging operator.

MM(1/n,1/n,...,1/n)(α1, α2, . . . , αn) = 1

n

n∏
i=1

αi . (8)

3. If P = (1, 1, 0, 0, . . . , 0), MM operator is reduced to
Bonferroni mean operator [10].

MM(1,1,0,0,...,0)(α1, α2, . . . , αn)

=

⎛
⎜⎜⎜⎝

1

α(α + 1)

n∑
x,y=1
x �=y

αxαy

⎞
⎟⎟⎟⎠

1
2

(9)

4. If P = (

k︷ ︸︸ ︷
1, 1, . . . , 1,

n−k︷ ︸︸ ︷
0, 0, . . . , 0), MM operator is

reduced to Maclaurin symmetric mean operator [37].

MM(

k︷ ︸︸ ︷
1, 1, . . . , 1,

n−k︷ ︸︸ ︷
0, 0, . . . , 0)(α1, α2, . . . , αn)
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=
⎛
⎝ ∑

1≤x1<x2<···<xk≤n

k∏
y=1

αxy

⎞
⎠

1
2

(10)

Dual Muirheadmean operator

The dualMuirheadmeanDMMoperator is the dual structure
of the MM operator.

Definition 8 [38] Let αi (i = 1, 2, . . . , n) be the set of non-
negative real numbers. P = (p1, p2, . . . , pn) ∈ R

n be a
vector of parameters.

DMMP (α1, α2, . . . , αn)

= 1∑n
j=1 Pj

⎛
⎝∏

φ∈Sn

n∑
j=1

Pjαφ( j)

⎞
⎠

1
n!

, (11)

where Sn is the set of all permutations. and φ( j)( j =
1, 2, . . . , n) is any permutation of (1, 2, . . . , n)

Power average operator

The power average operator was first proposed by Yager in
2001 [56]. The PA operator decreases the negative impact of
outliers on aggregation results.

Definition 9 [56] Let ai (i = 1, 2, . . . , n) be a sets of real
number (ai ≥ 0). PA operator is defined.

PA(a1, a2, . . . , an) =
∑n

i=1 ai (1 + T (ai ))∑n
i=1(1 + T (ai ))

(12)

Weighted power average (WPA) is defined as

WPA(a1, a2, . . . , an) =
∑n

i=1 ai (1 + T (ai ))wi∑n
i=1(1 + T (ai ))

(13)

where wi ∈ [0, 1] is a weight vector T (ai ).
T (ai ) = ∑m

j=1 Sup(ai , a j )i �= j
and Sup(ai , a j ) is support

measure that supplies the conditions: Sup(ai , a j ) ∈ [0, 1];
Sup(ai , a j ) = Sup(a j , ai ), Sup(ai , a j ) ≥ Sup(ak, al), if∣∣ai − a j

∣∣ < |ak − al |.
Sup(ai , a j ) = 1 − d(ai , a j ), d is a distance formula.

The distance between two spherical normal fuzzy sets can
be defined.

Definition 10 Let S1 =< (μ1, σ1), (s1, i1, d1) > and S2 =<

(μ2, σ2), (s2, i2, d2) > be two spherical normal fuzzy num-
bers. The normalized euclidean distance between two spher-
ical normal fuzzy sets can be calculated as

d(S1, S2)

= 1

4

√
[(dS1)μ1 − (dS2)μ2]2 + 1

2
((dS1)σ1 − (dS2)σ2)

(14)

where dS1 = (1+s21 − i21 −d21 ) and dS2 = (1+s22 − i22 −d22 )

Novel spherical normal fuzzy power
Muirheadmean operators

MM operators are frequently used in solving MADM prob-
lems. MM operators are used with generalized fuzzy sets
such as intuitionistic fuzzy sets [29], Pythagorean fuzzy sets
[25], q-rung orthopair fuzzy sets [48], picture fuzzy sets [52].
However, considering Table 1, the powerMMoperator in the
normal spherical fuzzy sets environment has not been con-
sidered until now. In this section, weighted and unweighted
PMM and PDMM operators are recommended in the spher-
ical normal fuzzy environment.

Definition 11 Let Sk =< (μk, σk), (sk, ik, dk) > (k =
1, 2, . . . , n)be a set ofSNoFnumbers. P = (p1, p2, . . . , pn)
∈ R

n be a vector of parameters. The spherical normal fuzzy
power Muirhead Mean (SNoFPMM) operator is defined as

SNoFPMM(S1, S2, . . . , Sn)

=
⎛
⎝ 1

n!
∑
φ∈Sn

n∏
j=1

(
nδ j Sφ( j)

)Pj

⎞
⎠

1∑n
j=1 Pj

(15)

where δ j = (1+T (S j ))∑n
t=1(1+T (St ))

, (δ1, δ2, . . . , δn)
T is the power

weight vector. φ( j) is any permutation of (1, 2, . . . , n)

Theorem 1 Let Sk =< (μk, σk), (sk, ik, dk) > (k =
1, 2, . . . , n)bea set of SNoFnumbers. P = (p1, p2, . . . , pn)
∈ R

n be a vector of parameters. Then, the aggregated value
by the SNoFPMM operator is still a SNoFN.

Hence,

SNoFPMM(S1, S2, . . . , Sn) =
〈⎛
⎝ 1

n!
∑
φ∈Sn

n∏
j=1

(
nδ jμφ( j)

)Pj

⎞
⎠

1∑n
j=1 Pj

,

√
1∑n

j=1 Pj

⎛
⎜⎝
⎛
⎝ 1

n!
∑
φ∈Sn

n∏
j=1

(
nδ jμφ( j)

)Pj

⎞
⎠

1∑n
j=1 Pj

−1
⎞
⎟⎠

·
⎛
⎝
⎛
⎝ 1

n!
∑
φ∈Sn

n∏
j=1

(
nδ jμφ( j)

)Pj

⎞
⎠ ∑

φ∈Sn

√√√√
n∑
j=1

σ 2
φ( j)

μ2
φ( j)

Pj

⎞
⎠ ,

⎛
⎜⎜⎝

√√√√√1 −
⎛
⎝∏

σ∈Sn

⎛
⎝1 −

n∏
j=1

(
1 −

(
1 − s2φ( j)

)nδ j
)p j

⎞
⎠
⎞
⎠

1/n!
⎞
⎟⎟⎠

1∑n
j=1 p j

,
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√√√√√√√1 −
⎛
⎜⎝1 −

∏
σ∈Sn

⎛
⎝1 −

n∏
j=1

(
1 − (iφ( j))

2nδ j
)p j

⎞
⎠

1/n!⎞
⎟⎠

1∑n
j=1 p j

,

√√√√√√√1 −
⎛
⎜⎝1 −

∏
σ∈Sn

⎛
⎝1 −

n∏
j=1

(
1 − (dφ( j))

2nδ j
)p j

⎞
⎠

1/n!⎞
⎟⎠

1∑n
j=1 p j 〉

(16)

Proof Considering operational laws for SNoFN, we have
(From Definition 4)

nδ j Sφ( j)

=
〈
(nδ jμφ( j), nδ jσφ( j)),

((√
1 −

(
1 − s2φ( j)

)nδ j

)
, i

2nδ j
φ( j) , d

2nδ j
φ( j)

)〉

Also, (From Definition 4, operation 4)

(
nδ j Sφ( j)

)Pj

=
〈 ((

nδ jμφ( j)
)Pj ,

√
Pj
(
nδ jμφ( j)

)Pj−1
.nδ jσφ( j)

)
,

⎛
⎝
(√

1 −
(
1 − s2φ( j)

)nδ j

)Pj

,

√
1 −

(
1 − i

2nδ j
φ( j)

)Pj
,

√
1 −

(
1 − s

2nδ j
φ( j)

)Pj

) 〉

Therefore, (From Definition 4, operation 2)

n∏
j=1

(
nδ j Sφ( j)

)Pj

=
〈⎛
⎝

n∏
j=1

(
nδ jμφ( j)

)Pj ,

n∏
j=1

(
nδ jμφ( j)

)Pj .

√√√√
n∑
j=1

σ 2
φ( j)

μ2
φ( j)

Pj

⎞
⎠ ,

⎛
⎝

n∏
j=1

(√
1 −

(
1 − s2φ( j)

)nδ j

)Pj

,

√√√√1 −
n∏
j=1

(
1 − i

2nδ j
φ( j)

)Pj
,

√√√√1 −
n∏
j=1

(
1 − s

2nδ j
φ( j)

)Pj

⎞
⎠
〉

and In Definition 4, operations 3 and 4 are applied.
Finally,

1

n!

⎛
⎝∑

φ∈Sn

n∏
j=1

(
nδ j Sφ( j)

)Pj

⎞
⎠

1∑n
j=1 Pj

=
〈⎛
⎝ 1

n!
∑
φ∈Sn

n∏
j=1

(
nδ jμφ( j)

)Pj

⎞
⎠

1∑n
j=1 Pj

,

√
1∑n

j=1 Pj

⎛
⎜⎝
⎛
⎝ 1

n!
∑
φ∈Sn

n∏
j=1

(
nδ jμφ( j)

)Pj

⎞
⎠

1∑n
j=1 Pj

−1
⎞
⎟⎠ .

⎛
⎝
⎛
⎝ 1

n!
∑
φ∈Sn

n∏
j=1

(
nδ jμφ( j)

)Pj

⎞
⎠ ∑

φ∈Sn

√√√√
n∑
j=1

σ 2
φ( j)

μ2
φ( j)

Pj

⎞
⎠ ,

⎛
⎜⎜⎝

√√√√√1 −
⎛
⎝∏

σ∈Sn

⎛
⎝1 −

n∏
j=1

(
1 −

(
1 − s2φ( j)

)nδ j
)p j

⎞
⎠
⎞
⎠

1/n!
⎞
⎟⎟⎠

1∑n
j=1 p j

,

√√√√√√√1 −
⎛
⎜⎝1 −

∏
σ∈Sn

⎛
⎝1 −

n∏
j=1

(
1 − (iφ( j))

2nδ j
)p j

⎞
⎠

1/n!⎞
⎟⎠

1∑n
j=1 p j

,

√√√√√√√1 −
⎛
⎜⎝1 −

∏
σ∈Sn

⎛
⎝1 −

n∏
j=1

(
1 − (dφ( j))

2nδ j
)p j

⎞
⎠

1/n!⎞
⎟⎠

1∑n
j=1 p j 〉

�	
With the help of Definition 4, Theorem 1 is provided.

In Theorem 1, the sum and product symbols mentioned in

the
(

1
n!
∑

φ∈Sn
∏n

j=1

(
nδ j Sφ( j)

)Pj
) 1∑n

j=1 Pj Muirhead Mean

structures are represented by ⊕ and ⊗, respectively.

Theorem 2 Let Sk =< (μk, σk), (sk, ik, dk) > (k =
1, 2, ...n) be a set of SNoFnumbers. P = (p1, p2, . . . , pn) ∈
R
n be a vector of parameters. Let W = (w1, w2, . . . , wn)

be the weight of the criteria. The spherical normal fuzzy
weighted power Muirhead mean (SNoFWPMM) operator is
defined as

SNoFWPMM(S1, S2, . . . , Sn)

=
⎛
⎝ 1

n!
∑
φ∈Sn

n∏
j=1

(
nδWj Sφ( j)

)Pj

⎞
⎠

1∑n
j=1 Pj (17)

where δWj = Wj (1+T (S j ))∑n
t=1 Wt (1+T (St ))

, (δ1, δ2, ...δn)
T is the power

weight vector. φ( j) is any permutation of (1, 2, . . . , n) and∑n
j=1 Wj = 1.

Proof The proof of this theorem is proved similarly to The-
orem 1. �	
Definition 12 Let Sk =< (μk, σk), (sk, ik, dk) > (k =
1, 2, ...n)be a set of SNoFnumbers. P = (p1, p2, . . . , pn) ∈
R
n be a vector of parameters. The spherical normal fuzzy

power dual Muirhead mean (SNoFPDMM) operator is
defined as

SNoFPDMM(S1, S2, . . . , Sn)

= 1∑n
j=1 Pj

⎛
⎝∏

φ∈Sn

n∑
j=1

(
Pj S

nδ j
φ( j)

)⎞
⎠

1
n!

(18)

where δ j = (1+T (S j ))∑n
t=1(1+T (St ))

, (δ1, δ2, ...δn)
T is the power

weight vector. φ( j) is any permutation of (1, 2, . . . , n)
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Theorem 3 Let Sk =< (μk, σk), (sk, ik, dk) > (k =
1, 2, ...n) be a set of SNoFnumbers. P = (p1, p2, . . . , pn) ∈
R
n be a vector of parameters. Then, the aggregated value by

the SNoFPDMM operator is still a SNoFN.
Hence,

SNoFPDMM(S1, S2, . . . , Sn)

=
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⎝ 1

n!
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φ∈Sn

n∏
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Proof The proof of this theorem is proved similarly to The-
orem 1. �	
Theorem 4 Let Sk =< (μk, σk), (sk, ik, dk) > (k =
1, 2, ...n) be a set of SNoFnumbers. P = (p1, p2, . . . , pn) ∈
R
n be a vector of parameters. Let W = (w1, w2, . . . , wn)

be the weight of the criteria. The spherical normal fuzzy
weighted Dual power Muirhead Mean (SNoFWDPMM)
operator is defined as

SNoFWDPMM(S1, S2, . . . , Sn)

= 1∑n
j=1 Pj

⎛
⎝∏

φ∈Sn

n∑
j=1

(
Pj Sφ( j)

)nδWj

⎞
⎠

1
n! (19)

where δWj = Wj (1+T (S j ))∑n
t=1 Wt (1+T (St ))

, (δ1, δ2, ...δn)
T is the power

weight vector. φ( j) is any permutation of (1, 2, . . . , n) and∑n
j=1 Wj = 1.

Proof The proof of this theorem is proved similarly to The-
orem 1. �	

It can be easily demonstrated that the proposed opera-
tors provide the boundedness and idempotency properties.
However, a monotonicity feature is not provided. Thus, the
decision-making steps for the SNoFPMM, SNoFDPMM,
SNoFWPMMandSNoFWDPMMoperators canbe explained.

Fig. 1 Flow-chart of the proposed algorithm

A novel MADM hybrid approach based on
the SNoFPMM and SNoFWPMMoperators

MADM mechanism based on proposed aggregation opera-
tors is explained step by step. Firstly, let’s consider a classic
MADM problem in the SNoF environment. Suppose the
set of alternatives is A = {A1, A2, . . . , Am} and the set
of criteria is C = {C1,C2, . . . ,Cn}. Wj is represented as
the weights of the criteria. therefore, the evaluation given
to the criterion C j for the Ai alternative is represented by
ψi j =< (μi j , σi j ), (si j , ii j , di j ) >. The decision matrix can
be expressed as

	 = 〈ψi j 〉m×n =

C1 C2 ··· Cn

A1

A2
...

Am

⎡
⎢⎢⎢⎣

ψ11 ψ12 · · · ψ1n

ψ21 ψ22 · · · ψ2n
...

...
. . .

...

ψm1 ψm2 · · · ψmn

⎤
⎥⎥⎥⎦ (20)

Secondly, we examined the steps of the decision-making
mechanism for the proposed operators.

Step 1. In the first step, different types of data are nor-
malized. Then, a normalized operation is performed on the
decision matrix as benefit type (J1) and cost type (J2)[51].

ψ̂i j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈
μi j

max
i

(μi j )
,

σi j
max
i

(σi j )

σi j
μi j

〉
(si j , ii j , di j ); for J1 attribute

〈
min
i

(μi j )

μi j
,

σi j
max
i

(σi j )

σi j
μi j

〉
(di j , ii j , si j ); for J2 attribute

(21)
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Step 2. Calculate the supports

Sup(ψi j , ψik) = 1 − d(ψi j , ψik), j, k = 1, 2, ...n. (22)

Step 3. Determine ψi j of SNoFPMM number by other
SNoFPMM numbers ψ t

i j .

T (ψi j ) =
n∑

k=1,k �= j

Sup(ψi j , ψik) (23)

Step 4. Utilize weights are determined with both weights
and without weights.

δi j = Wj (1 + T (ψi j ))∑n
j=1 Wj (1 + T (ψi j ))

(24)

or

δi j = (1 + T (ψi j ))∑n
j=1(1 + T (ψi j ))

(25)

where
∑n

j=1 w j = 1.
Step5.Aggregation results are computedbasedonEqs.15,

17, 18, or 19 operators.
Step 6. According to Definitions 5 and 6, The score of

alternatives is calculated.
Step 7. The best alternative is determined according to the

rank results.
The steps of the proposed aggregation operators are given

in Fig. 1. Four types of aggregation operators are used,
weighted and without weighted.

Application of proposed operators in ideal
COVID-19mask selection problem

The SNoFPMMand SNoFWPMMaggregation operators are
used to choose the ideal mask in the COVID 19 outbreak.
The COVID 19 outbreak first appeared in Wuhan, China,
in December 2019. More than 190 countries worldwide are
affected by this infectious disease [44]. It seems that the use of
masks to reduce the spread ofCOVID19 has a very important
effect [2,15,26]. Using the same standard mask as healthcare
professionalsmaynot be very useful in daily life.On the other
hand, factors such as whether themask is filtered, usefulness,
and raw material quality are also effective. Especially in this
area, there are many studies on the usage of masks [9,17].
Six types of masks can be considered under different criteria
and purposes for COVID 19 epidemic [9,14,47,64].

Commonly compared mask types are selected as medical-
surgical masks, particulate respirators, medical protective
masks, disposable medical masks, ordinary non-medical
masks, andgasmasks [64]. Theparticulate respirator is FFP2,

FFP3, N95, N99 masks [54]. The evaluation of the related
masks was based on four criteria. These criteria are leak-
age rate (C1), reusability (C2), raw material quality (C3),
filtration efficiency (C4). Some criteria can be stated more
clearly. The leakage rate means that the mask is designed
to cover the human face. The filtration efficiency of non-
oily 0.3μm particles is more than 95%. In selecting the ideal
mask, the weight vector is determined by decision-makers,
w = (0.25, 0.2, 0.3, 0.25). A decision matrix based on cri-
teria and alternatives is given in Fig. 2. The decision matrix
contains both Gaussian distribution and triple values of the
spherical fuzzy set. SNoFPMM and SNoFWPMM operators
are used in decision-making mechanisms. The MADM pro-
cedure is given step by step below.

Step 1. In the first step, different types of data are nor-
malized. Normalized operation is performed on the decision
matrix as benefit type (J1) and cost type (J2) [51]. The nor-
malized decision matrix is given in Table 2. The first and
third columns of the decision matrix are in the first column
of the normalized decision matrix. The second and fourth
columns of the decision matrix are in the second column of
the normalized decision matrix.

ψ̂i j =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

〈
μi j

max
i

(μi j )
,

σi j
max
i

(σi j )

σi j
μi j

〉
(si j , ii j , di j ); for J1 attribute

〈
min
i

(μi j )

μi j
,

σi j
max
i

(σi j )

σi j
μi j

〉
(di j , ii j , si j ); for J2 attribute

(26)

Step 2. Calculate the supports. Support values are given
in below.

Sup(ψi j , ψik) = 1 − d(ψi j , ψik), j, k = 1, 2, ...n.

Sup(ψ11, ψ12) = Sup(ψ12, ψ11) = 0.9315

Sup(ψ11, ψ13) = Sup(ψ13, ψ11) = 0.9287

Sup(ψ11, ψ14) = Sup(ψ14, ψ11) = 0.9809

Sup(ψ12, ψ13) = Sup(ψ13, ψ12) = 0.8549

Sup(ψ12, ψ14) = Sup(ψ14, ψ12) = 0.9358

Sup(ψ13, ψ14) = Sup(ψ14, ψ13) = 0.9215

Sup(ψ21, ψ22) = Sup(ψ22, ψ21) = 0.9187

Sup(ψ21, ψ23) = Sup(ψ23, ψ21) = 0.9668

Sup(ψ21, ψ24) = Sup(ψ24, ψ21) = 0.9059

Sup(ψ22, ψ23) = Sup(ψ23, ψ22) = 0.9501

Sup(ψ22, ψ24) = Sup(ψ24, ψ22) = 0.8265

Sup(ψ23, ψ24) = Sup(ψ24, ψ23) = 0.8815

Sup(ψ31, ψ32) = Sup(ψ32, ψ31) = 0.9188

Sup(ψ31, ψ33) = Sup(ψ33, ψ31) = 0.9774

Sup(ψ31, ψ34) = Sup(ψ34, ψ31) = 0.9655

Sup(ψ32, ψ33) = Sup(ψ33, ψ32) = 0.8935
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Fig. 2 Spherical normal fuzzy
decision matrix, (from [64])

Table 2 Normalized decision
matrix

T =< (μt , σt ), (st , it , dt ) >

(A1,C1) < (0.964, 0.083), (0.29, 0.54, 0.61) > (A1,C2) < (1, 0.085), (0.54, 0.44, 0.63) >

(A1,C3) < (0.756, 0.058), (0.27, 0.65, 0.68) > (A1,C4) < (0.733, 0.05), (0.3, 0.22, 0.63) >

(A2,C1) < (1, 0.089), (0.54, 0.55, 0.49) > (A2,C2) < (0.833, 0.08), (0.44, 0.59, 0.56) >

(A2,C3) < (0.767, 0.059), (0.61, 0.48, 0.54) > (A2,C4) < (1, 0.12), (0.73, 0.43, 0.42) >

(A3,C1) < (0.75, 0.062), (0.53, 0.48, 0.29) > (A3,C2) < (0.75, 0.07), (0.45, 0.46, 0.66) >

(A3,C3) < (0.838, 0.082), (0.73, 0.55, 0.44) > (A3,C4) < (0.833, 0.06), (0.6, 0.47, 0.63) >

(A4,C1) < (0.857, 0.081), (0.73, 0.48, 0.29) > (A4,C2) < (0.729, 0.068), (0.8, 0.21, 0.12) >

(A4,C3) < (0.944, 0.083), (0.28, 0.55, 0.44) > (A4,C4) < (0.889, 0.09), (0.28, 0.65, 0.68) >

(A5,C1) < (0.893, 0.082), (0.39, 0.58, 0.64) > (A5,C2) < (0.938, 0.096), (0.34, 0.66, 0.43) >

(A5,C3) < (1, 0.091), (0.45, 0.68, 0.31) > (A5,C4) < (0.8, 0.06), (0.23, 0.61, 0.61) >

(A6,C1) < (0.821, 0.071), (0.1, 0.7, 0.25) > (A6,C2) < (0.771, 0.073), (0.32, 0.64, 0.27) >

(A6,C3) < (0.878, 0.082), (0.43, 0.65, 0.37) > (A6,C4) < (0.922, 0.07), (0.6, 0.42, 0.6) >

Sup(ψ32, ψ34) = Sup(ψ34, ψ32) = 0.9513

Sup(ψ33, ψ34) = Sup(ψ34, ψ33) = 0.9280

Sup(ψ41, ψ42) = Sup(ψ42, ψ41) = 0.9785

Sup(ψ41, ψ43) = Sup(ψ43, ψ41) = 0.8702

Sup(ψ41, ψ44) = Sup(ψ44, ψ41) = 0.7762

Sup(ψ42, ψ43) = Sup(ψ43, ψ42) = 0.8432

Sup(ψ42, ψ44) = Sup(ψ44, ψ42) = 0.7491

Sup(ψ43, ψ44) = Sup(ψ44, ψ43) = 0.9006

Sup(ψ51, ψ52) = Sup(ψ52, ψ51) = 0.9858

Sup(ψ51, ψ53) = Sup(ψ53, ψ51) = 0.9355

Sup(ψ51, ψ54) = Sup(ψ54, ψ51) = 0.9640

Sup(ψ52, ψ53) = Sup(ψ53, ψ52) = 0.9591
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Table 3 Weighted and non-weighted results for utilize weights

Non-weighted

δ11 = 0.2539 δ12 = 0.2435 δ13 = 0.2464 δ14 = 0.2545

δ21 = 0.2550 δ22 = 0.2492 δ23 = 0.2568 δ24 = 0.2390

δ31 = 0.2528 δ32 = 0.2469 δ33 = 0.2463 δ34 = 0.2540

δ41 = 0.2538 δ42 = 0.2493 δ43 = 0.2548 δ44 = 0.2422

δ51 = 0.2529 δ52 = 0.2515 δ53 = 0.2454 δ54 = 0.2501

δ61 = 0.2505 δ62 = 0.2526 δ63 = 0.2519 δ64 = 0.2451

Weighted

δ11 = 0.2538 δ12 = 0.1962 δ13 = 0.2956 δ14 = 0.2544

δ21 = 0.2546 δ22 = 0.1991 δ23 = 0.3077 δ24 = 0.2986

δ31 = 0.2528 δ32 = 0.1975 δ33 = 0.2956 δ34 = 0.2541

δ41 = 0.2535 δ42 = 0.1992 δ43 = 0.3054 δ44 = 0.2419

δ51 = 0.2532 δ52 = 0.2015 δ53 = 0.2949 δ54 = 0.2504

δ61 = 0.2505 δ62 = 0.2021 δ63 = 0.3023 δ64 = 0.2451

Sup(ψ52, ψ54) = Sup(ψ54, ψ52) = 0.9379

Sup(ψ53, ψ54) = Sup(ψ54, ψ53) = 0.8946

Sup(ψ61, ψ62) = Sup(ψ62, ψ61) = 0.9840

Sup(ψ61, ψ63) = Sup(ψ63, ψ61) = 0.9640

Sup(ψ61, ψ64) = Sup(ψ64, ψ61) = 0.9083

Sup(ψ62, ψ63) = Sup(ψ63, ψ62) = 0.9887

Sup(ψ62, ψ64) = Sup(ψ64, ψ62) = 0.9325

Sup(ψ63, ψ64) = Sup(ψ64, ψ63) = 0.9494 (27)

Step 3. Compute the support ψi j of SNoFPMM number
by other SNoFPMM numbers ψ t

i j .

T (ψi j ) =
n∑

k=1,k �= j

Sup(ψi j , ψik)

T (ψi j ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

2.8411 2.7117 2.7275 2.8502
2.7914 2.7052 2.8185 2.5532
2.8616 2.7721 2.7630 2.8811
2.6249 2.5604 2.6390 2.4593
2.8853 2.8640 2.7703 2.8426
2.8563 2.8887 2.8772 2.7726

⎤
⎥⎥⎥⎥⎥⎥⎦

(28)

Step 4. Utilize weights are calculated with both weights
and without weights. Utilize weights are given in Table 3.

Step 5. Aggregation results are calculated based on Eqs.
14 or 16 operators. Aggregation results are given in Table 4.

Step 6. According to Definitions 5 and 6, scores are cal-
culated

Step 7. The best alternative is determined according to the
rank results.

Non-weighted: A3 = 0.8135 � A2 = 0.7983 � A4 =
0.7941 � A6 = 0.6027 � A1 = 0.5289 � A5 = 0.4769.

Weighted: A4 = 0.7884 � A3 = 0.7739 � A2 =
0.7519 � A6 = 0.5798 � A1 = 0.5107 � A5 = 0.4460.

The step-by-step decision-making process with SNoF-
PMM and SNoFWPMM operators for the vector R =
(1, 1, 1, 1) is examined. It can be seen that in the SNoFW-
PMM method, the ideal mask is a disposable medical mask.

On the other hand, it can be seen that the ideal mask with
the SNoFPMM method is a medical protective mask. Also,
considering Tables 6 and 7, the parameter analysis result is
generally the ideal mask disposable medical mask. However,
when the weight vector is not used, the ideal mask is a med-
ical protective mask if all criteria are affected by each other
(Parameter = (1,1,1,1)). The choice of a mask to be used in
the COVID 19 epidemic reveals a real-world problem.When
choosing the ideal mask with the suggested operators, the
interaction between the criteria is essential. The Muirhead
Mean operator provides this interaction with the parameter
vector. Both parameter vector selection and criteria weights
have an effect on the final ranking. If the decision-makers
include the weight vector, the weight effect of the 3rd crite-
rion is expected to be more than the other criteria. However,
due to the use of the power aggregation operator with the
Muirhead Mean, only the biased weights of the decision-
maker are not considered, thanks to the Utilized weights.

The closeness between the score values depends on the
relationship between the criteria. For example, in Table 6,
as the number of criteria affected by each other increases,
the difference between the score values decreases. On the
contrary, in dual structures, as the number of criteria related to
each other increases, the difference between the score values
of the alternatives increases. However, dual structures have a
similar ranking as non-dual structures. Generally speaking,
the ideal mask was chosen as an ordinary non-medical mask.

Comparative analysis with other methods

The proposed aggregation operators are comparedwith some
methods studied in the literature. Firstly, the SNoFPMM and
SNoFWPMMaggregation operators are comparedwith basic
fuzzy sets handling uncertain and incomplete data. Then,
the spherical and normal fuzzy sets studies are compared
numerically. Table 5 contains basic fuzzy sets that deal with
uncertainty. Pythagorean fuzzy set (PFS) is the total of the
squares of membership and non-membership degrees. The
picture fuzzy set handles uncertain data more consistent with
having an independent hesitant degree. intuitionistic nor-
mal fuzzy numbers (INFNs) are a more reasonable approach
for real-life data. On the other hand, the BM operator con-
siders the interrelationship between any two criteria. The
MM takes account of the interrelation between any number
of arguments. However, considering the studies in Table 5,
the proposed SNoFPMM operator includes all the operators
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Table 4 Aggregation results Non-weighted Weighted

< (0.8549, 0.0678), (0.3309, 0.5106, 0.6536) > < (0.8459, 0.0671), (0.3350, 0.5007, 0.6423) >

< (0.8937, 0.0865), (0.5557, 0.5515, 0.5343) > < (0.8833, 0.0855), (0.5658, 0.5298, 0.5149) >

< (0.7915, 0.0689), (0.5515, 0.5105, 0.5763) > < (0.7836, 0.0682), (0.5627, 0.4952, 0.5541) >

< (0.8508, 0.0803), (0.4615, 0.5092, 0.4531) > < (0.8412, 0.0794), (0.4643, 0.5048, 0.4503) >

< (0.904, 0.0819), (0.3351, 0.6506, 0.5540) > < (0.8966, 0.0812), (0.3403, 0.6391, 0.5344) >

< (0.8461, 0.0744), (0.2949, 0.6369, 0.4279) > < (0.8375, 0.0736), (0.2997, 0.6241, 0.4122) >

Table 5 Characteristic comparison with basic methods

Methods Spherical FN Normal FN Whether captures
interrelationship
of two attributes

Whether captures
interrelation-
ship of multiple
attributes

Capability to
reduce the nega-
tive effect

PFS [57] ✗ ✗ ✗ ✗ ✗

Picture FS [11] ✗ ✗ ✗ ✗ ✗

INFN with entropy [50] ✗ ✓ ✗ ✗ ✗

INFN [61] ✗ ✓ ✗ ✗ ✗

INFN and HM [67] ✗ ✓ ✓ ✗ ✗

IFP [55] ✗ ✗ ✗ ✗ ✓

T-SFPMM [28] ✓ ✗ ✓ ✓ ✓

SpNoF BM [64] ✓ ✓ ✓ ✗ ✗

SNoFPMM and SNoFWPMM ✓ ✓ ✓ ✓ ✓

mentioned above and fuzzy sets. SNoFPMM and SNoFW-
PMM operators both affect aggregation results with power
Muirhead Mean and the spherical normal fuzzy set is more
compatible for real-life problems.

The SNoFPMM and SNoFWPMM operators are com-
pared with the normal fuzzy environment and interaction-
based aggregation operators in Table 8. Archimedean t-norm
/t-conorm, logarithmic operators, and cosine similarity-
based measures were used in [3,22,41] study. However, their
proposed approaches are considered only in the spherical
fuzzy environment. In the [51] study, normal fuzzy sets are
handled, but induced aggregation operators are used in an
intuitionistic fuzzy set environment. Since the hesitant degree
is dependent on IFS, it offers a narrow evaluation space for
examining incomplete data. The operator proposed in the
[64] study was examined in both spherical and normal fuzzy
environments. However, the BM operator only examines the
interrelationship between the two criteria. In the method we
propose, the interrelationship between any number of criteria
is taken into account, and the negative effects of extremely
high or low values are reduced.

The effect of the R parameter on aggregation
result

In Fig. 3, the SNoFPMMoperator is represented according to
the parameter vector R. In the vector R = (r1, 0, 0, 0), r1 >

0 the interrelationship between the criteria is not taken into
account. The vector R = (1, 1, 0, 0) examines the interrela-
tionship between any two criteria. Similarly, R = (1, 1, 1, 0)
examines the interrelationship between any three vectors and
R = (1, 1, 1, 1) examines the interrelationship between all
vectors. Considering all vector values, it is seen that the best
mask is a disposable medical mask. It can also be seen that
the R = (0.25, 0.25, 0.25, 0.25) and R = (1, 1, 1, 1) vec-
tors have the same score values. Thanks to the MM operator,
all criteria are handled in the same formulation. The second
mask is the medical protective mask. The problem of mask
selection has been addressed by considering the choice of the
general public. Medical masks are generally recommended
for those over 60 age or healthcare professionals [54]. Res-
pirators are designed to protect healthcare professionals who
care for COVID-19 patients in their environment [54].
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Table 6 The impact of the R parameter on the SPFPMM results (COVID data)

Parameter SNoFPMM SNoWFPMM

Score Rank Score Rank

(1, 0, 0, 0) S(A1) = 0.5935 A4 � A3 � A2 � A6 � A1 � A5 S(A1) = 0.5800 A4 � A3 � A2 � A6 � A1 � A5

S(A2) = 0.8758 S(A2) = 0.8858

S(A3) = 0.9278 S(A3) = 0.9428

S(A4) = 1.0282 S(A4) = 0.9759

S(A5) = 0.5603 S(A5) = 0.5694

S(A6) = 0.7460 S(A6) = 0.7429

(1, 1, 0, 0) S(A1) = 0.5447 A4 � A3 � A2 � A6 � A1 � A5 S(A1) = 0.5295 A4 � A3 � A2 � A6 � A1 � A5

S(A2) = 0.8373 S(A2) = 0.8216

S(A3) = 0.8636 S(A3) = 0.8521

S(A4) = 0.9201 S(A4) = 0.8957

S(A5) = 0.5057 S(A5) = 0.4807

S(A6) = 0.6839 S(A6) = 0.6691

(1, 1, 1, 0) S(A1) = 0.5343 A4 � A3 � A2 � A6 � A1 � A5 S(A1) = 0.5178 A4 � A3 � A2 � A6 � A1 � A5

S(A2) = 0.8161 S(A2) = 0.7842

S(A3) = 0.8331 S(A3) = 0.8049

S(A4) = 0.8451 S(A4) = 0.8345

S(A5) = 0.4887 S(A5) = 0.4598

S(A6) = 0.6450 S(A6) = 0.6208

(1, 1, 1, 1) S(A1) = 0.5289 A3 � A2 � A4 � A6 � A1 � A5 S(A1) = 0.5107 A4 � A3 � A2 � A6 � A1 � A5

S(A2) = 0.7983 S(A2) = 0.7519

S(A3) = 0.8135 S(A3) = 0.7739

S(A4) = 0.7941 S(A4) = 0.7884

S(A5) = 0.4769 S(A5) = 0.4460

S(A6) = 0.6027 S(A6) = 0.5798

Application of investment company
selection

We have added a second example to verify the compatibility
and effectiveness of the proposed aggregation operators with
the real world. The investment company selection problem
has always been the subject of research by scholars. Jun Yei
addresses this problem using correlation coefficients in nor-
mal neutrosophic sets [65]. Sahin proposed the generalized
prioritized aggregation operator in the normal neutrosophic
cluster environment [43]. On the other hand, Liu and Teng
put forward a generalized power averaging operator in nor-
mal neutrosophic sets [33]. Liu and Li some normal proposed
neutrosophic Bonferroni mean operators [33]. Let’s explore
which industry a company should invest in. Our aim is to
choose the ideal area to invest in. AnMCDMdecisionmatrix
with four companies and three criteria is created.Alternatives
are (1) A1 is a car company, (2) A2 is a food company, (3)
A3 is a computer company, and (4)A4 is an arms company.
There are three evaluation criteria. (1)C1 is the risk, (2)C2 is
the growth, (3) C3 is the environment. C1 and C2 are benefit
criteria, C3 is cost criterion. The weights of the criteria are

determined as w = (0.35, 0.25, 0.4). The decision matrix
is given in Table 9. The decision matrix, which is evaluated
as a neutrosophic set in other studies, is used as a spherical
normal fuzzy set by changing the 4th row, 3rd column in this
study. We changed the falsity-membership value from 0.8 to
0.7.

Step1.ConsideringEq. 26, the normalizeddecisionmatrix
is obtained as in Table 10.

Step 2. Calculated supports:

Sup(ψ11, ψ12) = Sup(ψ12, ψ11) = 0.9095
Sup(ψ11, ψ13) = Sup(ψ13, ψ11) = 0.9484
Sup(ψ12, ψ13) = Sup(ψ13, ψ12) = 0.8890
Sup(ψ21, ψ22) = Sup(ψ22, ψ21) = 0.9388
Sup(ψ21, ψ23) = Sup(ψ23, ψ21) = 0.9401
Sup(ψ22, ψ23) = Sup(ψ23, ψ22) = 0.9397
Sup(ψ31, ψ32) = Sup(ψ32, ψ31) = 0.9460
Sup(ψ31, ψ33) = Sup(ψ33, ψ31) = 0.9166
Sup(ψ32, ψ33) = Sup(ψ33, ψ32) = 0.9780
Sup(ψ41, ψ42) = Sup(ψ42, ψ41) = 0.9195
Sup(ψ41, ψ43) = Sup(ψ43, ψ41) = 0.8908
Sup(ψ42, ψ43) = Sup(ψ43, ψ42) = 0.9682

123



3534 Complex & Intelligent Systems (2022) 8:3523–3541

Table 7 The impact of the R parameter on the SNoFPDMM results (COVID data)

Parameter SNoFPDMM SNoFWDPMM

Score Rank Score Rank

(1, 0, 0, 0) S(A1) = 0.5091 A3 � A2 � A4 � A6 � A1 � A5 S(A1) = 0.4966 A3 � A2 � A4 � A6 � A5 � A1

S(A2) = 0.8325 S(A2) = 0.8466

S(A3) = 0.8519 S(A3) = 0.8694

S(A4) = 0.7493 S(A4) = 0.7170

S(A5) = 0.4929 S(A5) = 0.4980

S(A6) = 0.6077 S(A6) = 0.6058

(1, 1, 0, 0) S(A1) = 0.5649 A4 � A3 � A2 � A6 � A1 � A5 S(A1) = 0.5826 A3 � A4 � A2 � A6 � A1 � A5

S(A2) = 0.8514 S(A2) = 0.8731

S(A3) = 0.8765 S(A3) = 0.8938

S(A4) = 0.8978 S(A4) = 0.8898

S(A5) = 0.5268 S(A5) = 0.5458

S(A6) = 0.6928 S(A6) = 0.7028

(1, 1, 1, 0) S(A1) = 0.6028 A4 � A3 � A2 � A6 � A1 � A5 S(A1) = 0.6359 A4 � A3 � A2 � A6 � A1 � A5

S(A2) = 0.8633 S(A2) = 0.8875

S(A3) = 0.8930 S(A3) = 0.9094

S(A4) = 1.0087 S(A4) = 1.0211

S(A5) = 0.5449 S(A5) = 0.5712

S(A6) = 0.7275 S(A6) = 0.7489

(1, 1, 1, 1) S(A1) = 0.6395 A4 � A3 � A2 � A6 � A1 � A5 S(A1) = 0.6844 A4 � A3 � A2 � A6 � A1 � A5

S(A2) = 0.8739 S(A2) = 0.8994

S(A3) = 0.9104 S(A3) = 0.9270

S(A4) = 1.1023 S(A4) = 1.1351

S(A5) = 0.5587 S(A5) = 0.5897

S(A6) = 0.7548 S(A6) = 0.7800

Table 8 Rank comparison with
other methods

Methods Ranking

Archimedean norm based aggregation [3] A4 � A6 � A3 � A2 � A1 � A5

Logarithmic function based aggregation [22] A4 � A3 � A2 � A6 � A1 � A5

Cosine similarity based measures [41] A4 � A2 � A1 � A3 � A5 � A6

Induced generalized based aggregation [51] A3 � A1 � A4 � A2 � A5 � A6

Bonferroni Mean based aggregation [64] A4 � A3 � A6 � A2 � A1 � A5

SNoFPMM aggregation (1, 0, 0, 0) A4 � A3 � A2 � A6 � A1 � A5

SNoFWPMM aggregation (1, 0, 0, 0) A4 � A3 � A2 � A6 � A1 � A5

Step 3. Calculate supports T : T (ψi j ) =⎡
⎢⎢⎣

1.8579 1.8030 1.8616
1.8579 1.8702 1.8328
1.8626 1.9533 1.8140
1.8103 1.9186 1.8757

⎤
⎥⎥⎦

Step 4. Utilize weights are calculated. Non-weighted and
weighted,respectively

δ11 = 0.3353 δ12 = 0.3289 δ13 = 0.3358 δ11 = 0.3515 δ12 = 0.2463 δ13 = 0.4022
δ21 = 0.3355 δ22 = 0.3344 δ23 = 0.3301 δ21 = 0.3525 δ22 = 0.2510 δ23 = 0.3964
δ31 = 0.3317 δ32 = 0.3422 δ33 = 0.3261 δ31 = 0.3496 δ32 = 0.2576 δ33 = 0.3928
δ41 = 0.3266 δ42 = 0.3392 δ43 = 0.3342 δ41 = 0.3435 δ42 = 0.2548 δ43 = 0.4017
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Fig. 3 Graphical representation-effect of the R parameter for COVID data

Table 9 Decision matrix

C1 C2 C3

A1 < (3, 0.4), (0.4, 0.2, 0.3) > < (7, 0.6), (0.4, 0.1, 0.2) > < (5, 0.4), (0.7, 0.2, 0.4) >

A2 < (4, 0.2), (0.6, 0.1, 0.2) > < (8, 0.4), (0.6, 0.1, 0.2) > < (6, 0.7), (0.3, 0.5, 0.8) >

A3 < (3.5, 0.3), (0.3, 0.2, 0.3) > < (6, 0.2), (0.5, 0.2, 0.3) > < (5.5, 0.6), (0.4, 0.2, 0.7) >

A4 < (5, 0.5), (0.7, 0.1, 0.2) > < (7, 0.5), (0.6, 0.1, 0.1) > < (4.5, 0.5), (0.6, 0.3, 0.7) >

Table 10 Normalized decision matrix

C1 C2 C3

A1 < (0.6, 0.1067), (0.4, 0.2, 0.3) > < (0.875, 0.0875), (0.4, 0.1, 0.2) > < (0.9, 0.0475), (0.4, 0.2, 0.7) >

A2 < (0.8, 0.02), (0.6, 0.1, 0.2) > < (1, 0.0333), (0.6, 0.1, 0.2) > < (0.75, 0.1167), (0.8, 0.5, 0.3) >

A3 < (0.7, 0.0514), (0.3, 0.2, 0.3) > < (0.75, 0.0111), (0.5, 0.2, 0.3) > < (0.818, 0.0935), (0.7, 0.2, 0.4) >

A4 < (1, 0.1), (0.7, 0.1, 0.2) > < (0.875, 0.0595), (0.6, 0.1, 0.1) > < (1, 0.0794), (0.7, 0.3, 0.6) >
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Table 11 Aggregation results Weighted Non-weighted

< (0.8164, 0.0860), (0.4991, 0.1482, 0.4082) > < (0.8291, 0.0874), (0.4890, 0.1808, 0.4103) >

< (0.8682, 0.0699), (0.7240, 0.2475, 0.2128) > < (0.8801, 0.0709), (0.7068, 0.2467, 0.2499) >

< (0.8003, 0.0547), (0.5643, 0.1883, 0.2992) > < (0.8094, 0.0553), (0.5519, 0.2333, 0.3307) >

< (0.9547, 0.0691), (0.7297, 0.1534, 0.3129) > < (0.9671, 0.0700), (0.7141, 0.1748, 0.3047) >

Table 12 The effect of the R
parameter on the SPFPMM
results (Investment company)

Parameter SNoFPMM SNoWFPMM

Score Rank Score Rank

(1, 0, 0) S(A1) = 0.9888 A4 � A2 � A3 � A1 S(A1) = 0.9663 A4 � A2 � A3 � A1

S(A2) = 1.3398 S(A2) = 1.3377

S(A3) = 1.1190 S(A3) = 1.1286

S(A4) = 1.3520 S(A4) = 1.3427

(1, 1, 0) S(A1) = 0.9579 A4 � A2 � A3 � A1 S(A1) = 0.9314 A4 � A2 � A3 � A1

S(A2) = 1.2710 S(A2) = 1.2330

S(A3) = 1.0644 S(A3) = 1.0317

S(A4) = 1.3026 S(A4) = 1.2762

(1, 1, 1) S(A1) = 0.9313 A4 � A2 � A3 � A1 S(A1) = 0.9139 A4 � A2 � A3 � A1

S(A2) = 1.2378 S(A2) = 1.1935

S(A3) = 1.0400 S(A3) = 0.9926

S(A4) = 1.2600 S(A4) = 1.2303

Step 5.There are aggregation results in Table 11.Weighted
and non-weighted respectively.

Step 6. Score values are calculated.
Step 7. Ranking alternatives
Non-weighted: A4 = 1.3975 � A2 = 1.3676 � A3 =

1.1566 � A1 = 1.0502.
Weighted: A4 = 1.3690 � A2 = 1.3267 � A3 =

1.1127 � A1 = 1.0311.
If Tables 12 and 13 are taken into consideration, it is seen

that the ideal company for investment is the arms company.
On the other hand, it can be seen that the food company is
ideal for investment if there is only one criterion relation-
ship in Table 13. Considering the Table 12, considering the
interactions of the criteria, the ideal alternative, in any case,
is obtained as A4. Also, even if the weights are included,
this ranking does not change. On the other hand, in Table
13, there are dual structures of the same operators. Similarly,
in Dual structures, the ideal alternative does not change. In
both tables (Tables 12, 13), the score values of A2 and A4 are
close to each other. however, it can be seen that the difference
between the A2 and A4 alternatives increases as the interac-
tion between the criteria increases. This situation shows the
importance of the effect of all criteria.

When the ideal investment company selection problem is
considered weighted and unweighted, the ideal alternative
is A4. The choice of the ideal investment company can be
changed with the change of the parameter vector of theMuir-

head Mean operator because the parameter vector examines
the relationship between any number of criteria. Since there
are three criteria in this problem, the size of the parameter
vector is three. The used weights of the power aggregation
operator and the weights obtained on the decision matrix
provide a more stable solution to the real-world problem.

Considering Table 14, the proposed aggregation opera-
tors are in the same ranking as other methods. Moreover,
the normal power Muirhead Mean operator includes normal
Bonferroni mean and power averaging operators. The most
ideal company for investment is chosen as the arms company.

Validity test for irregularities

There are test criteria created to test whether the proposed
method is valid in MCDM [53]. We will use these criteria to
test the robustness of the methods we have created.

Criterion 1: “The best alternative should not change when
a non-optimal alternative is altered with an alternative that
has lower score values.”

Criterion 2: “Transitive feature should be provided”
Criterion 3: “When the problem is broken down into small

parts, the ordering of the sub-problems should coincide with
the ordering of the problem.”

The proposed methods show us that alternatives A5 for
the COVID dataset and A1 for the Investment dataset are not
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Table 13 The effect of the R
parameter on the SPFPDMM
results (Investment company)

Parameter SNoFPDMM SNoFWDPMM

Score Rank Score Rank

(1, 0, 0) S(A1) = 0.8874 A2 � A4 � A3 � A1 S(A1) = 0.8635 A2 � A4 � A3 � A1

S(A2) = 1.2372 S(A2) = 1.2301

S(A3) = 1.0526 S(A3) = 1.0559

S(A4) = 1.2223 S(A4) = 1.2071

(1, 1, 0) S(A1) = 0.9869 A4 � A2 � A3 � A1 S(A1) = 1.0011 A4 � A2 � A3 � A1

S(A2) = 1.3130 S(A2) = 1.3229

S(A3) = 1.1020 S(A3) = 1.1188

S(A4) = 1.3299 S(A4) = 1.3435

(1, 1, 1) S(A1) = 1.0254 A4 � A2 � A3 � A1 S(A1) = 1.0592 A4 � A2 � A3 � A1

S(A2) = 1.3320 S(A2) = 1.3451

S(A3) = 1.1153 S(A3) = 1.1358

S(A4) = 1.3661 S(A4) = 1.3848

Table 14 Rank comparison
with other methods

Methods Ranking

Correlation coefficients of normal neutrosophic sets [65] A4 � A2 � A1 � A3

Normal neutrosophic Bonferroni mean operators [30] A4 � A2 � A3 � A1

Normal neutrosophic generalized weighted power averaging operator [33] A4 � A2 � A3 � A1

Normal neutrosophic generalized prioritized aggregation operators [43] A4 � A2 � A3 � A1

SNoFPMM and SNoFWPMM A4 � A2 � A3 � A1

SNoFPDMM and SNoFWPDMM A4 � A2 � A3 � A1

Table 15 Validity test results for criteria 2 and 3. (COVID and Investment datasets respectively.)

Methods Score and Ranking

SNoFPMM S(A1) = 0.5289, S(A2) = 0.7983, S(A3) = 0.8135, S(A4) = 0.7941, S(A6) = 0.6027,S(A5n ) = 0.5224

A3 � A2 � A4 � A6 � A1 � A5

SNoWFPMM S(A1) = 0.5107, S(A2) = 0.7519, S(A3) = 0.7739, S(A4) = 0.7884, S(A6) = 0.5798,S(A5n ) = 0.4940

A4 � A3 � A2 � A6 � A1 � A5

SNoFPDMM S(A1) = 0.6395, S(A2) = 0.8739, S(A3) = 0.9104, S(A4) = 1.1023, S(A6) = 0.7548,S(A5n ) = 0.5970

A4 � A3 � A2 � A6 � A1 � A5

SNoFWDPMM S(A1) = 0.6844, S(A2) = 0.8994, S(A3) = 0.9270, S(A4) = 1.1351, S(A6) = 0.7800,S(A5n ) = 0.6252

A4 � A3 � A2 � A6 � A1 � A5

SNoFPMM S(A1) = 0.9414, S(A2) = 1.2378, S(A3) = 1.0400, S(A4) = 1.2600

A4 � A2 � A3 � A1

SNoWFPMM S(A1) = 0.9284, S(A2) = 1.1935, S(A3) = 0.9926, S(A4) = 1.2303

A4 � A2 � A3 � A1

SNoFPDMM S(A1) = 1.0202, S(A2) = 1.3320, S(A3) = 1.1153, S(A4) = 1.3661

A4 � A2 � A3 � A1

SNoFWDPMM S(A1) = 1.0482, S(A2) = 1.3451, S(A3) = 1.1358, S(A4) = 1.3848

A4 � A2 � A3 � A1
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ideal alternatives because they are last in the ranking results.
Therefore, we can choose worse alternatives than these and
repeat our experiments with new alternatives. Criterion 1 is
met if the newly obtained results support the previous results.
The R value to be used in validity tests is the [1,. . .,1] value
where all criteria are included in the calculation.

Let A5n = < (115, 11), (0.39, 0.58, 0.64) >< (40, 4.3),
(0.34, 0.66, 0.43) >< (85, 8.2), (0.45, 0.68, 0.34) ><

(6.5, 0.71), (0.23, 0.61, 0.61) > and A1n = < (2, 0.4),
(0.4, 0.2, 0.3) >< (6, 0.6), (0.4, 0.1, 0.2) >< (4.6, 0.45),
(0.7, 0.2, 0.4) > be the new alternatives instead of A5 in the
COVID dataset, and A1 in the Investment dataset.

When the new results are examined, A5n and A1n are again
in the last place as seen in Table 15. As a result, criterion 1 is
provided. When the data set is divided into sub-samples and
then ranked according to the suggested methods, we obtain
the result in Table 16. The results are equivalent to the exper-
iments performed on the entire dataset. Therefore, it seems
that criteria 2 and 3 have been met.

Conclusions

Aggregation operators directly affect the decision-making
process. Therefore, aggregation operators are frequently
used in solving MADM problems. Generally, in MADM
problems, people’s personal decisions are evaluated. This
situation requires the examination of uncertainty and incom-
plete data in the decision matrix created by an expert or a
decision-maker. Therefore, using aggregation operators and
generalized fuzzy sets for solvingMADMproblems provides
sensible and consistent solutions. In the proposed methods,
superior aspects of both aggregation operators and general-
ized fuzzy sets are analyzed. The novelty in the article is that
the power Muirhead Mean operator is handled in a spherical
normal fuzzy environment.

The advantages of the SNoFPMM and SNoFWPMM
aggregation operators are stated below.

1. With the power aggregation operator, the negative effect
of extremely high or low values is reduced.

2. Spherical fuzzy sets provide decision-makers with a wide
range of evaluations. Independent hesitant degree also
handles uncertain data more consistently.

3. Normal fuzzy sets are compatible with their variance and
mean values for real-life data. SNoFPMM operators have
also proven to be a spherical fuzzy set.

4. The MM operator allows the interrelationship between
all characters to be taken into account. It also includes the
MM operator, Maclaurin Symmetric Mean, and Bonfer-
roni mean operators.

5. Finally, the SNoFPMM and SNoFWPMM operators
apply to the problems of choosing the ideal mask for
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protection from the COVID-19 outbreak and investment
company selection.

The SNoFPMM and SNoFWPMM aggregation operators
produced similar ranking results, with and without weight.
Therefore, these operators can be evaluated independently of
their weight. On the other hand, a detailed parameter analy-
sis was made with the parameter vector of the MM operator.
Similar ranking results were obtained when the proposed
methods were compared with other studies. Besides, SNoF-
PMM and SNoFWPMM have many superior aspects than
others. However, this study has some limitations. The exam-
ples in this article consist of up to four criteria. Since the
article uses the power Muirhead Mean aggregation opera-
tor, the running time will increase as the number of criteria
increases. Because

(n
2

)
different cases must be calculated for

n different criteria. Also, since MuirheadMean calculates all
permutations, the number of criteria increases the complexity
of the problem. Normal fuzzy sets can be used in neutro-
sophic [27], interval neutrosophic sets [35]. There are also
various studies on real-world problems with neutrosophic
and hypersoft sets [19–21,42]. NormalMuirheadMean oper-
ators can be applied to hypersoft sets. The proposed method
can be combined with the TOPSIS method in an interval-
valued intuitionistic fuzzy set environment [23] for future
studies. On the other hand, the SNoFPMM operator can be
applied to T-norm operators like Dombi [7], Hamacher [12],
which have flexible parameters. In addition, these operators
can also be expanded to the bipolar environment [1].
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