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Abstract
Purpose Ultrasound compounding is to combine sonographic information captured fromdifferent angles and produce a single
image. It is important for multi-view reconstruction, but as of yet there is no consensus on best practices for compounding.
Current popular methods inevitably suppress or altogether leave out bright or dark regions that are useful and potentially
introduce new artifacts. In this work, we establish a new algorithm to compound the overlapping pixels from different
viewpoints in ultrasound.
Methods Inspired by image fusion algorithms and ultrasound confidence, we uniquely leverage Laplacian and Gaussian
pyramids to preserve the maximum boundary contrast without overemphasizing noise, speckles, and other artifacts in the
compounded image, while taking the direction of the ultrasound probe into account. Besides, we designed an algorithm that
detects the useful boundaries in ultrasound images to further improve the boundary contrast.
Results We evaluate our algorithm by comparing it with previous algorithms both qualitatively and quantitatively, and we
show that our approach not only preserves both light and dark details, but also somewhat suppresses noise and artifacts, rather
than amplifying them. We also show that our algorithm can improve the performance of downstream tasks like segmentation.
Conclusion Our proposedmethod that is based on confidence, contrast, and both Gaussian and Laplacian pyramids appears to
be better at preserving contrast at anatomic boundaries while suppressing artifacts than any of the other approaches we tested.
This algorithmmay have future utility with downstream tasks such as 3D ultrasound volume reconstruction and segmentation.

Keywords Ultrasound image compounding · Ultrasound anatomic boundaries · Ultrasound reconstruction · Laplacian
pyramid

Introduction

Even though ultrasound sonography is a low-cost, safe, and
fast imaging technique that has been widely used around
the globe in clinical diagnosis, surgical monitoring, medical
robots, etc., there are still some major drawbacks in ultra-
sound imaging. Due to the nature of how ultrasound images
are captured, it can be hard to see the structures that are deep
or underneath some highly reflective surfaces [15]. Certain
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tissues or structures would bounce back or absorb the sound
waves, resulting in dark regions underneath. Such tissues and
structures can sometimes produce alterations in ultrasound
images which do not represent the actual contents, i.e., arti-
facts [17].Moreover, the directionality of ultrasound imaging
can make some (parts of) structures difficult to image from
certain directions, which may prevent ultrasound images
from conveying a complete description of what is going on
inside the patient’s body. In addition, the directionality may
also create confusion for clinicians or medical robots per-
forming downstream tasks. For example, a bullet inside a
patient’s bodywould create significant reverberation artifacts
that occlude what is underneath. Additionally, when a med-
ical robot inserts a needle into a patient, the reverberation
artifacts created by the needlemightmake the needle tracking
algorithm fail or disrupt the identification of the structures
of interest [24]. Even though some artifacts have diagnos-
tic significance, which could help clinicians localize certain
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structures or lesions inside patients’ bodies [1,2], the arti-
facts become less meaningful once the objects of interest are
identified. Furthermore, if we preserve the artifacts from dif-
ferent viewpoints, then they could substantially occlude real
tissues and the image would be harder to interpret. When
there are multiple viewpoints available in ultrasound imag-
ing, we can reconstruct an ultrasound image that represents
the underlying structures better while having fewer artifacts.

However, no existing method can do the job perfectly.
Relatively simple methods such as averaging the overlap-
ping pixel values from different viewpoints [33] or taking
the maximum of such pixels [18] result in lower dynamic
range or additional artifacts in the output images. Other
more advanced ultrasound compounding algorithms [7,10]
reconstruct the 3D volume of ultrasound using a tensor rep-
resentation, but both of them still combine the overlapping
pixels by simply averaging them or taking the maximum.
The method proposed by zu Berge et al. [4] utilizes the per-
pixel confidence map proposed by Karamalis et al. [16] as
weights in compounding.While thismethod does not directly
take the average or maximum, it does not take the contrast
of the image into account. In the survey paper by Mozaffari
et al. [21], a large number of 3D compounding methods are
covered, but all of themethods deal with the overlapping pix-
els from different views by taking the average or maximum.
Since both bright and dark regions contain useful informa-
tion in ultrasound images, maximizing the contrast in those
regions while lowering the intensity of noise and artifacts in
other regions is essential in compounding. In all cases, every
existing compounding algorithm tends to introduce new arti-
facts into the volumes and lower the dynamic range. These
algorithms can only preserve either dark or bright regions,
but in some clinical settings or in computer vision algorithms
to guide downstream medical robots, both dark and bright
regions are useful.

We do not want to naively take the maximum or aver-
age when dealing with overlapping pixels from different
views, since doing so would lower the contrast or create
new artifacts. Our goal is to clearly differentiate all struc-
tures, whether dark or bright, while suppressing artifacts
and speckle noise to help with downstream computer vision
tasks such as vessel segmentation. To better reconstruct the
vessels and detect the bones, unlike prior work, we are
less concerned with recovering the most “accurate” indi-
vidual pixel values but more concerned with enhancing the
images by maximizing the contrast. We focus on preserv-
ing patches with the largest contrast, suppressing less-certain
high-frequency information to prevent piecemeal-stitching
artifacts and reduce existing artifacts. Our most important
contributions are: (1) Use more advanced methods when
compounding overlapping pixels between different views
instead of directly taking the average or maximum. (2) Keep
the pixels and structures with the higher confidence when

compounding. (3) Preserve the pixels or patches that have
the largest local contrast among the overlapping values from
different viewpoints. (4) Identify anatomic boundaries of
structures and tissues and treat them differently while com-
pounding. (5) Use Laplacian pyramid blending [5] to remove
discrepancy in pixel values from ultrasound images captured
in different viewpoints. (6)Make use of the advantages of dif-
ferent compounding methods in different frequency scales.

Related work

As for freehand ultrasound compounding, in 1997, Rohling
et al. [26] proposed to compound the freehand ultrasound
images in the same plane iteratively, using an approach that
is based on averaging. Later, the same group used interpo-
lation to reconstruct 3D volumes of non-coplanar freehand
ultrasound and still averaged the overlapping pixels [27].
As mentioned by Rohling et al. [28] and Mozaffari et al.
[21], the most common method in freehand compounding
is to use interpolation to calculate the missing pixels and
use averaging to calculate the overlapping pixels, while this
might not be the best approach. Grau et al. [9] came up
with a compounding method based on phase information in
2005. Although this method is useful, access to radio fre-
quency (RF) data is limited, preventing the algorithms from
being widely adopted. Around the same time, Behar et al. [3]
showed that averaging the different view worked well if the
transducer were set up in a certain way by simulation, but in
practice, it would be extremely hard to set up the imaging
settings that way.

In recent years, Karamalis et al. [16] came forward with a
way to calculate physics-inspired confidence values for each
ultrasound pixel using a graph representation and random
walk [8], which Zu Berge et al. [4] used as weights in a
weighted average algorithm to compound ultrasound images
from different viewpoints. Afterward, Hung et al. [14] pro-
posed a new way to measure the per-pixel confidence based
on directed acyclic graphs that can improve the compounding
results. Hennersperger et al. [10] and Göbl et al. [7] mod-
eled the 3D reconstruction of ultrasound images based on
more complete tensor representations, where they modeled
the ultrasound imaging as a sound field. While these two
recent papers made great advances in reconstructing ultra-
sound 3D volumes, they still compound overlapping pixels
by averaging or taking the maximum. A review of freehand
ultrasound compounding by Mozaffari et al. [21] summa-
rized compounding methods using 2D and 3D transducers.
However, few papers talked about how they deal with over-
lapping pixels, which is what our work mainly focuses on.

In the case of robot control instead of freehand ultra-
sound, Virga et al. [34] modeled the interpolation/inpainting
problem as partial differential equations and solved them
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with a graph-based method purposed by Hennersperger et
al. [11,34]. They also did image compounding based on the
tensor method by Hennersperger et al. [10].

Although ultrasound artifacts have barely been directly
considered in previous compounding approaches, it has been
widely discussed in literature. Reverberation artifacts and
shadowing are useful in diagnosis because those artifacts can
help clinicians identify highly reflective surfaces and tissues
with attenuation coefficients significantly different from nor-
mal tissues [12]. Reverberation artifacts are most useful in
identifying anomalies in lungs [2,29], while it can also be
used in thyroid imaging [1]. Shadowing could be used in
measuring the width of kidneys [6]. However, artifacts and
noise could occlude the view of other objects of interests [20]
or hurt the performance of other tasks, such as registration
[25], needle tracking [24], or segmentation [36]. In recent
years, several learning-based methods have been focusing
on identifying artifacts and shadows and using this infor-
mation to identify other objects [13,19], but they all need
substantial labeling work and a relatively large dataset. Non-
learning-based methods to remove the artifacts either use RF
data [31] or temporal data [35] or fill in the artifact regions
based on neighboring image content within the same image
[30]. All of these methods make assumptions about what the
missing data probably look like, whereas our approach uti-
lizes multi-view compounding to obtain actual replacement
data for the artifact pixel locations.

Methods

Identifying good boundaries

Any sort of averaging between different views in which an
object appears either too bright or dark in one viewwill lower
the compoundedobject’s contrastwith respect to surrounding
pixels. Even though artifacts could be suppressed, the use-
ful structures would also be less differentiated, which is not
the optimal approach. Therefore, identifying good anatomic
boundaries, and treating them differently than other pixels in
compounding, is essential to preserving the dynamic range
and contrast of the image.

Ultrasound transmits sound waves in the axial (e.g., verti-
cal) direction, so sound waves are more likely to be bounced
back by horizontal surfaces. Horizontal edges are also more
likely to be artifacts, in particular reverberation artifacts [23].
The trait of reverberation artifacts is that the true object is
at the top with the brightest appearance compared to the
lines beneath which are artificial. The distance between the
detected edges of reverberation artifacts is usually shorter
than other structures. Also, structures in ultrasound images
are usually not a single line of pixels: Theyusually have thick-
ness. Though reverberation artifact segmentation algorithms

like [13] could work well in identifying the bad boundaries,
labeling images is a very time-consuming task. Besides,
the exact contour of the structures in ultrasound images is
ambiguous, which can be hard and time-consuming to label
as well, so directly using manual labels would be less effi-
cient and it might introduce new artifacts into the images.
Therefore, we propose to refine the detected edges based on
the appearances of reverberation artifacts.

First, we detect the horizontal boundaries through edge
detection algorithms. To detect the actual structures in the
ultrasound images instead of the edge of the structure, we
calculate the gradient at pixel (x, y) by taking the maximum
difference between the current pixel and α pixels beneath,

∂ I (x, y)

∂ y
= max

j=1,2,...,α
|I (x, y) − I (x, y + j)| (1)

where in this paper, we set α to 15.
We then group the pixels that are connected into clusters,

such that pixels belonging to the same boundary are in the
same cluster. We remove the clusters containing fewer than
50 pixels. After that, we only keep the clusters that do not
have a cluster of pixels above itself in β pixels. In this paper,
β = 20.

A refinement is performed by iterating through the kept
clusters and comparing the pixel values against that of the
original image. A stack s is maintained, and the pixels in the
kept clusters with values greater than threshold1 are pushed
into it. We pop the pixel (x, y) at the top of the stack and
examine the pixels in its 8-neighborhood (xn, yn). If (xn, yn)
has never been examined before and satisfies I (xn, yn) >

threshold1 and at the same time the gradient value is less
than threshold2, i.e., |I (xn, yn) − I (x, y)| < threshold2,
then we push (xn, yn) into the stack s. We repeat this proce-
dure until s is empty. We add this step because the boundary
detection might not be accurate enough, and we can ignore
detected boundaries with low pixel values to suppress false
positives. In this paper, threshold1 and threshold2 are set
to 30 and 2, respectively. The pseudocode for the described
algorithm is shown in Algorithm 1.We note that we assigned
the values to the parameters based on empirical results.

Compounding algorithm

Attenuation reduces ultrasound image contrast in deeper
regions. Simply taking themaximum,median, or meanwhile
compounding [18] further undermines the contrast infor-
mation, where structure information is stored. Taking the
maximum also would create artifacts by emphasizing non-
existent structures resulting from speckle noise in uncertain
regions. Although uncertainty-based compounding approach
by [4] suppresses the artifacts and noise to some extent, it
produces substantially darker images than the originals and
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Algorithm 1: Horizontal-edge refinement
Data: input image I
Result: output boundary mask B
edges = clustering(denoising( d Idy ));
edges = cleanup(edges);
mask = zeros(I .shape); B = zeros(I .shape);
for edge in edges do

if ∀e in edges that are far enough from edges underneath
then

mask[edge] = 1;

for [i, j] where mask[i, j] == 1 do
if B[i, j] == 0 then

stack s; # initialize stack
if I [i, j] > threshold1 then

s.push([i, j]); B[i, j] = 1;
while s is not empty do

[x, y] = s.pop;
for [i i, j j] in the neighborhood of [x, y] do

if I [i i, j j] > threshold1 and
| I [x, y] − I [i i, j j] |< threshold2 and
B[i i, j j] == 0 then

s.push([i i, j j]); B[i i, j j] = 1;

lowers the dynamic ranges.Also, taking themaximumretains
the bright regions, but some dark regions are also meaning-
ful, so it would make more sense to preserve the patches with
the largest local contrast than to simply select the pixels with
maximum values. However, directly taking pixels with the
largest contrast would lead to neighboring pixels inconsis-
tently alternating between different source images. Besides,
the neighbors of a pixel might all be noise, resulting in insta-
bility of the algorithm. Taking the maximum contrast might
also emphasize the artifacts.

We developed a novel Laplacian pyramid [5] approach to
compound the images at different frequency bands and dif-
ferent scales. In thisway,we can apply contrastmaximization
method at certain frequency bands while reconstructing from
the pyramid. However, the pixels at extremely large scale in
the pyramid represent a patch containing a huge number of
pixels in the lower layers, so the contrast in this layer has
less anatomical meaning. On the other hand, when the scale
is small, the noise in the image would create large local con-
trast, so maximum weighted contrast might introduce new
artifacts into the image. At extremely low and high scales,
we thus consider contrast to be less important than intensity
confidence measures. Another flaw of directly maximizing
the contrast is that the large contrast region might contain
artifacts and shadows, so we only maximize the contrast
when the overlapping pixels have similar structural confi-
dence values [14]; otherwise, we use the pixel with the larger
structural confidence value in the compounded image, as low
structural confidence value indicates that the pixel belongs

to artifacts or shadows. Although some anatomic structures
would be removed due to the low confidence values, artifacts
and noises would also be removed in the compounded image.
The anatomic structures are later compensated for in the later
stage of the algorithm.

As is shown in Fig. 1, our novel ultrasound compounding
method takes ultrasound images from multiple viewpoints
and calculates their intensity and structural confidence maps
[14] and then calculates Laplacian and Gaussian [32] pyra-
mids of the original images and the Gaussian pyramid of
confidence maps. Denote Lm,n G Im,n as the nth layer of the
Laplacian pyramid and Gaussian pyramid of the mth copla-
nar ultrasound image, respectively, GCm,n GΓm,n as the nth
layer of the Gaussian pyramid of the intensity and structural
confidence map of mth coplanar ultrasound image, respec-
tively, and Lk as the kth layer of the Laplacian pyramid of the
synthetic image. M is the set of viewpoints, with |M | views.
Also, denote N (i, j) the 8-connected neighborhood of pixel
(i, j).Here,we combine theweightedmaximumcontrast and
weighted average together. For the kth layer of the pyramid, if
the difference across viewpoints between the maximum and
minimum structural confidence values GΓm,k(i, j), where
m ∈ M , is less than a certain threshold γ (γ = 0.05 in this
paper), we take the pixel (i, j) with the largest contrast at
this scale, since only when there is no artifact at the pixel,
does taking the largest contrast make sense

m̃(i, j) = argmaxm∈M
∑

(a,b)∈N (i, j)

| GIm,k(a, b) − GIm,k(i, j) | (2)

If not, we take the pixel (i, j) with the largest structural
confidence at this scale

m̃(i, j) = argmaxm∈M GΓm,k(i, j) (3)

Denote the intensity-confidence-weighted average at the kth
layer of the Laplacian pyramid as Lak ,

Lak(i, j) =
∑|M|

m=1 GCm,k(i, j)Lm,k(i, j)
∑|M|

m=1 GCm,k(i, j)
(4)

Then, the kth layer of the Laplacian pyramid of the synthetic
image can be calculated as,

Lk(i, j) = φ(k)Lm̃(i, j),k(i, j) + (1 − φ(k))Lak(i, j) (5)

where

φ(k) = 1

0.4
√
2π

e
− 1

2 (
(2k−K−1)2

0.16(K−1)2
)

(6)
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is a weight function, and K is the number of total layers.
This weight function is designed to assign lower weights
to contrast maximization and higher weights to intensity-
confidence-weighted average in extremely low and high
scale.

The compounding algorithm could be further generalized:

Lk(i, j) =
N

∑

n=1

φn(k)Fn({Lm,k}m≤|M|, {Gm,k}m≤|M|) (7)

where

N
∑

n=1

φn(k) = 1, 0 < k ≤ K , 0 < n ≤ N , 0 ≤ φn(k) ≤ 1

(8)

K is the total number of layers, N is the total number of
compounding methods, p is the total number of viewpoints,
Gm,k denote any kind of confidence map at layer k from
viewpoint m, and Fn denote a compounding method.

We can use anyweighting scheme to combine any number
of compounding schemes in the Laplacian pyramid based on
the application and data.

The algorithm still takes some sort of confidence-based
weighted averaging in some layers of the pyramid. During
artifact-free contrast maximization, some anatomic bound-
aries would be removed incorrectly due to lower structural
confidence. Therefore, even though this approachworks well
in preserving contrast and suppressing artifacts, the actual
boundaries of structures still tend to get darker. In addition
to what we just proposed above, the algorithm we purposed
back in section “Identifying good boundaries” can also be
incorporated. While reconstructing the image from the new
Laplacian pyramid after getting the image from the third
layer, the good boundaries are detected and values from the
original images are taken. For overlapping pixels here, we
take themaximum.We apply the same notation as above, and
GBm,k is layer k from viewpoint m of the Gaussian pyramid
of the boundariesmask B (Gaussian pyramid of algorithm1’s
output).

L3(i, j)

= max

(

∑|M|
m=1 GBm,3(i, j)GIm,3(i, j)

∑|M|
m=1 GBm,3(i, j)

, L3(i, j)

)

(9)

This step is done on the third layer of the pyramid since
there are still two layers before the final output, so piecemeal-
stitching artifacts can still be suppressed. The step is not done
in deeper layers, so that we can still preserve contrast. The
pipeline for combining two individual compounding meth-
ods and boundaries enhancement is shown in Fig. 2.

Experiments

Data acquisition

The data used in these experiments were gathered from three
different sources: a Advanced Medical Technologies anthro-
pomorphic Blue Phantom (blue-gel phantom), an ex vivo
lamb heart, as well as a live pig.

For our initial blue-gel phantom experiments, a UF-
760AGFukudaDenshi diagnostic ultrasound imaging equip-
ment with a linear transducer (51 mm scanning width) set to
12MHz, a scanning depth of 3 cm, and a gain of 21 db is used
to scan the surface of the phantom.Aneedle is rigidly inserted
and embedded within the phantom. When scanning the sur-
face, images from two orthogonal viewpoints are collected.
As the phantom square, it is easy to ensure coplanar orthogo-
nal views with using freehand imaging without any tracking
equipment. The experiment setup is shown in Fig. 3a.

For the ex vivo experiment, a lamb heart is placed within
a water bath in order to insure good acoustic coupling. Using
a Diasus High Frequency Ultrasound machine, a 10-22MHz
transducer is rigidly mounted onto a 6 degrees of freedom
(dof) Universal Robotics UR3e arm. Using a rough calibra-
tion to the ultrasound tip, the 6-dof arm is able to ensure
coplanar views of the ex vivo lamb’s heart. The experiment
setup is shown in Fig. 3b.

For the in vivo experiment, a live pig is used as the imaging
subject. A UF-760AG Fukuda Denshi diagnostic ultrasound
imaging equipmentwith a linear transducer (51mmscanning
width) set to 12 MHz, a scanning depth of 5 cm, and a gain
of 21 db is mounted on the end-effector of the UR3e arm and
is placed on the desired location manually to get a good view
of the vessel [37]. Some manual alignments are needed for
the arm to be in proper contact with the pig’s skin. This pose
of the robot is the zero degree view of the vessel. After this,
the rotational controller rotates the probe along the probe’s
tip by the specified angle. For this experiment, we cover a
range from 20 degree to -25 degree at an interval of 5 deg.
The input to the UR3e robot is sent through a custom GUI
that is designed to help the users during surgery. The GUI
has relevant buttons for the finer control of the robot in the
end-effector frame. The GUI also has a window that displays
the ultrasound image in real time which helps in guiding the
ultrasound probe.

Qualitative evaluation

We visually compare the results of our method against aver-
age [33], maximum [18], and uncertainty-based fusion [4].
As is shown in Fig. 4, our algorithm has the best result in
suppressing artifacts, and at the same time, the brightness of
the boundaries (green arrows) from our algorithm is similar
to that of taking maximum [18]. Our method also preserves
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Fig. 1 Compounding with Laplacian and Gaussian pyramid. The compounding is performed in each layer of the pyramid with the confidence map
(intensity confidence or structural confidence) used as some sort of weights. The compounding results are reconstructed from the pyramid of the
compounded image

Fig. 2 Pipeline for combining two individual compounding methods and boundaries enhancement. We combine the results from different methods
by different weights in each layer of the pyramid. The anatomic boundaries are enhanced at the third layer so that the enhancement does not
introduce new artifacts

a lot more contrast since other parts of the patch are darker in
comparison with our bright boundaries, whereas the bound-
aries from the other two compounding algorithms are darker
and therefore less contrastingwith the dark interior.Our algo-
rithm also completely suppresses the reverberation artifacts
in the regions that the red and yellow arrows point to, while
the results from other algorithms all preserve undesirable
aspects of artifacts.

To compare our results against other existing com-
pounding algorithms (average [33], maximum [18], and
uncertainty-based fusion [4]), we select 5 examples of results
on the anthropomorphic phantom, which is shown in Fig. 5.

In the first row, our algorithm almost completely removes
the reverberation artifacts in the synthesized image and at
the same time preserves the contrast in the images. In other
phantom examples, our algorithm is also the best in removing
the reverberation artifacts and shadows the vessel walls cast,
while preserving the brightness of the vessel walls, needles,
and other structures in the images. Our algorithm preserves
the “good boundaries” that represent the anatomic bound-
aries while suppressing boundaries that are not real.

Besides, we also test our algorithm on real tissue images.
The comparison between our algorithm and other existing
algorithms on the lamb heart is shown in Fig. 6, where only
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Fig. 3 a The experiment setup for the blue-gel phantom experiment.
The square phantom and the needle are shown in the image.We perform
the experiment with freehand imaging since it is easy to make sure the
orthogonal views on a square phantom. b The experiment setup for the

lamb heart experiment, where the lamb heart is situated in a water bath
to ensure acoustic coupling. The imaging is done by a robot-controlled
high-frequency probe

Fig. 4 Compounded patches left to right: average [33], maximum [18],
uncertainty-based fusion [4], and our algorithm, where the green arrows
indicate the vessel walls, while the red and yellow arrows indicate the

artifacts. As is shown in the figure that our result preserves the bright-
ness of the vessel boundaries and suppresses the artifacts at the same
time, while other methods fail to do so

maximum [18] and our algorithm preserve the contrast at
the red arrows, whereas the results by other algorithms are
darker in that patch.However,maximum[18] fails to preserve
the contrast at the blue arrows, while our method keeps the
contrast at both red and blue arrows. It also shows that even on
highly noisy data, our algorithmalso has decent performance.

We further demonstrate that our method is able to handle
images from more than two viewpoints, i.e., situation where
|M | > 2. In this experiment, we utilize the live-pig data and
instead of using the structural confidence, we use a simple
contrast maximization (equivalent to the case when all struc-
tural confidence at corresponding pixels is equal), due to the
difficulty in getting the reference image for the structural con-

fidence. The result is shown in Fig. 7, where the change in
probe position between the first two images only consists of
translation, and when moving the probe to the third location,
it also involves rotation.

We also would like to show how each component of
our algorithm contributes to the final output. Our pro-
posed algorithm mainly consists of three parts: (1) structural
confidence-based artifact-free contrast maximization, (2)
intensity confidence-based weighted averaging, and (3) edge
enhancement. As shown in Fig. 8, structural confidence-
based artifact-free contrast maximization (1) removes the
reverberation artifacts and shadows decently well and pre-
serves some contrast in the images, but some parts of the
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Fig. 5 Results on the phantom with a needle inserted in it. The left
two columns are the two input images. (Phantom images were acquired
orthogonally within plane, where the imaging direction of the first and
second column is from left to right and from top to bottom, respectively.)

The right four columns from left to right are results from average [33],
maximum [18], uncertainty-based fusion [4], and our algorithm. On the
phantom examples, it is clear that our method best preserves bright and
dark anatomy while suppressing artifacts

vessel boundaries are removed aswell and create someunnat-
ural holes in the image. Intensity confidence-based weighted
averaging (2) preserves the vessel boundaries but not as
bright as before, and it also removes the reverberation arti-
facts but also not as good as structural confidence-based
artifact-free contrast maximization (1). Edge enhancement
(3) clearly enhances the boundaries but at the same time
slightly enhances a small portion of the reverberation artifacts
(yellow arrow) as well. Generally, the final output ((1)(2)(3))
leverages the different components of the image, having less
reverberation artifacts than the result by using only (2) and (3)
(red arrow), while having no irregular holes like the result by
only (1) and (3) (blue arrow). Depending on different appli-
cation, we can adjust the weights φ(k) and how we utilize

the detected good boundaries, to compound the images in the
way we want.

Quantitative evaluation

We continue to compare our results with average (avg) [33],
maximum (max) [18], and uncertainty-based fusion (UBF)
[4], as well as the original images. The challenges to eval-
uate the results are: (1) There are no ground truth images
that show what the compounded images should look like,
(2) our algorithm is designed to maximize the contrast near
boundaries and suppress the artifacts, so the exact pixel val-
ues do not matter, so manually labeled binary masks where
anatomic boundaries are 1 and other pixels are 0 would not
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Fig. 6 Results on the lamb heart ultrasound images. From left to right:
two input images, compounded results (only overlapped regions are
shown) by average [33], maximum [18], uncertainty-based fusion [4],
and our algorithm. Maximum [18] and ours the only methods that are

able to preserve the bright boundaries at the red arrows, but the max-
imum is not able to preserve the contrast at the blue arrows like ours
does

Fig. 7 The compounding result of three live-pig images. The left three images are the input images, while the right image is the result. In the result,
the vessel and the structure on the right are successfully preserved, while the shadows cast by the vessel become less significant

work as some naive ground truths. Besides, since the major-
ity of the pixels would be 0 in those naively labeled images,
the peak signal-to-noise ratio (PSNR) with such images as
ground truth would be a lot larger if the images are dark
compared with images with larger visual contrast.

To show that our method generates images with better
quality, we propose to use our variance-based metric. We
separately evaluate image patches containing artifacts, which
should have low contrast, and patches containing boundaries,
which should have high contrast. For the patches with arti-
facts, we evaluate the algorithms based on the ratio between
the variance of the patch and the variance of the whole image
(denoted as variance ratio), as well as the ratio between the
mean of the patch and the mean of the whole image (denoted
as mean ratio). The patches with the artifacts should have
lower variance and a similar mean compared with the whole
image, since artifacts are supposed to be suppressed. As for
patches with real boundary signals, we only care about the
contrast, so our metric is the variance ratio. We want the
variance in the patches with boundary signals to be much
larger than the variance of the whole image. We compute the
average mean ratio (AMR) and average variance ratio (AVR)

Table 1 Evaluation by mean and variance

View1 View2 Avg Max UBF Ours

Artifacts

AMR 1.434 1.996 1.757 1.433 1.277 1.206

AVR 0.109 0.224 0.204 0.234 0.134 0.048

Boundaries

AVR 3.609 2.172 3.007 3.612 1.696 3.876

Bold numbers indicate best performance

on 27 signal patches and 23 artifact patches. These patches
are cropped from the same position in every image to keep
the comparison fair, and examples of the patches are shown
in Fig. 9, where the green boxes are the anatomic boundary
signal patches and the red boxes are the artifact patches. The
results are listed in Table 1. Our method outperforms other
algorithms in suppressing artifacts. As for real boundary sig-
nals, our method appears superior to all the other methods.

Additionally, we also compare our results with the pre-
vious ones by performing vessel segmentation on the com-
pounded images. We manually selected 6 patches containing
vessels with annotated vessel boundaries as ground truth.We
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Fig. 8 Results showing the effect of different parts of the algorithm.
The left column consists of the original images with arrows indi-
cating the imaging direction. The right 6 images are compounding
results where the numbers above or under the images indicate which

part(s) of the algorithm is (are) used to constructed the compounded
images. Note that the correspondence of the numbers is (1) struc-
tural confidence-based artifact-free contrast maximization, (2) intensity
confidence-based weighted averaging, (3) edge enhancement

Fig. 9 An example of boundary signal and artifact patches. From left to right are two original images that are orthogonal, followed by results
from average [33], maximum [18], uncertainty-based fusion [4], and our algorithm. The green and red boxes are examples of boundary and artifact
patches

Table 2 Evaluation by segmentation

View1 View2 Avg Max UBF Ours

Dice coefficient 0.654 0.575 0.673 0.719 0.594 0.737

Bold numbers indicate best performance

perform a naive segmentation as the following.We first apply
Otsu thresholding [22] to each compounded patch which
contains blood vessels to automatically separate the vessel
boundaries from the background. We then fit an ellipse to
the separated boundary points by the first step to segment the
vessel.

Table 2 shows Dice coefficients [38] comparing each
method against ground truth where ours have the best per-
formance. Figure 10 shows an example of the segmentation
result. This simple adaptive segmentation performs the best
on our compounding results. Since Otsu thresholding is
purely pixel intensity-based thresholding without consider-
ing other information, it is somewhat sensitive to the intensity
of noise in the image. Therefore, better segmentation results
show that our method is better than the prior algorithms at
preserving the vessel walls while suppressing noise and arti-
facts.
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Fig. 10 The result of vessel segmentation. First two images: two orig-
inal images (the algorithm is not able to fit an ellipse on the second
image). Following four images: results by average [33], maximum [18],
uncertainty-based fusion [4], and our algorithm. The last image: seg-
mentation results overlaying on the compounded image synthesized by
our algorithm. It can be seen that the segmentation on the first original

image is flatter because of the missing top and down boundaries, while
the segmentation on the result by maximum is affected by the rever-
beration artifact at the top. Other segmentation results are clearly off,
while the segmentation algorithm fits the vessel boundaries very well
on our result

Conclusion

In this work, we present a new ultrasound compounding
method based on ultrasound per-pixel confidence, con-
trast, and both Gaussian and Laplacian pyramids, taking
into account the direction of ultrasound propagation. Our
approach appears better at preserving contrast at anatomic
boundaries while suppressing artifacts than any of the other
compounding approaches we tested. Our method is espe-
cially useful in compounding problems where the images are
severely corrupted by noise or artifacts, and there is substan-
tial information contained in the dark regions in the images.
We hope our method could become a benchmark for ultra-
sound compounding and inspire others to build upon our
work. Potential future work includes 3D volume reconstruc-
tion, needle tracking and segmentation, artifact identification
and removal, etc.
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