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Abstract

We investigated toxicity of 2–3 layered >1 μm sized graphene oxide (GO) and reduced gra-

phene oxide (rGO) in mice following single intratracheal exposure with respect to pulmonary

inflammation, acute phase response (biomarker for risk of cardiovascular disease) and gen-

otoxicity. In addition, we assessed exposure levels of particulate matter emitted during pro-

duction of graphene in a clean room and in a normal industrial environment using chemical

vapour deposition. Toxicity was evaluated at day 1, 3, 28 and 90 days (18, 54 and 162 μg/

mouse), except for GO exposed mice at day 28 and 90 where only the lowest dose was

evaluated. GO induced a strong acute inflammatory response together with a pulmonary

(Serum-Amyloid A, Saa3) and hepatic (Saa1) acute phase response. rGO induced less

acute, but a constant and prolonged inflammation up to day 90. Lung histopathology

showed particle agglomerates at day 90 without signs of fibrosis. In addition, DNA damage

in BAL cells was observed across time points and doses for both GO and rGO. In conclu-

sion, pulmonary exposure to GO and rGO induced inflammation, acute phase response and

genotoxicity but no fibrosis.

Background

Increasing interest in graphene-based applications is reflected in the global growth of graphene

production and in the number of graphene patent publications through the last ten years [1,2].

Graphene-based nanoparticles are a source of concern regarding potential health hazards, sim-

ilar to e.g. carbon nanotubes (CNT), despite the quite different 2-dimensional structure and

large lateral size [3]. Inhaled graphene can penetrate the upper respiratory tract and deposits

in the alveolar region [4,5]. Previous studies have shown that graphene particles can persist in
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the lung for up to 6 weeks and in some cases cause frustrated phagocytosis and long-term

inflammation [5–8].

Inhalation of particles by e.g. air pollution is associated with risk of cardiovascular disease

[9], where initiation of systemic acute phase response (APR) and increase in APR proteins in

the blood (e.g. C-reactive protein and SAA) have been proposed as a pathogenic mechanisms

[10,11]. Increased blood APR proteins are well-known risk factors for cardiovascular disease

[12–14]. In mice, the acute phase gene Serum Amyloid A3 (Saa3) is expressed in lung and

much less in hepatic tissue. Conversely, Saa1 and Saa2 are the main Saa isoforms expressed in

the liver [15], although increased expression of Saa1 and Saa2 are also strongly increased in

lungs following exposure to titanium dioxide, carbon black Printex90 (P90) and MWCNT

[16–19]. These nanomaterials was shown to induce pulmonary APR with Saa3 being the most

differentially regulated gene [10,11]. Therefore, we have used Saa3 expression as a marker of

pulmonary acute phase response [10,18;20–23]. Interestingly, only CNT exposure induced

increased expression of both pulmonary (Saa1, Saa2, Saa3) and hepatic (Saa1 and Saa2) APR

genes [23,24]. We have shown that pulmonary inflammation, as a consequence of exposure to

these carbon-based materials, is a predictor of pulmonary Saa3 expression in mice [10]. Fur-

thermore, we have provided evidence that the total surface area of these instilled particles cor-

relates with the pulmonary Saa3 expression [11,25]. Due to the sheet-like morphology and

high surface area of graphene-based materials [3,26,27], it is relevant to assess the level of APR

to estimate the risk of cardiovascular disease.

We have previously conducted genotoxicity assessment of related carbon-materials in both

in vitro and in vivo models, where P90 and diesel exhaust particles (DEP) have been shown to

induce genotoxicity in vitro and in vivo [16,21,22,28–32]. On the other hand, only limited gen-

otoxicity of CNT was observed in vitro [29] while Poulsen et al. recently reported that the

diameter of MWCNT was a predictor of genotoxicity in vivo [25].

Graphene materials comprise a group of materials including e.g. single or few-layered gra-

phene, graphene oxide (GO) and reduced graphene oxide (rGO) [33,34], that are commonly

produced [2] and widely used in in vivo toxicity testing [5,6,35–37]. We recently published an

extensive physicochemical characterization of commercially available rGO and GO and evalu-

ated the cytotoxicity and genotoxicity in the murine lung epithelial cell line FE1 [26]. GO (1–

2 μm) and rGO (2–3 μm) were comparable in layer numbers (2–3 layers) and free of impurities

(<1.5 wt %). GO generated high levels of reactive oxygen species (ROS), but neither GO nor

rGO induced cytotoxicity or genotoxicity in vitro.

Occupational exposure to nanomaterials during manufacturing and handling has been

reported previously [38,39]. Due to the properties of graphene in potential new electronic

applications, techniques for large-area graphene production by e.g. chemical vapour deposi-

tion are becoming more relevant [40,41]. This method allows graphene manufacturing in a

gas tight vacuum chamber thus minimizing dust exposure [42], however the chamber must

be vented and opened in order to retrieve grown material. To assess the exposure to air-

borne particulate matter during manufacturing of graphene by chemical vapour deposition,

we conducted exposure measurement at two different production sites employing this

method.

In order to provide data for hazard assessment of occupational exposure to graphene-based

materials, we assessed short and long-term toxicity of GO and rGO following single intratra-

cheal exposure in mice. Work place exposure was assessed during the production of graphene

using chemical vapour deposition at a small scale production site in clean room and at large

scale production site in an industrial environment.

Difference in toxicity of graphene-based nanomaterials in vivo
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Materials and methods

Materials

Tested materials in this study included two commercial available graphene derivatives, one

graphene oxide (GO) and one reduced graphene oxide (rGO) manufactured and supplied by

Graphenea (San Sebastian, Spain). GO was synthesized by chemical exfoliation of synthetic

graphite using a modified Hummer’s method and later chemically reduced with ascorbate. GO

was delivered in a water suspension whereas rGO was in powder form (washed with methanol,

filtered and air-dried under vacuum). A detailed description and an in-depth characterization

of GO and rGO has been published previously [26].

Carbon Black Printex90 (P90), provided by Degussa (Frankfurt, Germany) was included as

reference material (162μg/mouse) based on findings from previous studies showing inflammatory

and genotoxic response in mice following single instillation [16]. We routinely include P90 as a

reference material [21–23,43–47] andP90 has been described and characterized in detail [44,48].

Material dispersions

GO, rGO and P90 were prepared in 0.2 μm filtered, γ-irradiated Nanopure Diamond UV water

(Pyrogens:< 0,001 EU/ml, total organic carbon:< 3.0 ppb) added 0.1%Tween801 (TW80) to a

final concentration of particles of 3.24mg/ml. To achieve a homogenous dispersion, the final

solution was then prepared by probe sonication on ice for 16 min with 10% amplitude (Branson

Sonifier S-450D, Branson Ultrasonics Corp., Danbury, CT, USA) equipped with disruptor horn

(model number 101–147–037). Following sonication, solution was further diluted to 1.08mg/ml

and sonicated for 2 minutes. Dilution was further diluted to 0.36 mg/ml and sonicated 2 min-

utes. As vehicle control (VC), Nanopure water added 0.1% TW80 was prepared by procedure as

described above. Suspensions were instilled in mice within 20 minutes after sonication.

Hydrodynamic size, zeta potential and pH level

Immediately after sonication, 700 μl was transferred to a 4.5 ml polystyrene spectrophotometer

cuvette. The hydrodynamic size of GO and rGO in vehicle was determined by dynamic light

scattering (DLS) at concentrations: 3.24, 1.08 and 0.36 mg/ml, respectively. The hydrodynamic

size (Z-average), size distribution (light intensity and number weighted distribution) and poly-

dispersity index (PDI) were measured 6 times and mean was calculated. Viscosity was set to

0.97 mpa.s. (corresponding to 0.1% TW80). Refractive (Ri) and absorption indices (Ra) were

used when transforming from light intensity distribution to number distribution for GO (Ri:

1.7 Ra: 2.0), rGO (Ri: 2.8, Ra: 2.0) and P90 (Ri: 2.02, Ra: 2.0). Zeta-potential and pH was deter-

mined by preparing GO, rGO and P90 in 0.1%TW80 (3.24 mg/ml) and sonicated as described

above. A detailed description of hydrodynamic size, zeta-potential and pH measurements have

been described previously [26].

Animals

A total of 306 C57BL/6J female mice, 7-weeks old, delivered by Taconic Europe (Ejby, Den-

mark), were used in a main (pulmonary inflammation, acute phase response, genotoxicity and

histopathology) and a second in vivo experiment (effect of pH on inflammation). All mice

were randomly grouped according to particle exposure, dose and day of euthanasia. They were

housed in polypropylene cages with sawdust bedding and enrichment. All mice had access to

food (Altromin 1324) and tap water ad libitum. Temperature and humidity was controlled at

21 ± 1˚C and 50 ± 10% respectively with a 12-h light and 12-h dark cycle. Daily observations

of clinical signs of stress and discomfort were performed.
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The mean bodyweight of mice at 8-weeks of age was 19.7 ± 1 g. Bodyweight was further

monitored at 3–5 time points (n> 6) throughout the study period (S1 Table).

The animal experiments comply with the ARRIVE guidelines [49]. All procedures followed

the guidelines for care and handling of laboratory animals according to the EC Directive 86/

609/EEC, the Danish law and were approved by the Danish Animal Experiment Inspectorate

(under the Danish Ministry of Justice), permission 2012/15-2934-00223561-1123.

Study design

Mice were exposed to either VC, GO, rGO or the reference particle P90 by single intratracheal

instillation (50 μl/mouse) under isoflurane sedation between 9 to 11 a.m, as previously

described [50]. In the main experiment, mice (282 in total) were grouped based on exposure

and dose level (VC groups n = 8, exposed groups n = 7). Mice used for histology were grouped

with fewer mice (VC n = 3, exposed groups n = 6). The applied doses in main study were

18 μg, 54 μg and 162 μg/mouse. Mice were euthanized at 1, 3, 28 or 90 days post exposure.

In the second experiment, 24 mice were grouped in same study design based on exposure

and dose level (VC groups and exposed groups, n = 6). Mice were exposed by intratracheal

instillation (50 μl/mouse) to PBS (VCPBS), 0.1% TW80 (VCTW80), 18 μg/mouse of GO dis-

persed in PBS (GOPBS) or 18 μg/mouse of GO dispersed in 0.1% TW80 (GOTW80). Mice were

euthanized 3 days post exposure.

Necropsy and preparation of BAL samples

All mice were anesthetized by i.p. injection of 0.1 ml ZRF solution (Zoletil 250 mg, Rompun

20 mg/ml, Fentanyl 50mg/ml in sterile isotone saline). Blood was withdrawn from the heart

and stabilized using 36 μl K2EDTA and followed by collection of BAL where lungs were

flushed twice with 0.8 ml 0.9% sterile saline. Total BAL recovery was about 1.4 ml. BAL sam-

ples were immediately stored on ice until further preparation. BAL cells were prepared on

glass slides and stained with May-Grünewald-Giemsa staining. Details about preparation

method have been described previously [22]. Images of BAL cells were acquired at 100x on an

Olympus BX 43 microscope with a Qimaging Retiga4000R camera. Uneven illumination in

brightfield images was corrected using ImageJ [51] and the Calculator Plus plugin via the for-

mula: Corrected image = (Image / background) � 255. The background image was a maximum

projection of 3 background brightfield images without BAL cells.

Cell composition in BAL fluid

Pulmonary inflammation was evaluated by analysis of cell composition of 200 cells in BAL

fluid. Scoring was performed on blinded samples using light microscopy (Leitz Laborlux K) at

100x magnification using immersion oil. Counted cells were expressed as % observations

based on distribution of the 200 cells multiplied with the total number of cells in each sample.

RNA extraction

Total RNA was isolated from the left lung and lateral lobe of liver (6–23 mg). Total RNA was

isolated from tissues by using Maxwell1 16 LEV simplyRNA Tissue Kit (Promega Biotech AB,

Sweden) according to the manufacturer’s instructions. The final RNA concentration for each

sample was measured on Nanodrop 2000c (ThermoFischer Scientific, Denmark). Nucleic acid

purity (A260/A280) was measured to 2.10 ± 0.007. Isolated RNA was stored at -80˚C until fur-

ther analysis.
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mRNA expression

Gene expression of Saa3 mRNA levels in lungs and Saa1 in liver was assessed for time points

1, 3, 28 and 90 days. cDNA synthesis was prepared from isolated RNA using Taq-man Reverse

Transcriptation Reagent Kit (ThermoFischer Scientific, Denmark) according to manufactur-

er’s protocol. The relative gene expression of target genes Saa1 and Saa3 was by RT-qPCR on

ViiA™ 7 (ThermoFischer Scientific, Denmark) and calculated by comparative method 2-ΔCT

[52]. The reference gene 18S was used for normalization. The nucleotide sequence of Saa3
primers and probe were forward: 5’ GCC TGG GCT GCT AAA GTC AT 3’, reverse: 5’ TGC
TCC ATG TCC CGT GAA C 3’ and probe: 50 FAM- TCT GAA CAG CCT CTC TGG CAT CGC
T-TAMRA3’ and Saa1 (Mm00656927_g1). Target and reference genes were run in triplicate

in 384-well reaction plates (ThermoFischer Scientific, Denmark) including–RT controls and

negative controls without synthesized cDNA.

SAA3 protein in in blood

The level of SAA3 protein in blood of mice was evaluated at day 3 for all doses by ELISA using

Mouse SAA-3 ELISA (EZMSAA3-12K, Merck Millipore, Denmark) and conducted according

to the manufacturer’s protocol. Plasma samples were pooled two at a time randomly to a final

n = 3 (representing 6 mice in total). Absorbance (450 nm and 590 nm) was measured on

Epoch™ microplate spectrophotometer (BioTek, Winooski, USA) within 5 minutes.

Histopathology

Lung inflammation was also evaluated using histopathological analysis of lung tissue from

mice at day 3 for VC and GO only (54 and 162 μg/mouse) and day 90 for VC, GO (18 μg/

mouse) and rGO (18, 54 and 162 μg/mouse). Lungs were fixed by very slowly filling the trachea

with formaldehyde (4%) under 30 cm water column pressure. Lungs were then stored in 4%

formaldehyde for a minimum of 24 hours, before trimming and embedding in paraffin. The

left lung lobe was divided in two halves and embedded in paraffin block, while all lobes from

the right side were embedded in another block. After paraffin embedment, thin paraffin sec-

tions of 3 μm were cut and mounted on a glass slide and stained with hematoxylin and eosin

using standard histological protocol followed by light microscopy examination. Images were

acquired (10x and 40x) and corrected using protocol described for BAL cells.

Genotoxicity

Genotoxicity was assessed in BAL, lung and liver from mice exposed to GO, rGO and P90 at

all time points and for all available dose levels. DNA strand breaks were used as a marker for

genotoxicity and were analyzed using comet assay on 20-well Trevigen Cometslides™ and auto-

mated scoring (Pathfinder™, IMSTAR, France). Samples related to each time point were placed

on the same electrophoresis. Day-to-day variation and efficacy of each individual electropho-

resis was validated by including A549 cells exposed to either PBS or H2O2 (60 μM) included

on each slides (S3 Fig). A detailed description of sample preparation and further analysis has

been described previously [53].

Workplace exposure assessment

The potential exposure levels of graphene and other particulate matter emitted during specific

work processes, at two production sites, during 8 hour working days were assessed. At both

sites, graphene was produced by chemical vapour deposition using a commercial system Black

Magic Enhanced CVD (BM Pro, AIXTRON, UK) allowing graphene growth on substrates of
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up to 4 inch. In the first case, measurements were performed during production of graphene

situated in a clean room (~40 m3), class 10–100, ISO 9001-certified) with no local ventilation.

We applied a second tier approach in the measurements [54]. The assessment was based on

total number concentration of emitted airborne particles and further particle characterization

by TEM imaging to verify origin of emissions. This approach was done in both Near Field

(close to process, NF) and Far Field (background, FF) [55]. Particle number concentrations

were measured using a Condensation Particle Counter (CPC3007, TSI Inc., MN, USA) and a

DiSCmini (Testo SE & Co. KGaA, Germany). Samples for characterization were collected on

holey-carbon coated copper grids using a Miniature Particle Sampler (MPS, Ecomesure,

France) and analyzed using TEM (Titan E-Cell 80-300S ST TEM, FEI, NE, USA). The same

approach was used in the second case where measurements were performed at a graphene pro-

duction site in an industrial setting (room size ~500 m3) with no local ventilation. S1 Fig.

shows a schematic overview of the room layout for both case measurements along with sam-

pling positions.

Statistics

Statistical analysis was performed in Minitab v.17.1.0 (Minitab Inc., State College, PA, USA),

except for neutrophils where SAS1, version 9.3 for the Windows platform was used. All data

are presented as mean ± standard error of the mean (Mean±SEM).

All statistical analyses were performed on log-transformed data, except for data on geno-

toxicity. The analyses of GO and rGO were performed for each day separately using two-way

Analysis of Variance (ANOVA) with particle and dose level set as fixed category variables

interacting with each other. In case of interaction, one-way ANOVA was performed including

pairwise comparisons using Tukey’s adjusted p-values (significance level: 0.05). Analysis of

data for P90 was performed using unpaired t-test at all time points. For cells in BAL, based a

very high variation caused by numerous zero-values in the dataset for number of eosinophils

and lymphocytes, statistical analysis was only performed on number of neutrophils, macro-

phages and total cells. For neutrophils, there were some samples with no neutrophils among

the 200 cells counted. The total number of neutrophils in each of these samples was considered

to be left censored at the total number of cells in the sample divided by 200. For neutrophils,

the two-way ANOVA for each day with interaction between particle and dose were performed

using the Lifereg procedure in SAS1. Statistical analysis of SAA3 in plasma was performed

using Kruskal-Wallis multiple comparison with dose level set as fixed categorical variable for

GO and rGO, respectively (significant level: 0.05, confidence interval: 0.95). Statistical analysis

of DNA damage (%DNA) was performed on data normalized to the mean %DNA of PBS-

exposed A549 cells on slides included in each electrophoresis (S3 Fig).

Results

Characterization of GO and rGO

A detailed physicochemical characterization of GO and rGO has been published previously

[26]. An overview on key physicochemical characteristics is presented in Table 1. In brief, both

GO and rGO mainly existed as 2–3 layered graphene. A clear tendency of wrinkling of rGO

sheets and positions with additional 1–2 more layers were observed. The lateral size was deter-

mined to 2–3 μm and 1–2 μm for GO and rGO respectively. Surface area of rGO was 411 m2/

g. As GO was delivered in a water suspension, BET surface area could not be determined. Both

materials mainly consisted of C, O and H, where the C/O and C/H ratios were 1.4 and 1.7 for

GO, 8.5 and 13.2 for rGO, respectively, indicating that GO had a high content of hydroxyl

groups as expected. Inorganic impurities (< 1.5% in total) were mainly S, Mn and Si, with
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highest levels in rGO. GO was delivered in a water suspension and the level of organic impuri-

ties was negligible. Low levels of endotoxin were detected in GO (1.77 EU/mg) and rGO (1.05

EU/mg). This corresponded to a dose of 0.03–0.29 EU or 0.027–0.17 EU for GO and rGO,

respectively in this present study. The levels were much lower than required for induction of

pulmonary inflammation [56]. A lower hydrodynamic size for rGO compared to GO was

observed (S4 Fig) that may be caused by higher degree of aggregation and sedimentation dur-

ing DLS analysis.

As expected, zeta potential for rGO (-10.7 ± 0.6, pH = 4.4) indicated instability in vehicle,

while GO (-39.3 ± 1.5, pH = 2.6) and P90 (-30.2 ± 0.2, pH = 6.5) were stable (S5 Fig). Hydrody-

namic size, PDI, zeta-potential and pH for GO dispersed in PBS (0.36 μg/ml) was also deter-

mined (Size = 157 nm; PDI = 0.284; zeta potential = -24.7; pH = 6.9).

Animal bodyweight and observations

The bodyweight of the instilled mice was monitored at 3–5 time points throughout the study

period (S2 Table). In general, mice exposed to either VC, rGO or P90 increased their body-

weight at day 1 after instillation until day 90. In contrast, exposure to 54 or 162 μg/mouse of

GO resulted in weight loss at day 1. The weight loss continued until day 3 with a total weight

loss of ~15% and ~20% in bodyweight for the mice instilled with 54 and 162 μg/mouse, respec-

tively. Signs of discomfort including energy loss, back arching and piloerection were observed.

Further, the mice did not interact with each other. Due to animal welfare concerns based on

the large weight loss and discomfort in groups of mice exposed to GO (54 and 162 μg/mouse),

we immediately aborted the studyat day 3 and euthanized the mice in these groups. Thus, only

groups exposed to GO 18 μg/mouse were included at days 28 and 90.

Table 1. Characterization of the GO, rGO and the reference P90.

GO rGO P90

Number of layersa 2–3a 2–3a -

Lateral size (μm)a 2–3a 1–2a 0.009b

Surface area (m2/g)a - 411a 338c

C/O ratio 1.4a 8.5a -

C/H ratio 1.7a 13.2a -

Z-average (nm)d

3.24 mg/ml 625 271 112

1.08 mg/ml 251 252 -

0.36 mg/ml 199 250 -

Polydisersity Indexe 0.540 0.339 0.219

Zeta potential (mV)e -49.7 -13.9 -30.2

pHe 2.6 4.4 6.5

Lateral size, specific surface area, C/O and C/H ratios were determined using transmission electron

microscopy (TEM), Brunauer–Emmet–Teller (BET) and combustion elemental analysis, respectively.
a Adapted from Bengtson et al [26].
b Size of spherical P90 particles based on surface area (338 m2/g) and density (2.1 g/m3) adapted from

Saber et al [44]
c Adapted from Jacobsen et al [48].
d Mean hydrodynamic size (Z-average) were determined using Dynamic Light Scattering in 0.1% TW80.
e Determined at particle concentration 3.24 mg/ml in 0.1% TW80.

https://doi.org/10.1371/journal.pone.0178355.t001
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Pulmonary inflammation

Pulmonary inflammation was determined as number of neutrophil influx in BAL fluid. Cell

differential counts in BAL fluid were determined on day 1, 3, 28 and 90. Overall, the level of

inflammation differed across materials and doses (Fig 1 and Table 2).

Day1. GO induced a potent and significant neutrophil influx at all doses compared to VC

but no dose-response relationship was observed. For rGO, 162 μg/mouse induced statistically

significantly increased neutrophil influx compared to VC with dose-response relationship. For

the lower doses (18 and 54 μg/mouse), the level of inflammation was significantly lower for

rGO compared to GO. The reference material P90 induced statistically significant inflamma-

tion compared to VC

Day 3. Both materials induced inflammation at day 3. GO was consistently the most

inflammogenic across all doses. GO induced statistically significantly increased neutrophil

influx at all dose levels compared to VC. For rGO, only the 162 μg/mouse dose induced statisti-

cally significantly increased neutrophil influx compared to VC. In comparison, all rGO groups

(18, 54 and 162 μg/mouse) induced statistically significantly lower neutrophil influx than for

Fig 1. Graphical presentation of the number of neutrophils in bronchoalveolar lavage (Mean ± SEM) from at day 1, 3, 28 and 90

following exposure to VC, GO, rGO or P90 (n = 7–8). *, ** and ***: Statistically significantly different from corresponding VC at level

p < 0.05, p < 0.01, p < 0.001, respectively. #: GO statistically significantly different from corresponding rGO group at level p <0.001. For

group GO 18 μg/mouse at day 1, the symbol is larger than the corresponding error bar. Therefore, the error bar is not visible (SEM is

shown in Table 2).

https://doi.org/10.1371/journal.pone.0178355.g001
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the corresponding GO groups. GO and rGO appeared very different in BAL fluid. GO was

mainly observed as already phagocytosed particles in 18 μg/mouse group (data not shown)

while both free and phagocytosed particles were observed in 162 μg/mouse group, where large

agglomerates of GO particles covered the cells (S2 Fig). For rGO (162 μg/mouse), large and

compact agglomerates of particles were observed together with particles phagocytosed by mac-

rophages. The reference material P90 induced statistically significant inflammation compared

to VC

Day 28 and 90. Statistically significantly increased neutrophil influx was observed at day

28 only for rGO (162 μg/mouse) compared to VC. At day 90, all doses of rGO induced

Table 2. BAL fluid cell counts (x103) (mean ±SEM) in mice at day 1, 3, 28 and 90 post exposure to VC (0.1% TW80), GO, rGO or Printex90 at doses 0,

18, 54 or 162 μg/mouse (n = 7–8).

Dose Neutrophilsa Macrophagesa Eosinophils Lymphocytes Totala

Day 1

VC 0 8.5 ± 2.6 63 ± 19.4 0.2 ± 0.1 1 ± 0.8 72.6 ± 20.7

GO 18 219.5 ± 18.7***# 59.8 ± 5.6 5.7 ± 3.9 1.4 ± 0.9 294.7 ± 20.7***

54 94.9 ± 6.4***# 29.1 ± 4.1* 0.5 ± 0 0 ± 0 123.9 ± 8.8***

162 120.7 ± 60.6*** 92.4 ± 8.5 96.2 ± 93.6 0 ± 0 309.3 ± 109.7***

rGO 18 5.1 ± 1.4 44.4 ± 9.2 0.5 ± 0.3 0.5 ± 0.2 20.2 ± 10.5

54 10 ± 1.8 61.7 ± 7 1.4 ± 0.2 0.4 ± 0.2 73.5 ± 7.8

162 43.3 ± 7.5*** 68.7 ± 9.6 5.3 ± 2.5 0.1 ± 0.1 117.4 ± 16.1

P90 162 105.6 ± 19.5*** 24.4 ± 9.4 5.5 ± 2.3 0 ± 0 135.6 ± 17.1*

Day 3

VC 0 0.5 ± 0.2 32.9 ± 3.9 0 ± 0 0 ± 0 33.5 ± 3.9

GO 18 38.8 ± 8.6***# 78.7 ± 6*** 51.3 ± 14.6 2.9 ± 1 171.7 ± 22.4***

54 324.7 ± 100.8***# 171.2 ± 36*** 10.8 ± 9.7 8.7 ± 2.2 515.5 ± 141.6***

162 574.4 ± 142.9***# 149.6 ± 15.9*** 0.6 ± 0.6 2.2 ± 1.4 727 ± 158.8***

rGO 18 5.7 ± 4.9 43.2 ± 5.1 12.5 ± 12.2 0.9 ± 0.8 62.2 ± 21.9

54 3 ± 1 49.4 ± 7.1 1.6 ± 0.4 0.3 ± 0.2 54.2 ± 7.9

162 5.3 ± 1.6* 50.1 ± 7.1 11.6 ± 5.8 0.2 ± 0.1 67.1 ± 11.5*

P90 162 101.3 ± 22.3*** 55.7 ± 7.2* 5.5 ± 2 0.8 ± 0.6 163.3 ± 26.4***

Day 28

VC 0 0.9 ± 0.3 17.7 ± 5.4 0 ± 0 0.1 ± 0.1 18.7 ± 5.5

GO 18 0.7 ± 0.2 45 ± 2.8** 0 ± 0 1 ± 0.5 46.7 ± 2.9**

rGO 18 2.1 ± 0.9 53.1 ± 10.5* 3 ± 1.7 0.1 ± 0.1 58.3 ± 11.1

54 1.9 ± 0.6 55 ± 5.6** 0.5 ± 0.3 0.3 ± 0.2 57.8 ± 5.6*

162 6.5 ± 1.8 57.2 ± 10.2** 0 ± 0 0.5 ± 0.2 64.2 ± 11.2*

P90 162 20.4 ± 6.9** 78.9 ± 12.4** 0 ± 0 3.9 ± 1.5 103.2 ± 17.2**

Day 90

VC 0 0.3 ± 0.1 43.3 ± 5 0 ± 0 0.1 ± 0 43.6 ± 5

GO 18 0.9 ± 0.2 43.7 ± 4.9 0 ± 0 0.4 ± 0.1 45 ± 5.1

rGO 18 3.2 ± 1.2** 37.3 ± 4.5 0.2 ± 0.1 0.4 ± 0.1 41.2 ± 5.7

54 9.5 ± 3.8*** 40.4 ± 7.5 0.1 ± 0.1 0.7 ± 0.3 50.6 ± 7.2

162 7 ± 1.6*** 48.9 ± 4 0 ± 0 0.4 ± 0.2 56.3 ± 4.6

P90 162 19.2 ± 4.9*** 62.6 ± 5.5* 0.2 ± 0.1 4.2 ± 0.9 86.1 ± 9.5***

Mean ± SEM (n = 7–8).
a Statistical analysis was performed on neutrophils, macrophages and total cells.

*, ** and ***: Statistically significantly different from corresponding VC at level p < 0.05, p < 0.01, p < 0.001 level, respectively.
#: Statistically significantly different from corresponding rGO group at level p <0.001.

https://doi.org/10.1371/journal.pone.0178355.t002
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statistically significantly increased neutrophil influx compared to VC. The neutrophil influx

for GO 18 μg/mouse group was between the level for the VC group and the rGO 18 μg/mouse

group and did not differ statistically significantly from either of the two groups. P90 induced

statistically significant inflammation at both time points,

No effect of pH on pulmonary inflammation. GO was delivered as water-suspension

and the pH of the instilled GO dispersed in 0.1% TW80 was 2.6. In order to assess the effect of

pH, we compared the inflammatory response to GO when dispersed in 0.1% TW80 (pH = 2.6)

or PBS (pH = 6.9), respectively (S2 Table). The lowest number of neutrophils was observed in

GOTW80 group (67% of the level for GOPBS group), indicating that the observed neutrophil

influx for GO dispersed in 0.1% TW80 was not caused by a low pH.

Acute phase response

Saa3 mRNA expression in the lung. Overall, GO was the strongest inducer of Saa3
expression (Fig 2 and Table 3). At day 1, GO induced statistically significantly increased Saa3
expression with 113, 45, and 9-fold increase compared to VC for 18, 54 and 162 μg/mouse,

respectively. At day 3, the increase in mRNA expression levels of Saa3 was also statistically sig-

nificant compared to VC with increase in Saa3 for 18, 54 and 162 μg/mouse (22, 33 and

49-fold increase respectively). In contrast, rGO induced only a small statistically significant

increase in Saa3 expression levels (2-fold) at day 3 compared to VC. At day 28 and day 90, no

statistical significant increase in Saa3 was observed for either GO or rGO compared to VC.

For the reference material P90, a statistically significantly increased Saa3 expression level was

observed at all time points compared to VC. The association between Saa3 mRNA levels and

neutrophil influx in BAL fluid is shown in S6 Fig.

Saa1 mRNA expression in the liver. Overall, only GO induced statistically significantly

increased Saa1 mRNA expression compared to VC (Fig 2 and Table 3) compared to VC. At

day 1, GO induced the highest Saa1 mRNA expression (18 μg/mouse). At day 3, we observed

statistically significant increased Saa1 expression for the highest dose of GO (162 μg/mouse)

compared to VC. At day 28 and day 90, no statistically significantly increased Saa1 expression

was observed. P90 induced statistically significantly increased Saa1 expression only at day 1

when compared to VC.

SAA3 in blood. At day 3, we observed statistically significantly increased SAA3 in blood

for groups exposed to GO (54 and 162 μg/mouse) compared to VC. rGO exposure did not

affect SAA3 levels (S7 Fig).

Histopathological analysis

Due to the high acute toxicity of GO, day 3 was included in the histopathological analysis of

lung tissue in addition to day 90. At day 3, GO was observed as light brownish granular pig-

ments (Fig 3c–3f and S8 Fig). Granulocytes and macrophages with or without GO were mostly

seen in the alveolar walls followed by alveolar sacs and alveolar ducts, and to some extent in

the terminal bronchioles including adjacent interstitium. Observations indicated severe acute

inflammatory response, involving air passages and respiratory segments distal to the ciliated

airways. GO was more prominent and visible in the 162 μg/mouse group compared to 54 μg/

mouse group, and was observed mainly as free deposits or in aggregates in macrophages

within the alveoli and the alveolar ducts. In addition, inflammation at sites with GO deposits

was prominent and patchy (Fig 3c) and located to the respiratory parenchyma with a larger

total area affected with increased dose (~ 20–30% and 30–40% of the total cut lung surface for

groups 54 and162 μg/mouse, respectively). The alveolar walls were enlarged and neutrophils

were found together with congested capillaries and alveolar granular exudate as part of the
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Fig 2. mRNA expression level of the acute phase response genes Saa3 in lung and Saa1 in liver 1, 3, 28 and 90

days following exposure to VC, GO, rGO and P90 (n = 7–8) at doses 0, 18, 54 and 162 μg/mouse. Expression of

mRNA was normalized to 18S rRNA and multiplied by 107. Statistical analysis for P90 compared to VC was performed

separately using a t-test. *, **, ***: Statistically significantly different from corresponding VC at level p < 0.05, p < 0.01,

p < 0.001, respectively.

https://doi.org/10.1371/journal.pone.0178355.g002
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acute inflammation (Fig 3d and 3e). Hyperplastic Type II cells were also observed (Fig 3d and

3e). These pathological findings were notably found in group 162 μg/mouse as part of the

acute inflammation. In general, areas devoid of dusts were mainly without pathological find-

ings. Perivascular lymphocytic accumulations were also clearly observed (Fig 3f).

At day90, GO appeared as smaller and more brown pigments. Fewer macrophages and

complete engulfment of GO in macrophages were also observed (Fig 4e). Remnants from the

acute inflammatory response were minimal and observed mainly as small spots with chronic

inflammation in alveolar walls affecting approximately 2–4% of the total examined lung sec-

tion surface area (Fig 4d and 4e). Chronic inflammatory cells loaded with GO in the alveolar

walls were observed (~ 2–4% of the cut lung surface). Perivascular lymphocytic accumulations

were also observed (Fig 4f). Birefringent collagen was not observed and there were no findings

indicating lung fibrosis.

In the histopathological analysis of rGO at day 90, rGO appeared as black compact agglom-

erated deposits. Agglomerates were observed with focal distribution in the peripheral lung

parenchyma, lumen of terminal bronchioles, alveolar ducts and in the alveolar septal walls (Fig

4g–4i). The largest rGO agglomerates were 4–6 times larger than alveolar macrophages and

only a minor fraction of rGO were phagocytosed. Agglomerates deposited in the bronchioles,

more frequently in group 162 μg/mouse, may represent incompletely dispersed rGO either

trapped in the peripheral airways or in process of being cleared. Taken together, few tissue

reactions were observed in the high dose group and only very few in the low dose groups.

Areas with slightly increased cells in alveolar walls with dusts were not numerous. Some minor

dust-related granulomas and minimal increased septal cellularity were observed in GO-

exposed group. Birefringent collagen was not identified and there were no findings indicating

Table 3. mRNA expression level of Saa3 and Saa1 in lung and liver of mice 1, 3, 28 and 90 days post exposure to VC, GO, rGO or P90 at doses 0,

18, 54 or 162 μg/mouse.

Day 1 Day 3 Day 28 Day 90

Dose Saa3 mRNA

VC 0 389 ± 335 96 ± 50 60 ± 15 74 ± 26

GO 18 50159 ± 11214 (128.9)*** 2436 ± 1706 (25.4)*** 80 ± 27 (1.3) 226 ± 125 (3.1)

54 19795 ± 3443 (50.9)*** 3631 ± 968 (37.8)*** - -

162 4016 ± 685 (10.3)*** 5367 ± 1379 (55.9)*** - -

rGO 18 87 ± 19 (0.2) 68 ± 24 (0.7) 131 ± 90 (2.2) 44 ± 6 (0.6)

54 135 ± 25 (0.3) 119 ± 19 (1.2) 174 ± 72 (2.9) 152 ± 90 (2.1)

162 441 ± 117 (1.1) 204 ± 24 (2.1)* 70 ± 11 (1.2) 102 ± 14 (1.4)

P90 162 17803 ± 1023 (45.8)*** 2459 ± 828 (25.6)*** 2036 ± 758 (33.9)*** 1044 ± 274 (14.1)***

Saa1 mRNA

VC 0 1624 ± 927 377 ± 41 717 ± 58 689 ± 159

GO 18 51404 ± 9158 (31.7)* 403 ± 38 (1.1) 506 ± 124 (0.7) 906 ± 113 (1.3)

54 5097 ± 2849 (3.1) 2102 ± 833 (5.6) - -

162 2824 ± 1063 (1.7) 21287 ± 9518 (56.5)*** - -

rGO 18 1057 ± 327 (0.7) 373 ± 53 (1) 869 ± 280 (1.2) 973 ± 416 (1.4)

54 678 ± 68 (0.4) 294 ± 42 (0.8) 1001 ± 399 (1.4) 886 ± 175 (1.3)

162 1839 ± 753 (1.1) 340 ± 36 (0.9) 964 ± 377 (1.3) 546 ± 124 (0.8)

P90 162 16956 ± 3334 (10.4)*** 649 ± 130 (1.7) 840 ± 113 (1.2) 1963 ± 1603 (2.8)

Mean ± SEM (fold change), n = 7–8

mRNA was normalized to 18S rRNA and multiplied by 107.

*, **, ***: statistically significantly different from corresponding VC at level p < 0.05, p < 0.01, p < 0.001, respectively.

https://doi.org/10.1371/journal.pone.0178355.t003
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Fig 3. H&E stained histopathological lung sections of mice 3 days post exposure. VC (A, B) and GO

162 μg/mouse (C, D, E, F). (A and B) No pathological changes. (C) Patchy appearance of acute pulmonary

inflammation in areas with GO deposits (black arrows) in the parenchyma distal to the terminal and respiratory

bronchioles, alveolar ducts, alveoli. (D) Free GO deposits (red arrow) and within alveolar cells (black arrows)

in inflammatory area. Accumulation of granulocytes (green arrow). Hyperplastic type II cells (blue arrow).

Congestion of vessels (CV). Alveolar granular exudate (AGE). (E) Patchy inflammation in peripheral section

sites with GO deposits. Alveolar macrophage with GO in inflammatory lesion and in alveoli (black arrows),

polymorphonuclear leukocytes (green arrow). Alveolar granular exudate (AGE). Hyperplastic type II cells

(blue arrows). (F) Perivascular lymphoid accumulation (PVLA) with GO deposits.

https://doi.org/10.1371/journal.pone.0178355.g003
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lung fibrosis. It should be noted that specific stains for collagen-formation was not included in

the histopathology analysis.

Genotoxicity

DNA damage were assessed in BAL cells, lung and liver tissue. GO and rGO induced statisti-

cally significantly increased level of DNA damage in BAL cells across particles and doses at

Fig 4. H&E stained histopathological lung sections of mice 90 days post exposure. VC (A-C), GO 18 μg/mouse (D-F) or rGO

162 μg/mouse (G-I). (A-C) No pathological changes. (D-F) GO appeared as dark-brown pigments. Scattered prominent perivascular

lymphoid accumulation (PVLA). Granuloma formation (GL) containing GO and macrophages with GO in alveoli (black arrows). Rare

prominent perivascular lymphocytic accumulation (AGE). (G-I) Scarce accumulation of compact black rGO agglomerates (red

arrows) and minimal tissue reactions.

https://doi.org/10.1371/journal.pone.0178355.g004
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different time points (Table 4). GO (18 μg/mouse) induced increased levels of DNA damage in

BAL cells at day 3 and 28 compared to VC. rGO (18 μg/mouse) induced increased DNA dam-

age at day 28 and at day 90 compared to VC. No statistically significantly increased DNA dam-

age was observed for GO and rGO in lung and liver compared to VC. P90 induced increased

level of DNA damage in liver at day 90.

Work place exposure to graphene

During the chemical vapour deposition process at case 1, opening the reactor in the beginning

of the process, did not cause any measurable emissions. The same applied when the reactor

was turned on. During the reactor opening after the process, the CPC showed a small increase

in NF particle concentration (< 20 particles/cm3) that was not detected by the DiSCmini.

Cleaning of the chamber was done after the process and then particle concentration rose to 15

particles/cm3 (S9 Fig). Analysis of the TEM-grids sampled showed no sign of particle presence.

Table 4. DNA strand breaks. Level of DNA damage (Mean ± SEM) in BAL, lung and liver assessed with the comet assay (% DNA) 1, 3, 28 and 90 days post

exposure to VC, GO, rGO or P90 (n = 7–8).

Day 1 Day 3 Day 28 Day 90

Dose BAL

VC 0 0.44 ± 0.06 0.60 ± 0.04 1.19 ± 0.17 1.00 ± 0.11

GO 18 0.61 ± 0.03 0.98 ± 0.04* 1.87 ± 0.15* 1.18 ± 0.13

54 0.54 ± 0.03 0.68 ± 0.03 - -

162 0.55 ± 0.07 0.51 ± 0.06 - -

rGO 18 0.66 ± 0.06* 0.60 ± 0.05 1.57 ± 0.20 1.73 ± 0.21*

54 0.65 ± 0.04* 0.68 ± 0.07 1.01 ± 0.13 1.27 ± 0.11

162 0.48 ± 0.03 0.74 ± 0.07 1.33 ± 0.11 1.55 ± 0.14

P90 162 0.39 ± 0.02 0.75 ± 0.02** 0.87 ± 0.06 0.81 ± 0.05

Lung

VC 0 0.54 ± 0.02 0.97 ± 0.08 1.47 ± 0.12 2.05 ± 0.16

GO 18 0.46 ± 0.04 0.99 ± 0.07 1.67 ± 0.18 1.64 ± 0.13

54 0.42 ± 0.03 1.09 ± 0.06 - -

162 0.43 ± 0.04 1.21 ± 0.14 - -

rGO 18 0.56 ± 0.10 0.79 ± 0.07 1.57 ± 0.17 1.80 ± 0.28

54 0.87 ± 0.17 0.92 ± 0.07 1.73 ± 0.23 1.88 ± 0.24

162 0.63 ± 0.08 1.07 ± 0.11 1.60 ± 0.13 1.58 ± 0.23

P90 162 0.78 ± 0.12 1.04 ± 0.07 1.58 ± 0.08 2.15 ± 0.19

Liver

VC 0 1.75 ± 0.12 1.56 ± 0.21 1.04 ± 0.10 0.66 ± 0.03

GO 18 1.71 ± 0.30 1.62 ± 0.13 0.87 ± 0.09 0.72 ± 0.03

54 2.06 ± 0.20 1.92 ± 0.26 - -

162 1.56 ± 0.22 1.65 ± 0.15 - -

rGO 18 1.49 ± 0.19 1.31 ± 0.06 0.83 ± 0.08 0.69 ± 0.08

54 1.34 ± 0.20 1.41 ± 0.16 0.98 ± 0.14 0.66 ± 0.06

162 1.46 ± 0.22 1.71 ± 0.19 0.91 ± 0.05 0.83 ± 0.15

P90 162 1.43 ± 0.19 1.62 ± 0.19 0.80 ± 0.10 0.91 ± 0.04**

Data were normalized to the mean level of %DNA of H2O2-exposed A549 cells included on each slide during each electrophoresis (S3 Fig). All samples

from BAL, lung and liver were divided onto different electrophoresis and further divided according to time point post exposure to minimize day-to-day

variation.

*, **, ***: statistically significantly different from corresponding VC at level p < 0.05, p < 0.01, p < 0.001, respectively.

https://doi.org/10.1371/journal.pone.0178355.t004
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Case 2 differed from the first case by not being a clean room location which made it more

complicated to estimate possible emissions solely relating to the process run due to a high pres-

ence of background particles. Generally, the NF and FF CPC concentrations had the same

trends, with NF being a bit higher. The chemical vapour deposition process-related activities

did not have a significant effect on the aerosol number concentrations (S10 Fig). Different

kind of process-related events were performed during measurements, but no link between

activity and concentration could be observed. Analyzed TEM-grids that were sampled upon

during the opening of the reactor showed traces of amorphous carbon compounds deposited

onto them (data not shown). However, the same compounds were observed on grids sampled

elsewhere within the room.

Discussion

This current study showed that pulmonary deposition of GO or rGO, comparable in layer

numbers (2–3 layers) and lateral size (> 1–2 um), but with different levels of hydroxylation,

induced pulmonary inflammation. Overall, GO was much more inflammogenic than rGO at

day 1 and 3 whereas rGO induced sustained inflammation for up to 90 days post exposure

with no apparent decrease from day 3. Due to the discomfort and weight loss of mice following

exposure to higher doses of GO, only the lowest dose group was followed for beyond day 3.

The potent acute inflammatory response caused by GO peaking at day 3 was accompanied

by a strong and transient increase in pulmonary and hepatic mRNA levels of APR genes (Saa3
and Saa1, respectively), that was shown to be systemic for SAA3. These findings were sup-

ported by histopathological analyses of lung sections showing severe acute inflammation for

GO at day 3. At day 90, GO agglomerates (larger for rGO) were still present in the lungs,

though only minimal inflammation and no sign of fibrosis were observed. Both materials were

also found to increase the level of DNA damage in BAL cells across doses and time points.

There are currently only a limited number of in vivo studies investigating toxicity following

pulmonary exposure to well-characterized graphene-based materials. However, due to the

physicochemical properties of GO for use in a broad range of biomedical applications

[34,41,57], the number of published studies evaluating toxicity of GO is increasing. GO has

previously been shown to be very biopersistent, causing both a severe and delayed peak in pul-

monary inflammation, followed by chronic inflammation up to 3 months after exposure [36].

In another study, GO induced disruptions of the alveolar-capillary barrier accompanying

influx of neutrophils into the alveolar space and release of inflammatory cytokines after 24

hours [35]. The same study [35] also showed that GO is more inflammogenic than pristine

graphene.

We observed a clear difference in color and dispersion of GO (brown colored) and rGO in

vehicle (black colored). rGO formed agglomerates that are caused by the high hydrophobicity

and colloid instability in aqueous solutions, that is well known [58–60]. Aggregate formation

of graphene has been shown to increase toxicity [35]. As vehicle, we chose to use 0.1% TW80,

which has been shown not to trigger an acute inflammation in mice [61–64]. TW80 improved

the stability of rGO and allowed an accurate and reproducible dose delivery by instillation pro-

cedure within 30 minutes after sonication. Though a complete colloid stability was never

achieved, this study confirmed that intratracheal instillation of 0.1% TW80 did not increase

number of neutrophils compared to PBS as vehicle.

Instillation is generally recognized as an acceptable exposure technique that offers precise

dosing and even particle distribution in the lung [25,65]. Advantages and disadvantages of

instillation have been discussed previously [66,67]. We used dose levels that equal pulmonary

deposition for 1, 3, and 9 days (8 hours/day) at the current Danish occupational exposure limit
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of 3.5 mg/m3 Carbon Black per 8 hour work shift [16] or 1, 3 and 9 times the expected expo-

sure for workers (40 years) at the recommended exposure limit for CNT of 0.001 μg/m3 per 8

hour work shift proposed by NIOSH [68]. We have published several studies using single

instillation in mice as an exposure method (6–162 μg/mouse) for toxicity testing of carbon-

based materials with different physicochemical properties and relatively free of inorganic

impurities and endotoxin with similar dosing levels [16,25,44,69].

GO induced pulmonary inflammation at day 1. All doses resulted in what appeared as the

maximum level of inflammation achievable 1 day post exposure. However, GO induced a

delayed and very strong inflammation that peaked at day 3. We have previously observed a

similar strong inflammation at day 1 followed by a peak at day 3 after instillation of MWCNT

[19,23]. On the contrary, rGO-induced inflammation that peaked at day 1. This is very similar

to the patterns observed for the spherical particles P90 and DEP [16,21,22].

The observed high acute toxicity of GO peaking at day 3 was further reflected in the

decrease in bodyweight and signs of discomfort for mice exposed to 54 and 162 μg/mouse.

Therefore, due to animal welfare concerns, the study only continued with low dose of GO

(18 μg/mouse) at day 28 and 90. Findings are consistent with the current literature using mice

as in vivo model. Li et al [36] found that instillation of 5–10 mg/kg (~100 or 200 μg/mouse)

GO caused significant weight loss day 1 post exposure continuing until day 2 with total weight

loss of ~20%. Using intravenous exposure route, another study reported a trend of sustained

lower bodyweight compared to vehicle-exposed group following single intravenous injection

of GO (~ 6 μg/mouse) [70]. Recently, a similar trend was also found following intravenous

injection of 5 mg/kg GO (~ 100 μg/mouse) included lethal effect up to 40% 1 day post injection

[71].

The rGO-induced neutrophil influx was consistently lower than the neutrophil influx

induced by the reference P90 (162 μg/mouse). The very different pulmonary responses to GO

and rGO may indicate that high level of hydroxyl-functionalization (O and H) found in GO is

an important determinant of acute inflammation of graphene materials. Notably, rGO induced

increased neutrophil influx 90 days post exposure.

Increased blood level of APR proteins has been recognized as risk a factor for cardiovascu-

lar disease [12,14,72]. SAA may be causally related to atherosclerosis and risk of cardiovascular

disease. A biomonitoring study recently found correlation between dust exposure and blood

levels of SAA and C-reactive protein [73]. We have previously proposed that pulmonary expo-

sure to nanoparticles could trigger pulmonary APR with subsequent release of acute phase

proteins e.g. SAA3 into the bloodstream [10,74]. In the blood, SAA is incorporated into HDL

lipoproteins, replacing Apo A-1. SAA-HDL inhibits reverse cholesterol transport. It has been

demonstrated that SAA stimulates cholesterol transport from lipoprotein to macrophages,

thus stimulating macrophages to turn into foam cells [75]. In support of this notion, virus-

mediated overexpression of SAA1 accelerates plaque progression in APOE -/- mice [76] and

repeated pulmonary dosing of SAA1 does the same (Daniel V. Christophersen et al, unpub-

lished). We have shown that P90 can induce sustained inflammation but only a transient pul-

monary APR at a relatively low dose (18 μg/mouse) and sustained APR at higher dose (162 μg/

mouse) [16,21]. Furthermore, we have also shown that standard diesel exhaust particle

NIST1650b only induce a transient inflammatory and pulmonary APR [22]. Latest, we have

shown that MWCNT can induce both pulmonary and hepatic APR at day 1 and 3 post expo-

sure [23,24,74]. Together with strong pulmonary inflammation, GO induced both a transient

pulmonary and hepatic APR at day 1 and 3. An increased level of SAA3 was also found in the

blood at day 3. This suggests that GO can induce an acute APR that is very similar to

MWCNT, that could also be the cause of the discomfort and the weight loss. We speculate

which of the physicochemical properties of GO, but absent for rGO and P90, result in the
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strong APR. It was clearly not caused by the low pH (pH = 2.6) of the GO suspension, since

GO dispersed in PBS (pH = 6.9) gave even stronger neutrophil influx, which correlates with

APR. Moreover, it was not caused by organic and inorganic impurities since only very low lev-

els were present [26]. An explanation could be the structural properties of GO. GO has been

demonstrated to express a lower bending stiffness than pristine graphene [77,78]. We speculate

whether the bending structure of GO may trigger toll-like receptor activation or whether GO

with the high level of hydroxylation trigger similar responses as lipopolysaccharide.

Histopathological analysis conducted at day 3 revealed large focal deposits of GO in the

lung parenchyma. This was accompanied by high deposition of GO that induced a severe

inflammation with a trend of dose-dependency, from the ciliated airways to the alveoli region

causing enlarged alveolar walls filled with neutrophils and edema.

Consistent with the BAL findings, the depositions and inflammatory responses were more

pronounced in the highest exposure group. At day 90 GO (group 18 ug/mouse) and rGO

(groups 54 and 162 ug/animal)were still present in lungs at day 90although neither thickening

of the alveolar walls nor fibrosis formation were observed. Duch et al. [35] showed that well-

dispersed graphene and GO (50 μg/mouse) did not induce fibrosis, although aggregated gra-

phene did. Similar findings for rGO materials showing only little or no sign of fibrosis forma-

tion have been reported [6,7,27,35,79]. Observations in this study support previous findings,

suggesting that graphene does not promote histopathological lung fibrosis, although particles

are still found in the lung.

P90, DEP and MWCNT have all been shown to generate reactive oxygen species (ROS) in

acellular assays [19,26,28,48]. Recently, we showed that GO generated more ROS compared to

rGO but did not induce genotoxicity in murine lung epithelial cells in vitro [26]. The present

study is the first to demonstrate that pulmonary exposure to these materials can induce DNA

damage in vivo up to 90 days post exposure. We observed increased levels of DNA damage

across doses and time points. These results are consistent with our previous studies in mice

with similar experimental setup showing increased genotoxicity of P90 and DEP [16,21,22].

For MWCNT, the diameter was found to be a predictor, whereas the functionalization was not

[25]. Results from the present study showed that increased levels of DNA damage were similar

across GO and rGO. This shows that hydroxylation and particle-generated ROS by GO was

not the main mechanism for genotoxicity.

In summary, pulmonary exposure to GO and rGO induced different pulmonary inflamma-

tory responses in BAL. GO induced a strong acute response whereas rGO was much less

inflammogenic. For rGO, pulmonary exposure induced long lasting inflammation even at the

lowest assessed dose. However, only minimal acute inflammation was observed in lung tissue

at day 90. Both materials induced DNA strand breaks long after exposure, indicating that the

genotoxicity and inflammation were determined by different physicochemical properties of

the graphene materials.

The production of graphene, produced by chemical vapour deposition, will increase

although a lack of an industrial market has slowed down the progress in production capacity

[41]. In this study, exposure measurement was performed at production facilities growing gra-

phene on substrates in a fully closed reactor. Although events during production based on

whole day measurement increased dust exposure temporarily, the number of particles was

very low. Moreover, characterization of the particles confirmed a low level of graphene emis-

sion from the reactor. It is not unlikely that the small increase in particle number was due to

disturbances of tubing and flows to the instrument during the opening and cleaning. In case 2,

an increase in particle concentration was observed during the reactor warm-up, but since the

increase is equally visible in the NF and FF, it is concluded to not be process related. Short

peaks can be observed in the DiSCmini data which are not appearing in the CPC data, and
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these are suspected to be false concentrations due to influence of large particles in the DiS-

Cmini detection system. Similar findings were reported by Fonseca et al. [80], where the

uncertainties linked to the data provided by online particle instruments during quantitative

exposure assessment levels to CNTs during conductive thin film production by chemical

vapour deposition, were mainly due to high background concentration. The presence of a par-

ticulate background may hide a number-wise small emission, and thus it can only be con-

cluded that no major emission of particulate matter took place during the process.

While the sampled TEM-grids did contain carbonaceous material, the amorphous nature

of these makes it unlikely that it was actually graphene. Furthermore, similar material was col-

lected on TEM-grids sampled further away from the chamber in the room. In general, the fact

that the chamber volume was operating at a low pressure and was vented before being opened,

means that the potential for exposure to airborne matter was very low. Heitbrink [42] assessed

exposure to graphene at a normal production facility. Graphene was produced in steel contain-

ers where e.g. during cleaning of the containers, workers opened the hatch and used a hand

tool to scrape graphene powder off the inside. This process created dust exposure. Our study

showed that exposure to graphene can be minimized at workplaces during production in

sealed chambers.

Conclusion

Intratracheal instillation of GO and rGO in mice induced pulmonary inflammation. GO

induced much more acute inflammation than rGO and induced a strong pulmonary and

hepatic acute phase response. rGO induced inflammation that decreased from day 1 to 3 and

then remained low but constantly elevated at a similar level until the end of the experiment at

day 90. Further, rGO only induced minimal pulmonary, but no hepatic APR. Both materials

were present in lung histopathological sections at day 90, although only minor inflammation

was observed and there was no sign of fibrosis formation. Both materials were found to induce

genotoxicity in BAL cells across doses and time points.

Work place measurements during graphene production using chemical vapour deposition

showed no measurable risk of exposure to airborne graphene at the studied production sites.

Supporting information

S1 Fig. Schematic overview of exposure measurement setup at two different production

sites. (a) in clean room and (b) at industrial site.

(TIF)

S2 Fig. Representative May-Grünwald-Giemsa stained BAL cells. Difference in cell compo-

sition and deposition of graphene material present at day 3 post exposure to (A) VC, (B) GO

162 μg/mouse, (C) rGO 162 μg/mouse.

(TIF)

S3 Fig. Day-to-day variation in level of DNA damage (%DNA) in the comet assay. A549

cells exposed to either PBS or H2O2 (60 μM) were included in each electrophoresis and thus

used as internal electrophoresis controls in order to check day-to-day variation. Due to varia-

tion across each electrophoresis, all BAL, lung and liver samples were normalized by the value

of PBS-exposed cells from the corresponding electrophoresis. Black lines denote mean values.

(TIF)

S4 Fig. Hydrodynamic size distribution of GO, rGO and P90 dispersed in 0.1% TW80.

Measurements were conducted using DLS and results are presented as percent intensity (left)

and number (right) at 3.24 mg/ml (black solid lines), 1.08 mg/ml (grey dashed lines) and 0.36
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mg/ml (black dotted lines), respectively.

(TIF)

S5 Fig. Stability of GO and rGO in different suspensions. (A) rGO (3.24 mg/ml) was pre-

pared in water added TW80 (1%, 0.1%, 0.01% or 0.001%) to visualize the effect on sedimenta-

tion. GO added 0.1% Tween80 (B) or PBS (C) that were used in this study (0.36 mg/ml). All

suspensions were sonicated for 16 minutes, as described. In general, photos were captured

within 30 minutes after sonication to reflect the time used to conduct the intratracheal instilla-

tion in mice.

(TIF)

S6 Fig. Association between the pulmonary mRNA level of the acute phase response gene

Saa3 and total number of neutrophils in BAL fluid. Each dot represents an individual

mouse (n = 195) exposed to either VC (white), GO (red), rGO (blue) or P90 (black). Color

intensity denotes dose levels (18, 54 or 162 μg/mouse), where darker colored dots denotes

higher levels. Triangles, diamonds, circles and squares denotes day 1, 3, 28 and 90, respec-

tively.

(TIF)

S7 Fig. SAA3 blood concentration 3 days post exposure to VC, GO or rGO. Samples in each

group were pooled randomly to a final n = 3 (representing 6 samples). Black lines denote

mean values.�, �� and ���: Statistically significantly different from VC at p< 0.05, p< 0.01,

p< 0.001 level, respectively.

(TIF)

S8 Fig. Acute inflammation 3 days post exposure to GO (162 μg/mouse). (A) Patchy appear-

ance of acute pulmonary inflammation in areas with GO deposits (black arrows). (B) GO

appeared as free light-brown granular pigments (red arrows).

(TIF)

S9 Fig. Particle Number concentrations measured during graphene production in clean

room. Measurements were conducted with CPC and DiSCmini in Near Field (NF) and Far

Field (FF) during a work day with graphene production using chemical vapour deposition. In-

graph numbers refers to time events: (1) Open reactor, (2) Close reactor, (3) Initiate growth,

(4) Open reactor, (5) Dry wiping the reactor.

(TIF)

S10 Fig. Particle Number concentrations measured during graphene production at indus-

trial site. Measurements were conducted with CPC and DiSCmini in Near Field (NF) and Far

Field (FF) during a work day with graphene production using chemical vapour deposition. In-

graph numbers refers to time events: (1) Reactor Warm-up, (2) Open reactor, (3) Initiate

growth, (4) Open nearby CNT chamber, (5) Open reactor–Wafer out, (6) Open reactor–Wafer

out, (7) Open reactor–Wafer out.

(TIF)

S1 Table. Bodyweight. Continuous bodyweight (g) measurements of mice exposed to VC,

GO, rGO or P90.

(DOCX)

S2 Table. BAL cell counts. Differential BAL cell count (x103) from mice at 3 post exposure to

0.1% TW80, 18 μg/mouse GO in 0.1% TW80, 0.1% PBS or 18 μg/mouse GO in PBS.

(DOCX)
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