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A B S T R A C T   

Head and neck squamous carcinomas (HNSC) are the seventh most common cancer around the 
world. Treatment options available today have considerable limitations in terms of efficacy. 
Identifying novel therapeutic targets for HNSC is, therefore, urgently needed. As a novel deter-
mined regulated cell death (RCD), Cuproptosis is correlated with the development, treatment 
response, and prognosis of various cancer. However, the potential role of Cuproptosis-related 
genes (CRGs) in the tumor microenvironment (TME) of HNSC remains unclear. To figure out 
whether TME cells and Cuproptosis could better predict prognosis, in this study, we analyzed the 
expression, mutation status, and other clinical information of 502 HNSC patients by dividing 
them into four clusters based on their CRGs and TME cell expression. Utilizing the LASSO-Cox 
method and bootstrap, we established Prognostic Cuproptosis and TME classifier, which were 
significantly associated with prognosis, pathways, clinical features, and immune cell infiltration 
in TME of HNSC. To go further, the subgroup Cup low/TMEhigh displayed a better prognosis than 
any others. Two GEO datasets demonstrated the proposed risk model’s clinical applicability. Our 
GO enrichment analyses proved the conjoint effect of Cuproptosis and TME on tumor angio-
genesis, proliferation, and so on. Single-cell analysis and Immunotherapy profile then provided a 
foundation for determining the molecular mechanisms. It revealed the prognostic risk score 
positively correlated with T cell activation and natural killer (NK) recruiting. As far as we know, 
this study is the first time to explore the involvement of CRGs regulation in the TME of HNSC. In a 
word, it is vital to use these findings to develop new therapeutic strategies.   

1. Introduction 

Head and neck squamous carcinomas (HNSC) take up 90% of all head and neck cancers and will remain among the leading causes 
of cancer incidences and deaths until 2020 [1]. Traditional treatments often result in severe physiologic and psychological compli-
cations [2]. Further, surgical removal of the tumor reduces physical function, and many patients suffer recurrences and metastases due 
to the surgery [3]. In recent years, significant advancements have been made in developing HNSC therapeutic approaches, including 
immunotherapy, targeted therapies, and some combination means [4]. We all know that immunotherapy has brought new ideas and 

* Corresponding author. Tianjin Medical University Cancer Institute and Hospital, Department of Maxillofacial & E.N.T, Tianjin’ Clinical Research 
Center for Cancer, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China. 

E-mail address: wxd.1133@163.com (X. Wang).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2023.e15494 
Received 31 October 2022; Received in revised form 6 April 2023; Accepted 11 April 2023   

mailto:wxd.1133@163.com
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2023.e15494
https://doi.org/10.1016/j.heliyon.2023.e15494
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2023.e15494&domain=pdf
https://doi.org/10.1016/j.heliyon.2023.e15494
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 9 (2023) e15494

2

hope for the clinical treatment of head and neck squamous cell carcinoma. However, it should note that the Objective Response Rate 
(ORR) of immunotherapy still needs to be improved. Hence, we need to find more prognostic targets for this disease. 

Cuproptosis is a recently uncovered nonapoptotic programmed cell death discriminated acknowledged death mechanisms. Protein 
lipoylation mainly triggers copper production and copper combined with lipoylated elements of the TCA during Cuproptosis. 
Following previous reports, this phenomenon has also been observed in HNSC [5–9]. 

Thus, our study aimed to link Cuproptosis to the TME in head and neck squamous carcinomas to develop a Cup-TME classifier for 
therapeutic response prediction and prognostic. We hope that our method can provide an approach to improve the prediction of the 
immunotherapy response. 

2. Materials and methods 

2.1. Data source and preprocessing 

HNSC data were downloaded from TCGA. Furthermore, GSE41613 dataset with the platform GPL570 and its clinical information 
were acquired from GEO. Single-cell expression data were collected from GSE172577 to explore TME and Cuproptosis in each cell. 
Otherwise, we choose GSE42743 and GSE31056 to evaluate our model’s effectiveness and generalization ability. For TCGA-HNSC 
expression data, we only keep tumor-related specimens. Next, we collected and integrated 398 potential Cuproptosis-related genes 
from the preceding literature [10](Table S1). 

2.2. Immune cell infiltration analysis 

Using RNA profiles, the CIBERSORT website (https://cibersort.stanford.edu) gives type information about immune cells [11]. It is a 
deconvolution algorithm which derives a p-value for the deconvolution of each sample and p < 0.05 was considered accurate. We used 
this method to examine the immune infiltration in the head and neck squamous carcinoma tissue in our investigation. 

2.3. Identification of overall prognostic Cuproptosis-related genes and immune cells 

By using univariate Cox regression method, our study recognized factors connected with Cuproptosis that were noticeably asso-
ciated with OS of HNSC (P < 0.05, FDR<0.05). Subsequently, more valuable prognostic factors were screened by LASSO. Furthermore, 
we applied multiple-Cox analysis to pick the most valuable prognostic indicator and using Bootstrap sampling to obtain robustness of 
predictors from it [12]. This procedure was repeated 10,000 times and we got 10,000 cox regression model which was employed to 
figure out the frequency of each feature that was enrolled in this predictive model. Later, we obtained an overall prognostic value of 
TME cells with the same method. The overall prognostic value of Cuproptosis-related genes and TME cells was described by hazard 
ratio (HR) and their 95% CI (confidence interval). Finally, we selected 14 Cuproptosis-related genes (Table S2) and 6 TME cells 
(Table S3). 

2.4. Establishment of Cup-TME classifier 

We calculated scores using the formula: 

Cup score=
∑n1

i=1
boot coef i x Expi  

TME score=
∑n2

j=1
boot coef j x Expj  

where Expi or Expj are the expression levels of each Cuproptosis-related genes or TME cells. boot coefi or boot coefj are calculated by 
coef/sd (bootstrap) (coef obtained from multiple cox regression and sd (bootstrap) getting from the standard deviation of bootstrap). 
Then these two scores are used for construct a Cup-TME classifier. We divide the classifier into four group: Cuplow/TMEhigh, Cuplow/ 
TMElow and Cuphigh/TMEhigh and Cuphigh/TMElow in reference to the mean of TME_score and Cup_score [13]. 

2.5. Functional enrichment analysis 

Symbol ids of the Differentially expressed genes (DEGs, p-value<0.05, |logFC| > 1,FDR<0.05) were turned to entrez ids using the R 
package “org.Hs.eg.db.” [14]. Through the “clusterProfiler” R package, DEGs were then analyzed using GO enrichment analysis and 
KEGG analysis, P value < 0.05 after correction was used as the thresholds [15,16]. According to ‘clusterProfiler’ and ‘fgsea’ packages, 
GSEA and FGSEA were implemented using the hallmark gene set (c2.cp.kegg.v7.5.1.entrez.gmt) in MSigDB database. Adjusted P-value 
<0.05 was recognized to be statistically significant [17]. 

2.6. WGCNA 

WGCNA, a bioinformatic approach, discover exceedingly coadjuvant genes and can analyze those which have highly linkage to 
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disease. A module’s highly interconnected hub genes were considered functionally significant genes. Here, WGCNA was used to 
recognized hub modules [18,19]. And Cytoscape software was used to screen hub genes [20]. In order to further analyze and validate 
the hub genes from the WGCNA, common hub modules were identified. 

2.7. Tumor somatic mutation analysis 

Tumor mutation data of TCGA-HNSC were available in the TCGA database. R package “ComplexHeatmap” was used to draw 
Oncoprints [21]. Using “limma” package in R to conduct DEGs analysis [22]. In addition, Proteomaps, a web approach, were drew on 
account of the DEGs. 

2.8. Cell-cell communication analysis 

Cell–cell communication was studied by the R package ‘CellChat’ (v1.5.0) [23]. By means of establishing CellChat objects, we put 
the Secreted Signalling pathway as the reference database and identify putative interaction pairs. 

Fig. 1. The construction and validation of Cup-TME model. Independent HNSC patient’s cohort with complete clinical information, TCGA-HNSC, 
which were used to establish the prognostic TME score and Cuproptosis score, respectively. Bootstrap-multicox regression analyses of 22 TME cells 
and 398 Cuproptosis-related genes were performed. In the end, we got 6 TME cells. As well, 14 Cuproptosis-related genes were used for the 
establishment of Cuproptosis score. A Cup-TME classifier which integrated the TME and Cuproptosis scores classified all patients into three different 
subgroups: Cuplow/TMEhigh, mixed, and Cuphigh/TMElow. Based on the Cup-TME classifier, the differences in prognosis, pathway enrichment 
analysis, clinical subtype features, tumor mutational burden, and tumor molecular characteristics were investigated in several patient subgroups. 
Another independent cohort (GSE42743 and GSE31056) were used to further validate the classifier’s performance. 
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Fig. 2. The construction of the Cuproptosis Scoring (Cup-score) model and TME-score model. (A). Kaplan-Meier survival analysis of the two 
strata. Patients with high Cup-score HNSC had a worse prognosis. The yellow line represents the high Cup-score, and the blue line represents the low 
Cup-score. P < 0.001 (B). Kaplan-Meier survival analysis of patients with low TME-score had a worse prognosis. The yellow line represents the high 
TME-score, and the blue line represents the low TME-score. P < 0.001 (C). Violin plot shows that Cup_score is differentially expressed in different 
cell types. (D), (E). Bubble plots show ligand-receptor pairs difference. P < 0.01 was considered significant. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 
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2.9. TIDE analysis 

TIDE is a bioinformatic analysis to forecast immunotherapeutic responses [24]. We submitted the transcriptome data of patients 
from the TCGA-HNSC cohort to this website (http://tide. dfci.harvard.edu) and downloaded the result. 

2.10. Potential sensitive drug prediction 

We used the “oncoPredict” R package to predict the sensitivity of HNSC patients to common chemotherapeutics in the TCGA cohort 
with different subgroups [25]. Drug sensitivity data were downloaded from the CTRP. 

2.11. Statistical analysis 

R version 4.1.2 was undertaken for statistical analysis. Fisher’s test was used to calculated Categorical variables. The Wilcoxon test 
was applied to contrast continuous variables between two groups. R package “ggplot2” was used to visualize data [26]. *, P < 0.05; **, 
P < 0.01; ***, P < 0.001. P < 0.05 was considered statistically significant. 

3. Result 

3.1. Identification of prognostic of Cuproptosis and TME in the TCGA cohort 

The workflow of this research is summarized in Fig. 1. In the TCGA cohorts, 398 Cuproptosis-related factors and 22 types of TME 
cells were independently examined to determine prognosis. 398 gene signatures were analyzed using univariate Cox regression and 
LASSO. Later, we used Multivariate Cox analysis to develop the Cuproptosis-signature. Bootstrap sampling was used to obtain the 
robustness of predictors to make them more credible. In the end, 14 potential Cuproptosis-related genes (APP, COPZ1, PSMB5, 
SLC7A5, ARF1, STK11, SLC25A5, DOT1L, RSL1D1, TKT, AQP1, MT2A, SLC25A51, MTIF3) were identified. None of these genes have 
previously been reported in patients with head and neck squamous cell carcinoma. We calculated all the Cuproptosis Score (Cup_score) 
for every HNSC patient and then applied the same approach to TME and obtained 6 significantly important TME cells. TME_score was 
also calculated. Next, we analyzed the performance of Cup_score and TME_score in the TCGA cohort（Fig. 2A, 2B）. We can see lower 
Cup_score and higher TME_score hold better clinical outcomes. As a significant step toward further validating the Cuproptosis and TME 
scores, we analyzed single-cell data from oral cancer samples. And we noticed that CD8 T cells or T cells, dendritic cells, are 
consistently positively correlated with Cup_score, which implied why we could use this Cup_score and why it is often associated with 
TME (Fig. 2C). It provides us with solid arguments. Different subgroups of patients may also be affected by cell and cell communication 
in addition to intrinsic cell information. Subsequently, we found that there was frequent communication between Macrophages and 
Cup_lowCD8T_cells. According to our findings, Cup_lowCD8T_cells primarily receive signals from monocytes, macrophages, and 
ligand-receptor pair analysis revealed that macrophages prefer to send signals to immunocytes by SPP1–CD44. SPP1–CD44 has been 
demonstrated to play a pivotal role in many kinds of tumors during previous studies [27–30]. And it has been shown that the high 
infiltration of SPPI + macrophages reduce the response to immunotherapy. This suggests that combining immunotherapy of these two 
targets may have good results in these Cup_lowCD8T_cells patients. We similarly explored the role of B cells. We also observed that the 
biological functions of Cup-highB_cells and Cup-lowB_cells are different. Taken together, compared with Cup_high immune cells, 
Cup_low is likely to communicate more with immune cells [31–35] (Fig. S1, Fig. 2D and E). 

3.2. Functional analysis among different Cuproptosis -TME subgroups 

Considering the effectivity, we next asked what the effect would be if we combined both scores. We combined the Cup_score and 
TME_score, resulting in four subgroups: Cuplow/TMEhigh, Cuplow/TMElow, Cuphigh/TMEhigh and Cuphigh/TMElow (Fig. S2). KEGG an-
alyses showed that high Cup_score manifested a much higher enrichment of cell cycle，ECM-receptor interaction, and cell adhesion 
than tumors with a low Cup_score. Furthermore, higher TME_score displayed up-regulated immune pathways, like antigen processing 
and presentation, NK cell-mediated cytotoxicity, T cell receptor signaling pathway, cytokine receptor interaction, and others. The 
results suggest increased antitumor immunity with high TME_score, and patients who belong to this subgroup showed inhibition of 
tumor growth. In addition, these also proved that Cuproptosis and TME exert synergistic effects on the metabolism of tumors and the 
proliferation of tumors (Figs. S3 and 4). 

For searching differences among different Cuproptosis-TME subgroups. We used WGCNA and set soft threshold (β) = 21 to ensure a 
scale-free network. We found that blue, brown, and yellow modules exhibited a negative correlation with Cuplow/TMEhigh and a 

Fig. 3. Identification of modules associated with the clinical traits of head and neck cancer. (A). Dendrogram of all differentially expressed 
genes clustered based on the measurement of dissimilarity (1-TOM). The color band shows the results obtained from the automatic single-block 
analysis. (B). Heatmap of the correlation between the module eigengenes and subgroups of HNSC. We selected the MEblue, MEyellow and 
MEbrown block for subsequent analysis. (C), (D), (E). Functional enrichment analysis for the hub genes in the royal blue, yellow and brown module 
by Metascape analysis, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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Fig. 4. The construction and validation of the Cup-TME classifier. (A). Kaplan-Meier overall survival curves of TCGA-HNSC training cohorts (n 
= 502) divided into three different subgroups based on the Cup-TME classifier. Log-rank test, P < 0.001. (B). Prognostic efficiency ability evaluation 
of this model by introducing the receiver operating characteristic (ROC) curve. (C). Time-dependent ROC curves at separately three year, five years, 
and seven years. (D), (E). The forest plot shows the results of the univariate Cox regression analysis and multivariate cox analysis, respectively. (F). 
FGSEA reveals main regulated pathways of the differences in the Cup-TME classifier. 

T. Shu and X. Wang                                                                                                                                                                                                  



Heliyon 9 (2023) e15494

8

(caption on next page) 

T. Shu and X. Wang                                                                                                                                                                                                  



Heliyon 9 (2023) e15494

9

positive correlation with Cuphigh/TMElow. Consequently, we applied these modules to the Metascape database [36], performing GO 
and KEGG enrichment analyses. Results showed Cuphigh/TMElow remarkably correlated with extracellular matrix organization, 
vasculature development, and cell-substrate adhesion [37] (Fig. 3A, B, C, D, E). 

3.3. Establish and estimate the prognostic value of Cup_TME classifier 

To increase the interpretability of the classifier, we merged the Cuplow/TMElow and Cuphigh/TMEhigh into Mixed. The Cup-TME 
classifier manifested a dramatically different prognosis in HNSC cohorts. Kaplan-Meier analysis affirmed the survival disparity 
among these groups (p < 0.001; Fig. 4A). In addition, the classifier was estimated by ROC and time ROC; the values of AUC for 3-, 5-, 
and 7-year survival times were 0.667, 0.628, and 0.820, separately using univariate and multivariate Cox regression analysis (Fig. 4B 
and C). We demonstrated the Cup-TME classifier’s prognostic value. The Cup-TME classifier was closely related to overall survival in 
training cohorts with sufficient patients (Fig. 4D and E). The Cup-TME classifier was applied to FGSEA. And results revealed that 
Cuplow/TMEhigh subgroup was significantly related to antigen processing and presentation, and Cuphigh/TMElow subgroup had a strong 
correlation with angiogenesis or cell migration, which further illustrated the effectiveness and feasibility of our classification (Fig. 4F). 

3.4. Tracking the tumor immunophenotype 

Data and pictures of anticancer immune activity were collected from the TIP website. TIP (Tracking Tumor Immunophenotype) 
consolidates ‘ssGSEA’ and ‘CIBERSORT’ to track anticancer immunity [38]. After visualizing with TIP, we found that essential steps are 
CD8 T cell recruiting, T cell recruiting, and NK cell recruiting in Cuplow/TMEhigh subgroup, which also leads to why this subgroup has 
the best prognosis (Fig. 5A). 

3.5. Distinct immune response profile and TMB 

In addition, we investigated several aspects of immune response-associated genes toward various subgroups, such as major his-
tocompatibility complex (MHC) and immune checkpoint. Moreover, we can see that the Cuplow/TMEhigh subgroup had a higher 
expression in several MHC (Fig. 5B). As we all know; Immune checkpoints are vital to cancer immune infiltration. Therefore, we 
analyzed immune checkpoint genes’ expression levels among Cuphigh/TMElow, mixed and Cuplow/TMEhigh subtypes. Then, we 
discovered that 13 genes are higher in the Cuplow/TMEhigh subtype than the other two subgroups. The 13 genes included ADORA2A, 
BTN2A2, BTNL9, CD160, CD209, LGALS9, CTLA4, BTLA, LAG3, PD1, TIGIT, TNFRSF14, VTCN1. Many immune checkpoint genes 
overexpressed in the subtype are promising targets waiting for in-depth research. Some of them have proven their immense value for 
immune checkpoint blockade therapy such as TIGIT, CTLA4, LAG3 and PD-1 (Fig. 5C). Then, our study focused on elucidating the 
genetic imprints of each subgroup using the intrinsic correlation between TMB and Cup_score. However, we did not find a significant 
variation between the subgroups. To a certain extent, these results demonstrated that our model has better sensitivity to discriminate 
patients. Finally, we investigated the immune response in patients from different groups by the TIDE website. According to expec-
tations, Cuphigh/TMElow patients exhibited a lower response rate, and Cuplow/TMEhigh patients exhibited a higher immunotherapy 
objective response rate (Fig. 5D). We further investigated the impact of Cup_score on outcomes with Immunotherapy for Patients with 
HNSC (Fig. 5E). We observed that patients in the higher Cup_score subgroups had less immunotherapy response. As a result, Cuplow/ 
TMEhigh patients may benefit more from immunotherapies. 

Then, by building proteomaps, we could view the diversities between cellular signaling pathways between Cuplow/TMEhigh and 
immunotherapy response group. Interestingly, these two groups of signaling pathways were found to be similar. In some respects, this 
explains the suitability of the Cuplow/TMEhigh group for immunotherapy in terms of the mechanism. The above results further 
demonstrate the biological implications of the integrated Cup_score and TME score in the TME, to some extent, helping to unravel 
different subgroups’ prognostic differences based on tumor immunology and Implemented precision immunotherapy (Fig. 6E, F, G, H). 

3.6. Response to chemotherapy drugs 

HNSC is commonly treated with chemotherapy. In order to inquire into the therapeutic effect of chemotherapy drugs for patients 
with different groups, we further surveyed the sensitivity difference between Cuplow/TMEhigh and Cuphigh/TMElow. GDSC database 
analysis showed that there are many differences in drug sensitivity between these subtypes (Table S4). We discovered that Cuphigh/ 
TMElow group was more sensitive to these chemotherapy drugs. This means group Cuphigh/TMElow is more suitable for chemotherapy 
than group Cuplow/TMEhigh, which is more appropriate immunotherapy according to the previous analysis. We also tried other 
different methods of integrating the three groups, and the results were the same. 

Fig. 5. Comparison of immune-related markers and therapy responses prediction based on Cup-TME classifier. (A). The 23 normalized 
immune activity scores obtained by TIP. (B) HLA gene-set is differentially expressed between these subtypes. (C). The immune checkpoint gene-set is 
differentially expressed between these subtypes. (The Cuplow/TMEhigh, mixed and Cuphigh/TMElow subgroups are represented as purple, blue and 
yellow, respectively.) (D). The different percentages of immunotherapy responder among Cuplow/TMEhigh and Cuphigh/TMElow based on Cup-TME 
classifier. (E). Comparison of Cup-scores between immunotherapy responder and nonresponder. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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Fig. 6. Survival analysis of the subgroup of clinical factors and functional analysis. (A), (B), (C), (D). Kaplan–Meier survival curves in 
subgroup analyses according to sex, age, grade, stage. (A. sex (P < 0.005); B. grade (P < 0.005); C. stage (P≤0.054); D. age (P < 0.005)) (E), (F), (G), 
(H). Functional analysis between Cuplow/TMEhigh and responder of patients under immunotherapy. (E. down in Cuplow/TMEhigh; F. down in re-
sponders; G. up in Cuplow/TMEhigh; H. up in responders. Each small polygon corresponds to a single KEGG pathway, and the size correlates with the 
ratio between the subgroups. Proteomaps (https://bionic-vis.biologie.uni-greifswald.de/)) (I). Kaplan-Meier overall survival curves of the inde-
pendent validation GEO cohort (n = 171) stratified into three different subgroups based upon the Cup-TME classifier (Cuplow/TMEhigh, Mixed, 
Cuphigh/TMElow). Log-rank test, P < 0 0.001. 
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3.7. Clinical features among Cup -TME classifier 

We next investigated clinical features inside the Cup-TME classifier. The Kaplan–Meier survival curve uncovered that patients with 
Cuphigh/TMElow had shorter survival. Our analysis provides further evidence that our classifier performed well in various clinical 
subtypes (Fig. 6 A, B, C, D). The validation set from the GEO cohort (we combined GSE42743 and GSE31056 as one group, used the 
remove BatchEffect function of the limma package in the R software to remove batch effects) was split into three groups, Cuplow/ 
TMEhigh, mixed and Cuphigh/TMElow, regarding the mean cut-off value of Cup_score and TME_score. Likewise, the classifier showed a 
statistically significant prognostic value in the validation cohorts. (Fig. 6 I). 

4. Discussion 

Known as a new form of programmed cell death, Cuproptosis involves lipoylated TCA cycle proteins and excessive copper accu-
mulation [9]. A variety of diseases can be caused by disrupted Cu homeostasis. This substance is deemed to overpower the body’s 
anti-oxidant systems, leading to protein modifications, DNA damage and lipid peroxidation. Of note, copper, a pivotal role in the 
progression of cancer, has been recognized by existing research. According to previous research, copper influences cancer progression 
through several pathways, including cancer angiogenesis, proliferation, and metastasis are key points during the process. The copper 
in the body is essential for immune response, but excessive amounts of copper can impair immunological activity [5–8]. Copper is 
important for cellular and humoral immunity. PD-L1 expression is modulated by intratumoral copper, which contributes to 
tumor-specific exhaustion of T cells and induces tumor immune evasion. Some Cups, like PSMB5, were reported to have a high 
expression in breast cancer tissue and M2 macrophages. Wang et al. experimentally demonstrated that PSMB5 contained immuno-
suppressive and oncogenic characteristics [39]. SLC25A5 belongs to the SLC family (SLCs). Both infinitely proliferating tumor cells and 
activated immune cells require metabolic reprogramming and the expression of SLCs to uptake adequate nutrients and maintain 
homeostasis in the intracellular environment. In recent years, a growing number of studies have also shown that SLCs play an 
important regulatory role in tumor immunity [40]. Nachef et al. found the SLC7A5 are important for cancer cell’s metabolism, growth, 
and proliferation. Moreover, most genes are closely related to mitochondrial metabolism and angiogenesis. We assumed these might 
build the pathological mechanisms behind suppressing the tumor immune microenvironment. Likewise, our results suggested that a 
high Cup_score HNSC represents overexpression of cell adhesion, metastasis, and immune evasion. We also explored immunocyte 
infiltration with several immune cells being various between the low and high Cuproptosis HNSC. These results allowed us to identify 
other potential ligand-receptor interactions between high/low Cuproptosis neoplastic cells and HNSC immune cells. Potential inter-
cellular communication mechanisms include CD74+CXCR4DGHFGDG, TNFSF13B-TNFRSF13B, TNFSF13B-TNFRSF13C, and 
SPP1-CD44. In a word, Cuproptosis may affect tumor progression by connecting HNSC and immunocyte infiltration. 

Since HNSC is heterogeneous, accurate prognostic indicators are crucial. There has been an increase in attention to molecular 
prognostic markers, which may provide effective complements to traditional clinicopathological parameters. Ultimately, we revealed 
14 genes accompanying the HNSC patients’ prognosis. We also selected 5 TME cells. We constructed a new prognostic model that 
united 14 Cuproptosis-related genes and 6 TME cells. Furthermore, imparity in the survival of HNSC patients between different score 
groups were observed. Furthermore, Cox analysis displayed that the classifier is an independent prognostic factor. Cuplow/TMEhigh 

patients had the best prognosis and clinical outcomes, suggesting Cuproptosis TMEs might show some shared character in the patient’s 
antitumor immune. 

Interestingly, Of the 22 TME cell types, Eosinophils, Mast cell and M2 macrophages have a poor prognosis in the HNSC cohorts 
studied. The prognostic value of Tumor-associated mast cells (TAMCs) is currently highly debated and remains unclear. However, it is 
well known that MCs can inhibit tumor growth, promote inflammation and induce tumor cell death by releasing TNF-α, IL-4, TGF-β, IL- 
1, MCP-3, IFN-γ and chymotrypsin. Notably, the effect of TAMCs cells seems to vary in different cancer types. Surprisingly, Treg cells, 
long thought to suppress antitumor immunotherapy, are a favorable prognostic indicator in the HNSC cohort. Recent research has 
reported that Treg cells can also further differentiate into three phenotypes, and not all types of Treg cells are immunosuppressive and 
even have antitumor activity. Admittedly, what we have observed in this study is far from complete and requires further research [41, 
42]. 

Moreover, an exciting result indicates that plenty of immune checkpoint genes were overexpressed in the Cuplow/TMEhigh sub-
group, suggesting that after experiencing immune checkpoint blockade, the Cuplow/TMEhigh subgroup could have a more robust 
antitumor immune response [43]. This demonstrates the Cuproptosis-TME classifier could be used to stratification cancer patients 
before immunotherapy. In addition, we questioned the role of tumor mutational burden in this classifier, but no significant differences 
exist between these subgroups. We found that the Cuplow/TMEhigh/TMBlow had a better prognosis than the Cuplow/TMEhigh/TMBhigh 

subtype in the HNSC cohort. This phenomenon suggests that Tumor Mutation Burden is related to survival. We assume that the dif-
ference in subgroups is associated with immune activities or immune cell infiltration densities [44]. The lack of correlation between 
TMB and Cup-TME classifier implies that Regardless of TMB, classifiers can predict patient responses to immunotherapy. 

There were some limitations to this study as well. It would have been helpful if experiments were conducted to verify how 
Cuproptosis regulated HNSC cells’ behavior. Also, the practicality of the prognostic model should be tested with a multicenter clinical 
cohort. 

In conclusion, Cuproptosis-related genes were thoroughly analyzed, including their effects on the immune microenvironment, 
clinical pathological characteristics, and prognosis. We created a Cup TME risk model and researched the susceptibility to anti-tumor 
medications. To our knowledge, this is the first paper to analyze the effectiveness of the combination of Cuproptosis and TME in the 
HNSC. Our research can be used to develop precision treatment plans for people with various HNSC subtypes. 
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