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Mice deficient in endothelial a5 integrin
are profoundly resistant to experimental
ischemic stroke

Jill Roberts1,2, Leon de Hoog1 and Gregory J Bix1,2,3

Abstract

Stroke is a disease in dire need of better therapies. We have previously shown that a fragment of the extracellular matrix

proteoglycan, perlecan, has beneficial effects following cerebral ischemia via the a5b1 integrin receptor. We now report

that endothelial cell selective a5 integrin deficient mice (a5 KO) are profoundly resistant to ischemic infarct after transient

middle cerebral artery occlusion. Specifically, a5 KOs had little to no infarct 2–3 days post-stroke, whereas controls had an

increase in mean infarct volume over the same time period as expected. Functional outcome is also improved in the a5 KOs

compared with controls. Importantly, no differences in cerebrovascular anatomy or collateral blood flow were noted that

could account for this difference in ischemic injury. Rather, we demonstrate that a5 KOs have increased blood-brain barrier

integrity (increased expression of claudin-5, and absent brain parenchymal IgG extravasation) after stroke compared with

controls, which could explain their resistance to ischemic injury. Additionally, inhibition of a5 integrin in vitro leads to

decreased permeability of brain endothelial cells following oxygen-glucose deprivation. Together, these findings indicate

endothelial cell a5 integrin plays an important role in stroke outcome and blood-brain barrier integrity, suggesting that a5

integrin could be a novel therapeutic target for stroke.
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Introduction

In ischemic stroke, a severe reduction in the blood
supply to the brain leads to cell death in a region referred
to as the ischemic core, and hypoxia and metabolic
changes in a surrounding penumbral region that is vul-
nerable to injury and death over time. One strategy to
treat ischemic stroke is to limit the expansion of injury
and death from the initially formed core into the pen-
umbra. Unfortunately, this experimental neuroprotec-
tive approach has stumbled in translation to human
stroke patients (see Kahle and Bix1 for a review) in no
small part due to an evolving understanding of what
defines the ischemic core and penumbra. Indeed, rather
than being the discrete, homogenously defined regions
described above, the core and penumbra appear to be
heterogeneous, each containing islands of ‘‘mini-cores’’
and ‘‘mini-penumbras’’ with differing spatiotemporal
susceptibilities to injury and death after stroke.2

Understanding this complex stroke pathophysiology
may be critical to developing effective therapies.

Integrins are cell surface transmembrane glycopro-
tein receptors for the extracellular matrix (ECM) con-
sisting of non-covalently linked a and b subunits that,
in addition to playing important roles in cell survival,
proliferation, and differentiation throughout the body,
play an essential role in stroke pathophysiology.3–5

In particular, integrins are critical to the endothelial
cell-astrocyte configuration of the blood-brain barrier
(BBB), whose rapid breakdown after stroke leads to
edema, inflammation, and ultimately worsening stroke
injury.6 In this context, integrins ‘‘integrate’’ the ECM,
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endothelial cells, and astrocyte end-feet for proper pos-
itioning and adhesion, which is disrupted after
stroke.7–9 Under normal physiologic conditions, the
BBB is made up of several layers of protection all work-
ing together to restrict the passage of substances
between the blood and brain parenchyma. Tight junc-
tions (TJ), composed predominantly of occludin, zona
occludins, claudin-5, -3, and -12 and junctional adhe-
sion molecules (JAM),10 exist between adjacent endo-
thelial cells and are important for maintaining barrier
function as they prevent paracellular transport and
even restrict the passage of ions.11 Disruption of integ-
rin function not only leads to a breakdown in the BBB
via ECM dysfunction but also has been recently shown
to impact TJ protein expression and BBB permeability.
Specifically, antibody blockade of the b1 family of
integrins (containing several different a subunit pair-
ings) has been shown to decrease expression of clau-
din-5 in brain endothelial cell (BEC) monolayers
in vitro and increase BBB permeability in vivo.12 This
suggests that the b1 integrin family could play an
important role in regulating BBB integrity under
normal and stroke conditions. However, because integ-
rin subunit (a4, a5, a8, b1)-null mice result in embry-
onic lethality, the exact role of specific b1 integrins in
regulating BBB integrity is unknown.13–15

We have previously shown that a protein fragment
of the ECM proteoglycan perlecan, known as domain
V (DV), is rapidly, persistently and consequently gen-
erated in the stroked brain and when systemically
administered in multiple animal models of cerebral
ischemia is neuroprotective and pro-angiogenic.16,17

This may be due, in part, to DV’s interaction with its
receptor a5b1 integrin on BECs and subsequent gener-
ation and release of VEGF.17,18 Furthermore, DV
appears to inhibit chronic post-stroke astrogliosis via
interaction with astrocyte a5b1 integrin.19 These stu-
dies, and the fact that a5b1 integrin is conditionally
upregulated in brain blood vessels after stroke,20 sug-
gest that the a5b1 integrin, in particular, plays an
important role in stroke pathophysiology.

In light of the fact that a5 integrin-null mice are
embryonic lethal (�E10.5) due in part to defects in
their vasculature,13–15 an endothelial-specific a5 integrin
knockout mouse (a5 KO) was created to study the role
of a5 integrin in vascular biology.21 This mouse, which is
viable and has no obvious phenotype,21 exhibits signifi-
cantly delayed brain angiogenesis in response to chronic
cerebral hypoxia22 (8% O2). As angiogenesis is an
important component of post-stroke brain repair but is
preceded by endothelial cell activation and decreased
inter-endothelial cell adhesion, we here used the a5 KO
mouse in a model of middle cerebral artery (MCA)
occlusion to determine the significance of the a5 integrin
in stroke pathophysiology and functional outcome.

Materials and methods

Animals

The experimental protocol was approved by the
Institutional Animal Care and Use Committee of the
University of Kentucky and experiments were performed
in accordance with the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health
as well as the ARRIVE guidelines. All experiments were
performed in a blinded fashion using randomized selec-
tion. Adult (3 months, male) mice which lack expression
of the a5 integrin specifically in endothelial cells (a5f/�;
Tie2-Cre; referred to here as a5 KO) were generated as
described previously15,21 and generously provided by
Richard Hynes (M.I.T., MA, USA). Littermate mice
which do express a5 integrin in endothelial cells and are
negative for Tie2-Cre were used as controls (a5þ/f;
referred to here as Ctrl). Genotyping was performed
using previously described protocols.15,21 All mice were
housed in a climate-controlled room on a 12-h light/
dark cycle and food and water were provided ad libitum.

Stroke model

Ctrl and a5 KO mice were subjected to transient tandem
ipsilateral common carotid artery (CCA)/MCA occlu-
sion for 60min, followed by reperfusion of both arteries
for 1–7 days. Briefly, a small burr hole was made in the
skull to expose the MCA and a metal wire with a diam-
eter of 0.005 inch was placed under the artery. Slight
elevation of the metal wire causes visible occlusion of
the MCA. The CCA was then isolated and occluded
using an aneurysm clip. Diminished blood flow was con-
firmed with Laser Doppler Perfusion Monitor (Perimed,
Ardmore, PA, USA) and only those animals with
a diminished blood flow of at least 80% and re-
establishment of at least 75% of baseline levels were
included in subsequent experimentation. Animal physio-
logic measurements before and after stroke were made
using MouseOx (Starr Life Science, Massachusetts, MA,
USA). Blood was collected on post-stroke day (PSD) 3
for blood gas and ion analysis; done within 30min after
the samples were collected. To confirm stroke size
and location, brains were cut into 2-mm thick coronal
sections and stained with 2,3-triphenyltetrazolium chlor-
ide (TTC; BD, Sparks, MD, USA) on PSDs 1–3.
Alternatively, brains were flash frozen and sectioned
(20mm) to undergo cresyl violet (Sigma) staining.
Infarct size was analyzed using Image J (NIH) and
infarct volume was calculated as,

Infarct Volume ¼ Apparent Infarct

� ðContralateral Hemisphere=Ipsilateral HemisphereÞ
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Animals were excluded from the study if the middle
cerebral or CCA was punctured during wire and clamp
insertion or removal, died following surgery in recovery or
were euthanized before the end of the study due to poor
health. Overall, there is <5% death rate for our stroke
model both following surgery and during behavioral testing.

Behavioral testing

Animals were tested on the Rotor Rod to examine forced
motor coordination. Behavioral testing took place for 3
days prior to stroke surgery (training and baseline meas-
urement) and on PSDs 1 and 7. The mice were placed on
the Rotor Rod for 5min with an increasing acceleration
from 0 to 40 rpm for three trials and the parameters were
set to measure latency in seconds.

Vessel staining and vascular territory

Cerebrovascular anatomy of the a5 KO and Ctrl mice
was measured by intravenous injection of a combin-
ation of two carbon ink dyes as previously described.23

Briefly, papaverine hydrochloride (50mg/kg; Sigma, St.
Louis, MO, USA) was injected intravenously for vessel
dilation just prior to the injection of carbon ink. A
mixture of ink 1 (Fount India, Pelikan, Germany)
and ink 2 (Super Black, Speedball, USA) was intraven-
ously injected at a ratio of 1:9, respectively. After
10min, the brain was removed and fixed in 4% paraf-
ormaldehyde prior to images being taken with a
Moticam 2 (Motic, British Columbia, Canada)
camera and software. Points of anastomoses between
the MCA and the anterior cerebral artery (ACA) were
determined and the total area of the MCA and ACA
was measured using Image J software (NIH).

Blood perfusion imaging

Cortical blood flow was monitored using a blood perfusion
imager (PeriCam PSI System, Perimed) based on Laser
Speckle Contrast Analysis technology. Briefly, the skin
was retracted to expose the skull of the animal and the
imager was positioned above the head. The laser detects
movement in tissue, such as red blood cells, and creates
speckle contrast. Measurement in the contrast fluctuations
provides information about blood perfusion in the brain.
Baseline (5min) measurements of blood flow were first
obtained and the animal was then subjected to the stroke
model. Immediately following occlusion of the CCA/
MCA, blood flow measurements were taken for another
5min. Measurements were also recorded following reper-
fusion of the CCA/MCA, confirming the re-establishment
of blood flow. Only animals with at least a 30% decrease in
total blood perfusion following occlusion were included in
subsequent analysis. Regions of interest equal in size

(encompassing the visible region of the MCA) were used
to determine the perfusion in the ipsilateral and contralat-
eral hemispheres of the Ctrl and a5 KO mice. Blood per-
fusion is expressed in arbitrary units (Perfusion Units).

Tissue histology and immunohistochemistry

On PSDs 1–3, brains were removed, flash frozen and
stored at �80�C until use. Brains were cut into 20 -mm
sections using a cryostat and mounted onto slides.
Sections were fixed with ice cold acetone prior to incubat-
ing in blocking buffer (5% BSA in phosphate buffered
saline (PBS) with 0.1% Triton X-100) for 1h at room
temperature. The sections were then incubated overnight
at 4�C in the primary antibody against IgG (1:1000; Life
Technologies). Sections were washed and incubated with a
secondary antibody (HRP anti-mouse, Life Technologies)
for 1h at room temperature. Sections were washed and
incubated with DAB (Vector Labs, Burlingame, CA,
USA) for 1h prior to counterstaining with hematoxylin
(Fisher Scientific, USA). Alternatively, sections were
stained with primary antibodies against fluorescein isothio-
cyanate (FITC)-conjugated-tomato lectin (1:200; Vector
Labs), glial fibrillary acidic protein (GFAP) (1:500,
Sigma), terminal deoxynucleotidyl transferase dUTP nick
end labeling (TUNEL) (Apoptag Fluorescien kit,
Millipore), or cresyl violet (Sigma) overnight at 4�C.
Slides were then coverslipped with fluorescent mounting
media (Vector Labs) or xylene-based mounting media
(Sigma) and images were captured using a Nikon Eclipse
Ti microscope and software (Nikon, Melville, NY, USA).

Gene expression

On PSDs 1–3, brains were removed and cut into 2-mm
thick sections. The sections were cut to separate the two
hemispheres and the ipsilateral hemisphere was
trimmed to remove striatum (leaving cortical ischemic
core and penumbra). All ipsilateral sections/animal
were combined, and tissue was homogenized in Trizol
(Life Technologies). RNA was extracted according to
the instructions of the RNA extraction kit manufac-
turer (Life Technologies). RNA was converted to
cDNA using a high capacity cDNA reverse transcrip-
tion kit (Applied Bioscience, Grand Island, NY, USA).
Claudin-5 and 18S (control) genes were analyzed using
Real-time PCR (ViiA7; Life Technologies). Data were
analyzed comparing a5 KO to Ctrl mice and are pre-
sented as a % of control (sham mice).

Oxygen-glucose deprivation (OGD)

Stroke was modeled in vitro via OGD. C57/Bl6 mouse
BECs17 (immortalized; Ctrl) were plated and once con-
fluent incubated in either glucose-depleted Dulbecco’s

Roberts et al. 87



Modified Eagle Medium supplemented with 1% FBS,
1� antibiotic/antimycotic and 1% L-glutamine (Life
Technologies) or control medium which contained
4.5 g/l glucose Dulbecco’s Modified Eagle Medium
identically supplemented with the aforementioned com-
pounds. Cells undergoing OGD were then placed in a
Modular Incubator Chamber (Billups-Rothenberg Inc.,
CA, USA) and flushed with N2 for 5min to displace O2

levels, whereas the control plate (normoxic conditions)
was not flushed with N2, but left in O2 for 5min.
Subsequently, the chamber was moved to an incubator
at 37�C and 5% CO2 for 8 h. The control plate was
placed in the same incubator. At the end of the OGD
period, cells were re-oxygenated and re-gluconated for
24 h by exchanging the glucose-depleted medium (or
control medium) back for the normal cell medium
and placed into the incubator.

Permeability assays

BECs (as above) were plated on Transwell Permeable
plates (Corning, Tewksbury, MA, USA) at a density of
50,000 cells/insert and incubated at 37�C until a confluent
monolayer formed. Cells were then exposed to OGD for
8h and allowed to re-oxygenate/re-gluconate for 24h.
Following 4h of re-oxygenation, cells were treated with
the small peptide a5b1 integrin inhibitor ATN-161
(10mM, MedKoo Biosciences, Chapel Hill, NC) or vehi-
cle for the remaining re-oxygenation period. Inserts were
then treated with FITC-dextran (4kDa, 10mg/ml, Sigma-
Aldrich, St. Louis, MO) and incubated at 37�C for
60min. Samples (200ml) from the wells were collected at
30 and 60min and transferred to a 96-well plate. The
volume collected from the well was replaced with an
equal volume of cell medium. Subsequently, a fluorescent
plate reader was used to measure fluorescence of these
samples at 528nm. Here, increased fluorescence indicates
an increase in permeability. Additionally, permeability
was indirectly determined by measuring trans-endothelial
electrical resistance (TEER) across the cell monolayer
using an Epithelial Volthommeter (World Precision
Instruments, Sarasota, FL, USA). Here, decreased resist-
ance indicates an increase in permeability.

Statistical analysis

Experiments were conducted in accordance to the STAIR
recommendations24 and, where applicable, were per-
formed in a blinded and randomized fashion. All mea-
sured variables are presented as mean� SEM from a
minimum of three independent experiments. We con-
ducted a power analysis to ensure adequate subject num-
bers as detailed in the figure legends for each study.
Analysis of results for comparison between Ctrl and a5
KO groups was performed using a Student’s t-test. For

time course comparisons, a two-way repeated measures
analysis of variance (ANOVA) was used. Significance is
defined as a *p� 0.05, **p� 0.01, and ***p� 0.001.

Results

�5 KO mice have smaller infarct volumes
following stroke

Ctrl and a5 KO mice underwent tandem transient ipsilat-
eral CCA/MCA occlusion surgery with reperfusion of 1–3
days. On PSDs 1, 2, or 3, brains were analyzed using TTC
stain and the volume of white, TTC negative area in the
cortex was measured (Figure 1(a) and (b)). As expected,
the infarct volume in the Ctrl animals increased with time,
reaching the peak infarct volume by PSDs 2–3.17 While
the infarct volume in a5 KO animals appeared to be small
and of similar size to the Ctrls on PSD 1, to our surprise,
the infarct remained similarly sized on PSD 2 and was
virtually non-detectable on PSD 3. A significant
(p< 0.05) difference between the Ctrl and the a5 KO ani-
mals is observed on PSD 2 (37.9� 2.6 vs. 5.2� 1.3 mm3,
respectively) and PSD 3 (38.3� 2.6 vs. 0.1� 0.6 mm3,
respectively) (Figure 1(b)). Of note, no significant differ-
ences in vital signs (heart rate, temperature) immediately
before or after stroke were noted, nor were there any
significant differences in pre-stroke or PSD body weight
(data not shown). General physiological parameters
(blood gas analysis) were also not different between Ctrl
and a5 KO animals (data not shown).

�5 KO animals have better post-stroke function

To determine whether functional differences exist between
Ctrl and a5 KO animals after stroke, forced motor coord-
ination was studied using a Rotor Rod. Baseline measure-
ments were obtained prior to MCA/CCA occlusion model
(no significant differences were noted in raw baseline per-
formance on the rotor rod between the two groups) and
the animals were again tested on PSDs 1 and 7. By PSD 7,
the a5 KO animals had shown a significant (p< 0.01)
improvement over their own baseline levels (152.4� 10.9
vs. 100.0� 6.7% baseline, respectively), but more import-
antly had a significantly (p< 0.05) longer latency on the
Rotor Rod when compared with the Ctrls (152.4� 10.9 vs.
114.5� 10.4% baseline, respectively), but not when com-
pared with naı̈ve animals (data not shown), at PSD 7
(Figure 1(c)), indicating better post-stroke functional out-
come with a return to standard levels.

Cerebral vasculature does not appear different
between Ctrls and �5 KOs

We next used several approaches to determine whether
alterations in cerebral vasculature between Ctrl and
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a5 KO mice could contribute to the differences we
observed in the infarct volumes. First, we observed
blood vessels in the brain tissue via tomato lectin
(T-Lectin) immunohistochemistry and found no signifi-
cant difference in cerebrovascular density between the
groups (100.0� 3.8 vs. 92.8� 6.5% Ctrl) (Figure 2(a)).
We then examined the architecture and cerebrovascular
territory of the MCA and ACA. Following injection of
the blood vessel dilator, papaverine, we intravenously
injected carbon black ink to visualize the cerebral blood
vessels.23 Figure 2(b) shows the territory of the MCA
(shaded pink) and when quantified demonstrates that
there is no significant difference in the MCA territory
area between the Ctrl and a5 KO (21.5� 0.8 vs.
19.9� 0.7 mm2, respectively) animals. There was also
no difference in the territory area of the ACA (data not
shown). Therefore, no differences in brain blood vessel
density or cerebrovascular anatomy exist that could
otherwise explain the differences observed in infarct
volume between the Ctrl and a5 KO animals.

Likewise, to determine whether potential differences
in collateral blood flow to the MCA brain territory

could exist between the Ctrl and a5 KO mice, which
might also explain the infarct volume differences, we
observed cortical blood flow in real time using a
PeriCam PSI System imager. This system measures
the movement of red blood cells in the cortex using a
speckle laser, providing information about blood per-
fusion over time. Baseline measurements were recorded
over a 5-min period prior to subjecting the animals to
the MCA/CCA occlusion model. Immediately follow-
ing vessel occlusion, perfusion measurements were rec-
orded for another 5-min period. After 60min of
occlusion, the animals were re-perfused. Figure 2(c)
shows representative images of cortical perfusion in
Ctrl and a5 KO animals. A significant (p< 0.05)
decrease in blood flow within the ipsilateral hemi-
sphere is observed following MCA/CCA occlusion in
both Ctrl (33.99% decrease from baseline) and a5 KO
(33.97% decrease from baseline) animals (Figure 2(c)).
Although blood perfusion is slightly higher in the a5
KO mice, it is important to note that no significant
difference in overall perfusion (baseline levels, post-
occlusion levels, or reperfusion levels) is observed

Figure 1. Infarct volume in a5 KOs is significantly smaller than Ctrls following transient MCA occlusion. (a) Representative images of

Ctrl and a5 KO brain sections stained with TTC on PSD 1–3. (b) Quantification of TTC negative (white) area in sections from Ctrl and

a5 KO mice on PSDs 1–3. *p< 0.05 compared to Ctrl animals at same time point. N¼ 12. (c) a5 KO animals have improved functional

behavior compared to Ctrls. Graph shows latency (% of baseline) on Rotor Rod functional test prior to stroke and on PSDs 1 and 7.

The a5 KO animals have a significant improvement in latency compared to the Ctrl animals. *p< 0.05 compared to Ctrls at same time

point and **p< 0.01 compared to a5 KO baseline values. N¼ 6.

MCA: middle cerebral artery; TTC: triphenyltetrazolium chloride; PSD: post-stroke day.

Roberts et al. 89



between the two groups. This suggests that there is no
significant difference in collateral flow, which would
contribute to the differences observed in infarct volume.

�5 KO mice have less neuronal pathology and cell
death following stroke

To better visualize potential differences in brain histo-
pathology between stroked Ctrl and a5 KO mice,
we examined cresyl violet–stained brain sections from
these animals on PSDs 1 and 3 (Figure 3(a)). On PSD 1,

where similar volume ‘‘infarcts’’ were identified by
TTC stain, neurons appear small, pyknotic, and less
dense in the Ctrl brains compared with the a5 KO
brains. In fact, neurons of the ipsilateral hemisphere
in the a5 KO animals look very similar to the
neurons of the contralateral hemisphere, indicating
little to no change in morphology following stroke.
Interestingly, there is little to no apoptotic cell death
in the tissue of a5 KOs on PSD 1 (378.5� 99.5 pixels)
or PSD 3 (297.1� 121.2 pixels) compared with Ctrl ani-
mals (PSD 1, 6010� 1829 pixels; PSD 3, 25,053� 1653

Figure 2. Cerebral vasculature is similar between Ctrl and a5 KO animals. (a) Representative images of cortical brain sections

immunostained with T-Lectin to visualize endothelial cells/blood vessels in Ctrl and a5 KO animals. Graph is quantification of T-Lectin

positive pixels and indicates no significant difference between the groups. Scale bar¼ 50mm. N¼ 3. (b) Representative images of brains

(left hemisphere) injected with carbon black ink to visualize the blood vessels. MCA territory (shaded pink) was determined by finding

anastomoses points between the MCA and ACA and then outlining MCA region. Graph shows quantification of MCA area, with no

significant difference between groups. Scale bar¼ 1 mm. N¼ 9. (c) Representative images of Laser Speckle analysis of blood perfusion

in Ctrl and a5 KO animals. Baseline and occlusion images show areas of red as high blood perfusion and areas of blue as low blood

perfusion. Graph indicates quantification of blood perfusion in MCA regions of interest (black circle) in ipsilateral and contralateral

hemispheres. A significant decrease is observed following occlusion in the ipsilateral hemisphere, but no difference is observed

between Ctrl and a5 KO animals. *p< 0.5 compared to baseline measurements. N¼ 6.

MCA: middle cerebral artery; ACA: anterior cerebral artery.
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pixels), as observed by TUNEL staining (Figure 3(b)).
Taken together, a5 KO animals appear to be protected
against cell death following a stroke, unlike the Ctrl
animals.

To examine whether the activation of astrocytes
plays a role in the infarct size differences observed
between these animals, we performed immunohisto-
chemistry for GFAP. On PSD 3, Ctrl animals show
an apparent lack of GFAP staining in the infarct core
region (Figure 3(c)), while tissue surrounding the core
maintains a normal (non-activated) expression level.
In comparison, the a5 KO animals have an even dis-
tribution of GFAP staining throughout the cortex,
including the ‘‘infarcted’’ region (Figure 3(c)).
Therefore, while there are differences in GFAP expres-
sion between WT and a5 KO mice, there does not
appear to be an increase in activated astrocytes at
this time point, suggesting the differences in infarct
volume between these mice is not due to astrocyte
activation and subsequent reduction in TTC negative
staining.

Changes in BBB function

The ECM and its integrin receptors contribute to the
integrity of the BBB. After stroke, disruption/degrad-
ation of the ECM and alteration of its interaction with
integrins contributes to the breakdown of the BBB
and subsequent edema, inflammatory cell infiltration,
and neuronal death. This cascade of events is a major
contributor to the expansion of ischemic injury and
cell death that occurs over time after stroke. As our
results suggest that ischemic injury is minimal and
does not expand over time in a5 KO mice, we
hypothesized that this could be due to differences in
BBB integrity in these mice after stroke. To test this
hypothesis, we performed IgG immunohistochemistry
on brain sections from Ctrl and a5 KO animals on
PSDs 1–3. IgG (approximately 150 kDa) will penetrate
brain parenchyma only if the BBB is disrupted. We
were unable to detect any IgG in the brain paren-
chyma of the a5 KO mice at any PSD, while it was
abundant in the Ctrl brains at PSDs 1–3 (Figure 4(a)).
This suggests that the BBB remains relatively intact in

Figure 3. Significantly less cell death occurs in the a5 KO animals compared with the Ctrls. (a) Representative images of cresyl violet

staining in cortical regions of brains from Ctrl and a5 KO animals following stroke. Neurons within infarct region of Ctrl mice are

small, pyknotic, and fewer in number compared with a5 KOs, which appear to have normal looking neurons, when compared with the

contralateral hemisphere. Scale bar¼ 50 mm. N¼ 6. (b) TUNEL (green) staining of infarct region on PSDs 1 and 3 and quantification of

TUNEL-positive pixel staining indicate an increase in cell death overtime in the Ctrl animals with very little cell death observed in the

a5 KOs. DAPI (blue) counterstain. Scale bar¼ 50 mm. *p< 0.05, **p< 0.01, N¼ 6. (c) GFAP staining of infarct region ( Þ�ð ) on PSD 3

shows lack of astrocytes in infarct core of Ctrl tissue and normal distribution of astrocytes in a5 KO tissue. Scale bar¼ 50 mm. N¼ 3.

PSD: post-stroke day.
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the a5 KO mice after stroke compared with Ctrl
animals.

Next, as pan-b1 integrin inhibition has been directly
linked to decreased TJ protein claudin-5 expression and
decreased BBB integrity,12 we hypothesized that endo-
thelial cell selective KO of a5(b1) integrin could
increase BBB integrity by affecting post-stroke TJ pro-
tein expression. Using real-time PCR, we examined the
TJ protein claudin-5 after stroke and determined that
while baseline claudin-5 gene expression levels are simi-
lar in sham animals between Ctrl and a5 KO mice,
stroke causes a significantly smaller drop in claudin-5
gene expression in a5 KO mice on PSD 1 compared
with Ctrl levels (0.81� 0.03 vs. 0.52� 0.08 fold, respect-
ively) (Figure 4(b)). These data suggest that a5 KO
mice have differently regulated BBB components after

stroke that may contribute to its increased post-stroke
integrity.

Inhibition of �5 integrin maintains barrier integrity
in vitro after OGD

To further investigate the effects of a5 integrin on brain
endothelial barrier function, we examined in vitro BEC
monolayer permeability using a small peptide inhibitor
of a5b1 integrin, ATN-161.25 Employing a TEER assay
(an indirect measure of cell monolayer permeability
where greater TEER is indicative of lower permeability,
etc.), we found that BECs treated with ATN-161 under
normoxic conditions had similar TEER values as PBS
vehicle (Ctrl) treated cells (Figure 5(a)). However, fol-
lowing OGD (8 h) and 24 h of re-oxygenation to mimic

Figure 4. BBB integrity is preserved in a5 KO animals compared with Ctrls following cerebral ischemia. (a) Representative images of

brain tissue (infarcted region) stained for IgG (brown) and counterstained with hematoxylin (purple) in Ctrl and a5 KO animals on

PSDs 1–3. Scale bar¼ 50 mm. N¼ 3. (b) Gene expression of Claudin 5 in Ctrl and a5 KO tissue (ipsilateral hemisphere) following

cerebral ischemia. A significant decrease is observed on PSD 1, but the decrease in a5 KO tissue is not as great as in Ctrls. *p< 0.05

compared to Ctrl sham and #p< 0.05 compared to Ctrl animals at same time point. N¼ 3.

BBB: blood-brain barrier; PSD: post-stroke day.
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the ischemia/reperfusion of stroke, Ctrl cells, but not
ATN-161-treated cells, had significantly reduced
TEER (greater permeability) compared with normoxic
conditions (Figure 5(a)). Next, BEC monolayer perme-
ability was directly measured with FITC-dextran
(Figure 5(b)). Under normoxic conditions, the ATN-
161-treated BECs showed lower levels of fluorescence
(lower permeability) compared with Ctrl BECs.
Following OGD, Ctrl cells significantly increased their
permeability while cells treated with ATN-161 main-
tained levels consistent with normoxic conditions
(Figure 5(b)). Taken together, blockade of a5 integrin
on endothelial cells helps maintain a tighter barrier
under both normoxic and OGD conditions.

Discussion

In this study, we demonstrate that mice with an endo-
thelial cell selective deletion of a5 integrin have pro-
foundly smaller infarcts and functional deficit after
transient MCA/CCA occlusion. Importantly, this
apparent resistance to ischemic injury cannot be
explained by differences in vital statistics, blood gas,
serum electrolytes, cerebral vasculature (macrovessels
on the brain surface or smaller blood vessels within
the brain parenchyma in agreement with the angiogenic
and vasculogenic analysis in the original report of these
animals21) blood flow, or infiltration or activation of
GFAP cells into the stroke affected area, as none of
these variables significantly differ between Ctrl and a5
KO animals. Rather, our results suggest that a5 KO
mice resist ischemic stroke injury due to greater post-
stroke BBB integrity, resulting in less BBB leakage and
resultant expansion of ischemic injury. This is demon-
strated by absent IgG extravasation into the brain par-
enchyma in a5 KO mice after stroke, relatively
increased levels of the TJ protein claudin-5 compared
with Ctrls, as well as decreased permeability in cells
treated with the a5b1 integrin inhibitor ATN-161
under both normoxic and OGD (stroke-like) condi-
tions. To the best of our knowledge, this is the first
study to link endothelial cell a5b1 integrin to resistance
to ischemic injury via increased BBB integrity.

The importance of the BBB for maintaining
the homeostasis of the brain is well known.
Cerebrovascular permeability is controlled by the endo-
thelial cells and their TJs, proteins, and integrins of the
ECM, as well as pericytes and astrocytes. During ische-
mia, permeability of the BBB increases due to dysfunc-
tion, disassembly (e.g. of TJ proteins), and differential
regulation (e.g. decreases in TJ expression and increases
in ECM-processing proteases) in one or all of these
factors. As described by Sandoval and Witt,26 three
phases of paracellular permeability may occur follow-
ing post-stroke reperfusion; an initial reperfusion per-
meability associated with re-establishment of blood
flow, and a ‘‘bi-phasic’’ response, which may occur
hours to days following injury. This increase in perme-
ability may contribute to the continuously evolving
infarct, which may occur over a period of days depend-
ing on the form of animal stroke model used for assess-
ment. For example, we show here, as well as in our
previous work17 and the work of others27,28 that the
size of the infarct gradually increases in size following
transient MCA/CCA occlusion, becoming maximal by
PSD 3. In contrast, a5 KO mice in this stroke model
show limited early injury (TTC-negative area) that both
fails to expand and appears to rapidly regress, possibly
due to a tightening of the BBB and a decrease in the
number of phasic events. Importantly, while TTC ana-
lysis suggests that the size of the infarct between Ctrls

Figure 5. a5 integrin inhibition maintains barrier integrity. (a)

TEER permeability assay of PBS vehicle-treated (Ctrl) and ATN-

161-treated endothelial cells under normoxic or OGD condi-

tions. Graph presented in % change from Ctrl normoxic condi-

tions. **p< 0.01 and ***p< 0.001 compared to Ctrl. N¼ 3. (b)

FITC-dextran permeability assay of Ctrl and ATN-161-treated

endothelial cells under normoxic or OGD conditions. Graph

presented in % change from Ctrl normoxic conditions. **p< 0.01

and ***p< 0.001 compared to Ctrl. N¼ 3.

TEER: trans-endothelial electrical resistance; OGD: oxygen-glu-

cose deprivation.
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and a5 KOs appears to be similar on PSD 1, our cresyl
violet and TUNEL stain analysis (Figure 3) demon-
strates that the TTC-negative area on PSD 1 in the
a5 KO mice actually contains few pyknotic and apop-
totic cells, which persists out to PSD 3. These seemingly
discrepant results may be due to the fact that while
TTC staining is traditionally used as a measure of
stroke infarct area, i.e. dead cells, it is actually a meas-
urement of mitochondrial functional activity. Likewise,
we did not detect any significant increase in other cell
types, such as GFAP-positive astrocytes, into the ipsi-
lateral brain on PSDs 1–3 that could restore TTC-posi-
tive signal to this area and thereby otherwise explain
this result. Therefore, we conclude that this TTC-nega-
tive area contains stressed, but surviving cells which
produce an insufficient level of formazan (TTC stain)
to be detected macroscopically on PSD 1,29 but, in the
absence of continued insult secondary to a more stable
BBB, gradually recover and are again TTC positive. In
fact, the ischemic core and penumbra is a heteroge-
neous region, with pockets of both dead and live
cells.2 Therefore, the permeability of the BBB over
time may play a large role in the survival of injured
tissue following stroke, particularly so in our transient
stroke model with a slowly evolving infarct. For this
reason, studies employing stroke models with a more
rapidly evolving infarct size, including permanent
occlusion models, should shed further light on the
nature of a5 KO mice resistance to ischemic injury.
Likewise, serial imaging experiments (ongoing in our
lab) are necessary to further evaluate the temporal
nature of the infarct (or lack thereof) within each indi-
vidual stroked a5 KO mouse.

A potential link between the b1 family of integrins
and BBB permeability has recently been suggested.12 In
these studies, treatment with the pan-b1 integrin func-
tion blocking antibody Ha2/5 increased primary BEC
monolayer permeability in vitro while simultaneously
decreasing their claudin-5 expression at the cell surface.
Likewise, in vivo stereotactic injection of Ha2/5 into the
striatum of mice resulted in increased IgG extravasa-
tion into the brain parenchyma as compared with
stereotactically injected IgM control. However, the
use of a pan-b1 integrin functioning blocking antibody
in these studies by design made it impossible to deter-
mine the relative contribution of any particular a(x)b1
integrin to this BBB permeability effect. Furthermore,
the potential for this antibody to interact with and
block the function of b1 integrin expressed on add-
itional cell types in addition to endothelial cells when
stereotactically injected into the brain striatum, and
thereby also impact BBB permeability, could not be
completely ruled out. For these reasons, we chose to
focus on a specific b1 integrin whose deletion was lim-
ited to endothelial cells.

Of the various b1 integrin receptors known to be
expressed in BECs, we chose to focus on a5b1 for a
number of reasons. Although highly expressed in
brain microvasculature during development, a5b1
integrin is virtually absent in these cells in the mature
brain. However, a5b1 integrin expression is signifi-
cantly upregulated in BECs following global hypoxia
or ischemic stroke22,30 (in peri-infarct regions). In both
cases, it has been shown to have an important role in
post-injury angiogenesis22 and endothelial cell selective
a5 KO mice (the same as used in our study) have a
significantly delayed brain angiogenic response follow-
ing global cerebral hypoxia.22 Additionally, we have
identified a5b1 integrin as a key receptor for the bene-
ficial angiogenic effects of perlecan domain V in treat-
ing experimental ischemic stroke.17 Therefore, deletion
of a5 integrin on endothelial cells would be predicted to
have a negative impact on angiogenesis following cere-
bral ischemia, leading to deficient post-stroke neurore-
pair and worse functional outcomes. Indeed, it was our
expectation to demonstrate this when we initially sub-
jected the a5 KO mice to MCA occlusion rather than to
discover any potential effects on the extent of ischemic
injury in these mice. However, endothelial cell activa-
tion and associated ECM proteolysis (via MMP2 and
other proteases) that occurs after ischemic stroke and
as an early stage of angiogenesis all contribute to
increased BBB permeability. Therefore, it stands to
reason that if post-stroke endothelial cell upregulation
of a5b1 integrin is a component of this endothelial cell
activation, ECM proteolysis and subsequent angiogen-
esis, it also has the potential to significantly contribute
to the resultant decreased integrity of the BBB and
expansion of injury that occurs. In this light, our results
support the novel conclusion that BEC a5b1 integrin
upregulation after ischemic stroke is a component of
endothelial cell activation that directly contributes to
post-stroke breakdown of the BBB and resultant wor-
sening of ischemic injury. Here, we report that inhib-
ition of a5b1 on BECs show decreased permeability
under OGD conditions compared with Ctrl cells.
These results were also observed under normoxic con-
ditions when measured by FITC-dextran (4 kDa) versus
TEER. Discrepancies in the normoxic condition
between these methods may possibly be due to differ-
ences in detection sensitivity. Ultimately, these results
indicate that inhibition of a5 integrin on endothelial
cells lead to a tighter barrier in vitro. In the a5 KO
mouse, BECs may be resistant to activation after
stroke as a result of their inability to upregulate a5b1
integrin, resulting in less of a decrease in claudin-5,
contributing to or resulting in retained BBB integrity
and ultimately minimal ischemic injury. Likewise, the
delayed, but ultimately not absent brain angiogenesis
that was observed by Li et al.22 in the a5 KO mice after
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continuous exposure to global hypoxia might indicate a
similar resistance to hypoxia-induced endothelial cell
activation that is only gradually overcome by the con-
tinually present (over several days) hypoxic conditions.
Ultimately, a variety of BBB components (other TJ
proteins, markers of permeability, etc.) must be exam-
ined to better understand the link between a5b1 integ-
rin and BBB integrity.

Our results with the a5 KO mouse suggest that brain
endothelial a5b1 integrin could represent a novel thera-
peutic target in the acute or subacute phase after ischemic
stroke. However, the timing of such a therapy (i.e. to
stabilize the BBB and minimize injury in the short term
without impeding more chronic angiogenic neurorepair)
as well as the ability to selectively target endothelial cells
may represent challenges to such a treatment strategy.
Indeed, in our own previous work, intravenous treatment
with a5b1 integrin function blocking antibody on PSDs
1–3 after transient MCA occlusion in wild-type mice
resulted in slightly (but significantly) larger ischemic
infarcts on PSDs 2 and 3 and diminished peri-infarct
angiogenesis on PSDs 5–7.17 This seemingly contradictory
effect of a5b1 integrin blockade on ischemic infarct size is
likely due to the experimental design used in the previous
study—a systemic route of administration in combination
with an antibody inhibitor that would non-cell selectively
bind to and inhibit the a5b1 integrin wherever it encoun-
tered it throughout the body (i.e. not limited to endothe-
lial cells), an especially important consideration as a5b1 is
expressed in many different cell types throughout the
body such as platelets and chondrocytes.31,32 In support
of this conclusion, preliminary studies in our lab with
systemic administration of ATN-161, a peptide a5b1
integrin inhibitor that specifically targets and inhibits acti-
vated a5b1 (i.e. not the vast majority of quiescent a5b1
integrin throughout the body) integrin25,33 24h after
MCA occlusion in Ctrl mice mimics the results of dimin-
ished ischemic injury seen in the a5 KO mouse in this
report. This suggests that selective targeting of activated
a5b1 integrin as occurs in peri-infarct vasculature may be
a valid therapeutic approach for stroke worthy of further
investigation.

In conclusion, we report for the first time that mice
with selective endothelial cell knockout of a5 integrin
are resistant to stroke injury. The lack of infarct
observed by PSD 3 may be due to maintenance of the
BBB integrity, unlike the Ctrl animals, which experi-
ence increased BBB permeability. It is possible that
the absence of a5 integrin decreases the number of
BBB phasic opening events, therefore decreasing the
potential for secondary injury by infiltrating cells and
molecules, limiting injury and affording rapid recovery.
Further studies will expand our knowledge of the role
this integrin plays in BBB integrity and its potential as a
novel stroke therapeutic target.
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