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Abstract

The circadian clock is a complex system that plays many important roles in most organisms.

Previously, many mathematical models have been used to sharpen our understanding of

the Arabidopsis clock, which brought to light the roles of each transcriptional and post-trans-

lational regulations. However, the presence of both regulations, instead of either transcrip-

tion or post-translation, raised curiosity of whether the combination of these two regulations

is important for the clock’s system. In this study, we built a series of simplified oscillators

with different regulations to study the importance of post-translational regulation (specifi-

cally, 26S proteasome degradation) in the clock system. We found that a simple transcrip-

tional-based oscillator can already generate sustained oscillation, but the oscillation can

be easily destroyed in the presence of transcriptional leakage. Coupling post-translational

control with transcriptional-based oscillator in a feed-forward loop will greatly improve the

robustness of the oscillator in the presence of basal leakage. Using these general models,

we were able to replicate the increased variability observed in the E3 ligase mutant for both

plant and mammalian clocks. With this insight, we also predict a plausible regulator of sev-

eral E3 ligase genes in the plant’s clock. Thus, our results provide insights into and the plau-

sible importance in coupling transcription and post-translation controls in the clock system.

Author summary

For circadian clocks, several current models had successfully captured the essential

dynamic behavior of the clock system mainly with transcriptional regulation. Previous

studies have shown that the 26S proteasome degradation controls are important in main-

taining the stability of circadian rhythms. However, how the loss-of-function or over-
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expression mutant of this targeted degradations lead to unstable oscillation is still unclear.

In this work, we investigate the importance of coupled transcriptional and post-transla-

tional feedback loop in the circadian oscillator. With general models our study indicate

that the unstable behavior of degradation mutants could be caused by the increase in the

basal level of the clock genes. We found that coupling a non-linear degradation control

into this transcriptional based oscillator using feed-forward loop improves the robustness

of the oscillator. Using this finding, we further predict some plausible regulators of Arabi-

dopsis’s E3 ligase protein such as COP1 and SINAT5. Hence, our results provide insights

on the importance of coupling transcription and post-translation controls in the clock

system.

Introduction

The circadian clock is an endogenous time-keeping mechanism in cells that anticipates daily

changes in the environment [1–4]. It controls the daily rhythm of many biological processes

[5–7] and disruption of the clock has been associated with many disadvantageous traits [8–

11]. Like many eukaryotes, in the Arabidopsis clock, the core oscillator is governed by coupled

transcription and translation feedback loops (TTFL) [12]. The transcriptional circuit consists

of several important genes such as CIRCADIAN CLOCK-ASSOCIATED1 (CCA1), LATE
ELONGATED HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION 1 (TOC1), PSEUDO-
RESPONSE REGULATOR 9 (PRR9), PRR7, and PRR5 [12]. Experimentally, CCA1 and LHY
genes were found to repress the expression of TOC1, PRR9, PRR7, and PRR5 [13–15], whereas

in turn, all of them repressed CCA1 and LHY expression [16–19]. Furthermore, TOC1 and

PRR5 can repress PRR9 and PRR7 expressions [17,20]. Together, they formed a 3-node loop of

negative regulation, the repressilator [21]. The core repressilator motif is coupled with positive

feedback loops, leading to several interesting properties [22–24].

For the post-translational process, several regulations, such as protein–protein interaction

[25,26], subnuclear localization [27], phosphorylation [28], and 26S proteasome degradation

[29,30], have been reported in the past decades. Among these many regulations, the 26S pro-

teasome degradation pathway, also known as ubiquitin-proteasome system (UPS), attracts our

attention. UPS involves in almost all aspects of plant life cycle, such as root elongation, light

response, flowering time, seed development and also biotic and abiotic stress (for comprehen-

sive review, see [31,32]). Experimentally, almost all important clock genes, including CCA1
[33], LHY [34,35], TOC1 [29], PRR9 [36], PRR7 [37], PRR5 [38], GIGANTEA (GI) [39],

EARLY FLOWERING 3 (ELF3) and CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1)

[40], were found degraded through the 26S proteasome degradation pathway. These observa-

tions imply that the 26s proteasome degradation pathway is important in the Arabidopsis clock

system.

Remarkably, such degradation control is also found in other clock systems such as mam-

mals, flies, and fungi [2–4,41]. In the mammalian clock, two important clock components,

cryptochrome (CRY) and period (PER), are also degraded through the 26S proteasome degra-

dation pathway. CRY protein is targeted for proteasomal degradation by two different F-

box proteins, Fbxl3 and Fbxl21 [42–46]. However, mutations in these two E3 ligase proteins

did not alter the behavior of circadian rhythms markedly as compared with phenotypes that

were caused by mutations in other clock genes [47]. A recent study showed that alteration of

β-Trcp1 and β-Trcp2 proteins, other F-box proteins that will trigger the degradation of PER
protein, severely altered the clock’s function. In the β-Trcp double-mutant mice, the oscillation
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of many clock genes are highly unstable, as indicated by the greatly increased variability in cir-

cadian rhythm [47].

The striking increase in variability of E3 ligase mutant plant has also been seen in the Arabi-
dopsis clock. Previously, an F-box protein, ZEITLUPE (ZTL), was found involved in target deg-

radation of both PRR5 and TOC1 [29,38]. Somers et al. showed that mutation of ZTL protein

would greatly increase the variability of both amplitude and period of circadian oscillations

[30]. To the best of our knowledge, why this mutation can lead to high variability in the plant’s

clock is still unknown. For the mammalian clock, D’Alessandro et al. proposed that such

unstable circadian rhythms in β-Trcpmutant mice may come from loss of nonlinear degrada-

tion of PER protein [47]. However, why such loss of nonlinear degradation can lead to unstable

behavior is still not clear.

Hence, in this study, we developed a series of simplified models to study the importance of

targeted degradation in the clock system. Our results showed that basal leakage in the tran-

scription of clock genes leads to unstable behavior of the clock system, which can be stabilized

by the degradation control. Here, we showed that basal leakage could easily reduce the robust-

ness of an oscillator, especially for a pure transcriptional controlled oscillator. However, com-

bining transcriptional and post-translational controls can greatly improve the robustness of

the oscillator by providing another layer of regulation such that the system can still push the

protein level back, despite leakage in the mRNA level. Moreover, we also found that coupling

E3 ligase using a coherent feed-forward loop (CFFL) can give better control to the basal leak-

age as compared with other network motifs. Using these general models, we have successfully

replicated the observed experimental results of the ZTL and β-Trcpmutant conditions and

also predict plausible regulators of several E3 ligases in Arabidopsis. Therefore, our results pro-

vide plausible importance in coupling transcription and post-translation controls in the clock

system.

Results

Transcription-based oscillators have lower noise but are susceptible to

transcriptional leakage

In this study, we built a series of simple oscillator systems based on the repressilator, with dif-

ferent regulation controls (Fig 1A). A repressilator is a circular three-inhibitor feedback loop

that was originally constructed as a synthetic circuit and capable of generating oscillation in

Escherichia coli [21]. However, in recent years, repressilators can also be found in many oscil-

lating systems such as Arabidopsis [48] and mammalian [49] circadian clocks. The system has

also been widely used to study many interesting properties of an oscillator such as tunability

[50] and switchability [51,52]. Therefore, we used a repressilator to study the effect of different

regulation controls in the oscillator, including transcription (M1), post-translation (M2), tran-

scription with positive auto-regulation (M3), post-translation with positive auto-regulation

(M4), and combined transcription and post-translational control (M5) (Fig 1A). Here, we ran-

domly selected the parameter sets, from a uniform distribution in their log scale, for each

model such that their deterministic dynamics would oscillate and then performed Gillespie’s

stochastic simulation [53,54]. The robustness of the oscillation was measured by estimating the

normalized decay rate of the autocorrelation function (Fig 1B, Methods).

For a simple transcriptional feedback model, M1, among 1,000 parameter sets that can

oscillate under deterministic propagation, 905 (90.5%) yielded sustained oscillation under a

noisy condition, and their normalized decay rates have a median value of 1.04 (Fig 1C). For

the post-translational feedback model, M2, oscillatory parameter sets under a noisy condition

were found at a lower rate: 344 of 1,000 (34.4%), with much worse median value of 2.16 in
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Fig 1. Combining transcriptional and post-translational controls improves the robustness of an oscillator. (A)

Schematic representation of the tested models. (B) General workflow used in this study. (C, Upper panel) Box plot

representing normalized decay rates of each tested model for 1000 randomly select parameter sets. Red lines indicate

the median, and box edges indicate the 25th (Q1) and 75th (Q3) percentiles. Whiskers are plotted at 1.5�(Q3-Q1). (C,

lower panel) Percentage of parameter sets that showed sustained oscillation under stochastic simulations. (D, E, left)

the normalized decay rates of 10 randomly chosen parameter sets of M1 (D) or M5 (E) under different leakage levels.

Each line represents one parameter set. The red-shaded region of the plot indicates non-oscillating results. (D, E, right)

Time trace trajectory of one randomly chosen parameter sets of M1 (D) or M5 (E).

https://doi.org/10.1371/journal.pcbi.1007740.g001
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decay rates (Fig 1C). This result may occur because, in M2, the noise from uncontrolled

mRNA was propagated to the protein level, which easily altered the phase and period of the

oscillation (S1 Fig). Furthermore, adding an auto-positive feedback on a transcriptional-based

oscillator (M3) or post-translational–based oscillator (M4) yielded oscillations at an even

lower rate: 278 of 1,000 parameter sets (27.8%) with median value of 1.28 for M3, and 279

of 1,000 parameter sets (27.9%) with median value of 2.03 for M4. Thus, our results showed

that a simple transcriptional-based oscillator is more robust than a post-translational-based

oscillator.

Next, we tested the oscillators for transcriptional leakage, which commonly occurs in cells.

Many studies have shown that promoters are actually leaky [55–58]. Yanai et al. in 2006, even

suggested that the selection against “unnecessary” transcription is low and hypothesized that

leakiness of the promoters may be evolutionarily neutral [59,60]. Hence, we added an addi-

tional term to the gene production to represent this leakage in our models, and re-tested the

performance of M1 (see Methods for more detailed information). Here we found that adding

transcriptional leakage greatly reduced the robustness of model M1 in generating oscillation

(Fig 1D). Actually, the system was very sensitive such that adding 5% leakage reduced the

number of oscillating parameters sets from 90.5% to 7.3% (S2A Fig). Furthermore, adding a

positive feedback did not improve the performance of the transcriptional-based oscillator (S2B

Fig). Therefore, these results suggested that although a simple transcriptional-based oscillator

can already generate good oscillation, it is prone to transcriptional leakage that may be present

in cells.

Combining transcription and post-translation controls improves the

robustness of the oscillator

We proposed to combine both a transcriptional and post-translational control for a more

robust oscillator. The basic idea is that although the post-translation-based model, M2, has

much worse oscillation in a stochastic condition (higher normalized decay rate) compared

to M1, it will not have any leakage problem, since the transcription in M2 is not regulated.

Instead, post-translational control may provide another layer of regulation for the repression

leakage that occurred at the transcription level. To test this idea, we built a simple model, M5,

that combined both M1 and M2 and performed a similar test as described above (Fig 1B). We

found that 731 out of 1,000 parameter sets (73.1%) yielded sustained oscillation under a noisy

condition, with a normalized decay rate median value of 1.68 (Fig 1C). Although the median

value was still higher than M1, unlike M2, model M5 had a wider normalized decay rates dis-

tribution. It implied that M5 could still achieve robust oscillation under correct combination

of parameters. Moreover, we also found that M5 was much more robust as compared with

M1 under the basal leakage condition, such that 38.1% of parameter sets were still oscillating

under 5% basal leakage (Fig 1E and S2C Fig). In addition, we also found that 16.3% of the

parameter sets in model M5 were still able to oscillate even at 25% leakage level (compared to

only 0.3% of parameter sets in model M1) (S2A and S2C Fig). These results imply that model

M5 may have a unique property to handle the basal leakage.

Adding a post-translational control in the transcriptional-based oscillator may help the sys-

tem regulate the leakage in the transcriptional repression, such that it can still push the protein

level back despite the leakage in the mRNA level. To demonstrate this idea, we showed that

although we could still observe obvious shifting in the mRNA distribution for both models

when we added a transcriptional leakage, the shifting of protein distribution in model M5 was

kept at minimum compared to the shift observed in M1 (Fig 2A and 2B). As a result, the X

transcriptional inhibition of Z, for example, was also altered minimally in model M5 (Fig 2B,
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Fig 2. Changes in the dynamics of M1 and M5 in the presence of basal leakage. (A, B) The distribution of mRNA (upper panel),

protein (middle panel), and transcription activity (the Hill function) of X inhibition of Z (lower panel) for one randomly chosen

parameter set. (C) The Kullback–Leibler (KL) divergence between two distributions (with vs without basal) for all parameter sets in M1

(left) and M5 (right).

https://doi.org/10.1371/journal.pcbi.1007740.g002
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bottom). However, shifting the protein distribution of X greatly altered the X transcriptional

inhibition of Z in M1 and locked it in the tight repressing state, which broke the oscillation

(Fig 2A, bottom). Next, to test the generality of these observations, we calculated the Kullback–

Leibler (KL) divergence between the two distributions (with and without basal) across differ-

ent parameter sets [61]. Consistent with the observations above, we found that protein and hill

function distributions were altered minimally despite of the observable shifting in the mRNA

distribution (Fig 2C). Thus, our results suggested that combining both transcriptional and

post-translational controls improve the robustness of the oscillator by controlling protein

quantity when the rate of mRNA transcription is increased.

Coupling degradation control to a repressilator using coherent or

incoherent feed-forward loops gives better control to the leakage problem

To check the generality of our finding, we next expanded our model by taking into account

other possible network structures and performed similar analyses as we did previously

(Methods). For simplicity, but without loss of generality, we limited our analysis by keeping

the repressilator as the core and targeted degradation (to be more specific 26S proteasome deg-

radation) as the post-translation regulation. Other post-translational controls, such as phos-

phorylation, can also be modeled with similar mathematical forms to this degradation control,

except for both the positive or negative effects to the system. With this formulation, we limited

our analysis to four possible network structures from four different network motifs, which are

type-3 coherent feed-forward loop (CFFL), type-2 incoherent feed-forward loop (IFFL), nega-

tive feedback (NF), and positive feedback (PF) (Fig 3A).

In the absence of transcriptional leakage, we found that the number of parameter sets that

could produce sustained oscillation under the noisy condition were still lower in all tested

model compared to M1 (Fig 3B). Moreover, the median value of normalized decay rates in

CFFL, IFFL and NF were still higher than M1, which is consistent with our previous observa-

tion using M5 (Fig 3C and 3B). Of note, the PF model showed a better normalized decay rate

compared to M1. This result is actually consistent with previous findings showing that cou-

pling positive and negative feedback can create a more robust oscillation [62–65]. However,

coupled positive and negative feedbacks must occur at transcription and post-translation lev-

els. Otherwise, a decreased robustness in the oscillation was observed (M3 in Fig 1C).

In the presence of transcriptional leakage, we again found a similar observation as in model

M5 for CFFL and IFFL models, such that 62.2% and 28% of parameter sets were still oscillating

under 5% basal leakage, respectively. However, both PF and NF models failed to survive with

transcriptional leakage (Fig 3C and S3 Fig). This finding is intriguing because both PF and NF

models have similar degradation controls. To have better understanding of these results, we

broke down the model into smaller network motifs and tested the effect of adding transcrip-

tional leakage on both the input and output genes (Fig 4). Here, I and O denote the input and

output genes, respectively, which are part of the core elements in the repressilator (either X, Y,

or Z). The leakage was added in both I and O, while the degradation control (E) was kept the

same (see Methods for detailed explanation). For simplicity, but without loss of generality, the

production and the degradation rates for all genes were fixed at 1, with hill coefficient of 8.

Since we are interested in analyzing the effect of adding basal leakage and degradation control

on the downstream gene (O), we fixed any threshold value from I or O to E at 0.5, while scan-

ning (from 0–1) for threshold value of I to O and E to O (S4–S7 Figs). However, for presenta-

tion purposes, we used 0.5 for both threshold value in Fig 4. The effect of post-translation

control is considered advantageous if the turned-on basal expression in I leads to a similar sta-

tus in O as if there were no basal added.
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Fig 3. Robustness test of several network motifs in coupling the degradation control to a repressilator. (A)

Schematic representation of the tested model. (B, C Upper panel) Box plot representing normalized decay rates of each

tested model for 1000 randomly select parameter sets in the absence (B) or presence (C) of transcriptional leakage. Red

lines indicate the median, and box edges indicate the 25th (Q1) and 75th (Q3) percentiles. Whiskers are plotted at 1.5�

(Q3-Q1). (B, C Lower panel) Percentage of parameter sets that showed sustained oscillation under stochastic

simulations.

https://doi.org/10.1371/journal.pcbi.1007740.g003
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As seen in Fig 4, the CFFL motif is able to control the leakage when the input gene is ON,

because E is only ON when I is ON. Hence, it can push back the transcriptional leakage that

occurs in the output gene (Fig 4A). Furthermore, this observation is consistent across many

different parameter combinations as shown in S4 Fig. In contrast with this observation, gene E

in the IFFL motif is expressed only when gene I is OFF. Thus, IFFL can only control the leak-

age in O when I is OFF (Fig 4B and S5 Fig). For the PF motif, the leakage was actually con-

trolled in both ON and OFF states of I (Fig 4C and S6 Fig). However, PF motif has another

Fig 4. The dynamics of (A) type-3 coherent feed-forward loop, (B) type-2 incoherent feed-forward loop, (C) positive feedback, and (D) negative

feedback in controlling transcriptional leakage. In upper panels, all genes are regulated through transcriptional controls. In lower panels, the E

regulation of O was changed to a degradation control (indicates by red arrow). Black thick arrow highlights the filtering effect of a degradation control

in the given network motif.

https://doi.org/10.1371/journal.pcbi.1007740.g004
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problem, in which gene O is mostly kept in the OFF state (S6 Fig basal OFF panel). To have a

higher amplitude of O, the PF motif requires the E regulation of O (K_Oe) to be weak (> 0.8,

S6 Fig). However, when the E regulation of O is weak, the ability of the degradation control to

push back the basal leakage is also weaker. Hence, we see no filtering ability in our PF model

(Fig 3C). For the NF motif, we also cannot find any filtering ability of the degradation control

on the transcriptional leakage (Fig 4D and S7 Fig). In this network, E only accumulated when

the target gene is ON. Since the transcriptional leakage occurs mostly when O is OFF, the deg-

radation control has almost no effect, which we can see in the NF model result above (Fig 3C).

Thus, our results suggest that in the presence of transcriptional leakage, coupling 26S protea-

some degradation using either coherent or incoherent feed-forward loops can help the repres-

silator to oscillate robustly.

Our general models behave similarly to the increase variability observed in

E3 ligase mutant in plant and mammalian clocks

From our observations above, we speculate that the 26S proteasome degradation could be

important for the circadian clock to cope with transcriptional leakage and achieve robust oscil-

lations in cells. To demonstrate this idea, we tried to compare the dosage-dependent effect of

the TOC1 and PRR5 degradation control, ZEITLUPE (ZTL), on the dynamics of the Arabidop-
sis clock [30]. In 2004, Somers et al. showed that ZTL level controlled the amplitude and period

of circadian oscillations [30]. Moreover, it also showed that a different ZTL dosage affected

the robustness of the oscillation, which could be seen from a higher relative amplitude error

(RAE) value (Fig 5A). We hypothesized that the increase in RAE is due to the shifting of the

protein level in degradation control, where the system failed to push back the basal leakage

under the mutant condition but greatly reduced the amplitude of TOC1 and PRR5 proteins

under high continuous overexpression.

While it is impossible to directly verify our hypothesis without a proper model involving

ZTL at the tissue level, since much of the regulation and mechanism are still unknown, we

aimed to see if similar dosage-dependent effects can be obtained with our general model M5.

Here, we varied the X post-translational regulation of Z by mutating or constantly overexpres-

sing it during simulations (Methods). Under the mutant condition, the decay rates were gener-

ally increased (Fig 5C, upper panel) and the number of parameter sets that yielded oscillations

were reduced from 28.1% to 5.4% under 10% leakage (S8A Fig). This result is similar to the

experimental observation and was expected because the mutation of the X degradation control

of Z will increase the basal expression of Z due to transcriptional leak. Hence, the system will

suffer like the model M1 we described above (Fig 2).

However, the results of the overexpression condition are less straightforward than the

mutant condition. We found that similar to the experimental result, the trend of decay rates

was also increasing whereas the number of parameter sets that yielded oscillation also

decreased along with the level of overexpression (Fig 5C and S8A Fig). Intuitively, one may

expect that with more degradation control, we will see a more robust oscillation since the sys-

tem can have better control on the transcriptional leakage. Hence, to have a better understand-

ing of these results, we again tried to study the dynamics of the system by comparing the

distribution of the overexpression mutant with the wild-type condition (Methods). Here, we

found that adding a constant amount of targeted degradation will have a larger effect on the

amplitude of protein Z rather than keeping the basal level of Z in the very low level. This

decrease in Z protein level further affects the Z degradation control of Y, which increases the Y

protein level. After that, the increase in Y protein greatly reduced the expression of gene X (S9

Fig), which prevented the system from having robust oscillation. Furthermore, to rule out a
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possible limitation of using a simple model (such as M5), we performed a similar analysis

using a more elaborate model, CFFL. Here, we again obtained a similar result such that the

robustness of the oscillation was reduced when we mutated or overexpressed the Ex degrada-

tion control of Z (Fig 5C, lower panel, and S8B Fig).

Lastly, we also tried to link insights derived from our model study to the effect of mutating

the E3 ligase gene on the dynamics of mammalian clock. In 2017, D’Alessandro et al. showed

Fig 5. Our general models were able to replicate several observed experimental results. Experimental result of dosage-dependent effect of

proteasome degradation control (ZTL) to the robustness of the oscillator. Data were obtained and redrawn from Somers et al. 2004 [30]. (B)

Experimental result of β-Trcp2mutant cells showed unstable rhythms and reduced amplitude of PER gene oscillations. Data were obtained and redrawn

from D’Alessandro et al. 2017 [47]. (C) The effect of changing the degradation control in model M5 (upper panel) and CFFL (lower model) during our

simulations. Each line represents one parameter set. The red part of the plot indicates the non-oscillating region. (D) The effect of mutating the

degradation control to the rising and failing phases of model M5 (upper panel) and CFFL (lower panel) during our simulations. The plot was drawn

from one randomly selected parameter set.

https://doi.org/10.1371/journal.pcbi.1007740.g005
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that mutation of the E3 ligase gene, β-Trcp2, will perturb the balance of PERIOD (PER) degra-

dation, which makes the clock unstable (Fig 5B) [47]. As we discussed above, we also observed

unstable oscillation when we changed the degradation control in our models. We believe that

our previous insight can be used to explain the observed experimental results in the mamma-

lian clock. Hence, we again performed a similar analysis as we did previously and found that

mutation of the degradation control will indeed alter the duration of the rising and failing

phase of the oscillation (Fig 5B and 5D). These results indicate that the expression leakage and

protein degradation could influence the mammalian clock in a similar way.

Discussion

Coupling E3 ligase to a negative feedback loop using feed-forward loop is

commonly seen in the Arabidopsis circadian clock

Our results showed that combining two types of regulation using feed-forward loop can create

a robust oscillator. In the Arabidopsis clock, several E3 ligases and their respective targets have

been successfully identified. The first identified E3 ligase was an F-box protein, ZEITUPLE
(ZTL). ZTL was reported to be involved in target degradation of both PRR5 and TOC1 proteins

[29,38]. Although ZTL mRNA is consecutively expressed, its protein still oscillated with three-

fold change in amplitude [66]. This oscillation may be mediated through a protein–protein

interaction of ZTL with GIGANTEA (GI) protein [67]. Also, CCA1 and LHY can bind and

repress the expression of GI. Hence, together with ZTL, they form a feed-forward network

motif (Fig 6A).

Next, a RING-type E3 ligase protein, constitutive photomorphogenesis 1 (COP1), has also

been reported to degrade other important clock genes, ELF3 and ELF4 [40,70]. ELF3, ELF4
and LUX have been reported to form a protein complex, called evening complex (EC), and the

loss-of-function mutant of any of these three proteins will lead to arrhythmic behavior [26,71–

73]. Previously, CCA1 and LHY were reported to bind and repress the expression of both ELF4
and ELF3 [15,74,75]. However, little is known about the regulator of COP1 proteins. From our

results, we hypothesized that the clock system could have the advantages that we mentioned

above if CCA1 and LHY can directly (or indirectly) regulate COP1. Hence, we performed a

quick analysis combining ChIP-seq data for CCA1 [15,74] and LHY [75] with TF binding pre-

diction tools, PlantTFDB [68] and PlantPAN3 [69], to predict the direct or indirect regulation

of CCA1/LHY to COP1. Interestingly, our analysis suggests that a well-studied transcriptional

factor, TCP21 (TCP21/CHE), could bind to the COP1 promoter region and both CCA1 and

Fig 6. Currently known (A) or predicted (B and C) regulators of E3 ligase in the plant’s clock form a feed-forward network motif. Black and blue

lines represent transcriptional regulations, and the red line represents the degradation control. Solid lines indicate that the data were derived from

experimental results, whereas dashed lines indicate that the data were derived from TF binding prediction tools, PlantTFDB [68] and PlantPAN3 [69].

https://doi.org/10.1371/journal.pcbi.1007740.g006
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LHY could also bind to the TCP21 promoter region. Together, they form an indirect feed-for-

ward network motif (Fig 6B).

Finally, another RING-type E3 ligase protein, SINAT5 was also reported to interact and

degrade LHY protein in the plant [35]. However, similar to COP1, little is known regarding the

regulator of SINAT5. Hence, we performed a similar analysis as we did for COP1, only now we

used ChIP-seq data for PRR9 and PRR7 [76]. We found that cyclic dof factor5 (CDF5) could

bind to the SINAT5 promoter region, whereas both PRR9 and PRR7 were found in the CDF5
promoter region. Together, they form another indirect feed-forward network motif (Fig 6C).

Although these predictions are yet to be verified experimentally, they provide other evi-

dence that strengthens our simulation results. Previously, several mathematical models have

shown that the core oscillator of the Arabidopsis clock consists of four groups of genes, the

early morning phase genes (CCA1/LHY), the daytime/noon phase genes (PRR9/PRR7), the

afternoon/dusk phase genes (PRR5/TOC1), and the nighttime/midnight phase genes (EC) [22–

24,48]. Among these four groups, three may be regulated by coupled repression and degrada-

tion through feed-forward loops (Fig 6). To the best of our knowledge, the corresponding E3

ligases for the noon phase genes, PRR9 and PRR7, are still elusive. However, several studies

have shown that both genes are still regulated by the 26s proteasome degradation pathway

[37,77]. It will be interesting to see whether these two genes are also under similar regulation.

Thus, these findings imply that coupling E3 ligase to a negative feedback using a feed-forward

loop is probably common in the Arabidopsis clock.

Transcriptional leakage is commonly seen in cells

Transcription leakage (or basal transcription) commonly occurs in cells. For example, several

systems like CpxR in Escherichia coli and VirG in Agrobacterium tumefaciens have been

reported to have high basal expression [78–80]. Moreover, Yanai et al. also showed that the

expression of many tissue-specific genes can “overflow” into neighboring genes that have no

function in the respective tissue [59]. This observation implies that leakiness of the promoters

may be evolutionarily neutral [60].

In this study, we showed that leakage can be a serious issue in oscillating systems like the

circadian clock. In cells, this problem is probably handled by having a dual transcription and

post-translation control, which gives another layer of regulation for cells to deal with the leak-

age problem. Actually, in line with our findings, many synthetic systems have emphasized the

importance of combining both transcription and post-transcription/translation controls in

creating a robust oscillator [79,81–84]. For instance, Tigges et al. showed that a synthetic mam-

malian oscillator based on transcription (sense) and a post-transcription control (antisense)

can create an autonomous, self-sustained and tunable oscillator [82]. In another study, Danino

et al. showed that coupling transcription (LuxR) and degradation control (AiiA) with global

intercellular coupling (AHL) generates synchronized, robust oscillation [83].

Furthermore, several theoretically studies have also highlighted the importance of degrada-

tion control in oscillation system. For instance, in 2006, Krishna, et al. showed that depending

on the saturation of active degradation rate of IκB (an inhibitor of NF-κB), the oscillation of

NF-κB can be extremely robust to variation of parameters [85]. In a 2007 work, Wong et al.
also showed that adding non-linear degradation term significantly enlarges the parameter

space for oscillation and thus enhances the robustness of synthetic gene metabolic oscillator

[86]. Recently, Clamons and Murray showed that their CRISPRi repressilator model is very

sensitive to basal leak, such as adding 1% leak will destroy the oscillation. They have also found

that this loss of oscillations by leak can be offset by adding active degradation to dCas [87].
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Hence, our findinga are in line with these observations, showing that coupling transcriptional

and degradation control may be important in controlling transcriptional leakage in cells.

Although leaky expression is often considered as unwanted noise in cells, it can also be use-

ful in some systems. For instance, in the competence development of Bacillus subtilis, basal

expression of the master regulator (comK) must pass a critical threshold in order to trigger its

auto-activation, which will lead to a bistable pattern in B.subtilis cells. This bistability will fur-

ther create heterogeneity in cell populations, which can benefit the population by providing

better-adapted phenotypic variants for a given perturbation [88]. In contrast with this finding,

Ingolia and Murray in 2007 showed a different role of basal expression in creating bistability.

Using a budding-yeast pheromone response system, they could make this system bistable by

reducing the basal expression [89]. Hence, depending on the evolutionary process, basal

expression can be considered an important aspect or a noise in different biological systems.

Limitation and further direction

Stochastic simulation algorithm (SSA, [54]) is still the most common algorithm for studying

the dynamics of noisy biological system. The main advantages of using this algorithm is that it

gives an exact simulation of the stochastic process described by the chemical master equation

(CME). However, calculating every reaction event is costly, which make this algorithm not

particularly suited for studying large network. To circumventing this problem, quasi steady-

state approximation (QSSA), such as Michaelis-Menten or the Hill function, is frequently used

to reduce the complexity of the networks. It has been reported previously that stochastic QSSA

results give good agreement with the full networks for enzyme reactions and circadian oscilla-

tors [90–93]. Furthermore, stochastic QSSA is also the most widely used algorithm due to

its simplicity and general applicability [94–97]. Thus, we adopted this simplification in our

model to significantly speed up our simulation process, such as employing the Hill function

for transcription and translational control, in mimicking the saturation effect in the up-stream

regulator.

However, like other simplification process, QSSA also has limitation. Several studies

recently have shown examples where using approximation QSSA can lead to considerable

errors in the stochastic simulation [98–101]. Since then, a lot of effort has been done to find

rigorous condition to check the validity of stochastic QSSA [99,100] or deriving an exact QSS

of fast species rather than using approximate QSS [101]. Hence, depending the purpose of the

study, one need to choose more carefully which simplification technique they should use.

Furthermore, it has been reported previously that in some system, stochasticity can prevent

the damping of oscillations or even create sustained oscillations. Stochastic resonance is one

class of such phenomena where systems oscillate due to noise [102–104]. In biological systems,

stochastic resonance was reported mainly in excitable systems like in neurons or the P53-

Mdm2 oscillation which is in respond to external stimulus and the oscillation does not need to

be robust and stable [105–107]. However, in this study, those parameter sets, which only oscil-

late under noise, have been ignored. In general, we believe that circadian clock’s oscillations

should be robust and it should not depend on noise. Hence, picking parameter sets that oscil-

late during ODE simulations is a reasonable strategy. However, it remains unknown whether

stochastic resonance or similar phenomena could play a role in circadian clocks.

Next, there are also many ways to model gene regulations in the cells. Currently, Hill func-

tion is the most common way to describe regulation process many plant circadian clock mod-

els [22–24,48,108,109]. However, a new class of models with protein sequestration-base

repression has been introduced recently to model the circadian process in mammalian cells

[47,110]. It was shown previously that this new class of models differs from Hill-based
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repression (as discussed thoroughly in [111]). Therefore, depending on the key regulation pro-

cess, one may choose which method is suited best for their system of interest.

Previously, it has been shown that IFFL can help turning PRR9/7 into a rapid switcher,

which is important for replicating the correct dynamics of the clock system [23]. In this study,

we showed that coupling 26S proteasome degradation using feed-forward loops (either coher-

ent or incoherent) can help the repressilator to oscillate robustly in the presence of transcrip-

tional leakage. Although both results seem similar, it has some fundamental differences. For

transcriptional IFFL, it is important for the system to have a pulse-like expression, which may

help it to response rapidly in facing sudden changes of environmental signal, while for transla-

tional control such requirement is not needed. In fact, our results showed that CFFL, which do

not generate pulse-like expression, has better performance than IFFL in coupling the degrada-

tion control. Hence, it will be interesting to combine these two models in the future and test

whether combining these properties can lead to new, more interesting, features, which can fur-

ther enhance our understanding of the Arabidopsis circadian clocks.

Methods

Model representation

All models used in this study are described by a set of ordinary differential equations (ODEs)

for the simulation under continuous light. In general, each gene was represented as:

dP
dt
¼ b:Hill � gP ð1Þ

where P represents the dimensionless concentration, which can be any genes depending on

the model. Here, β represents the total production rate, whereas γ is the total degradation rate.

The nondimensionalization process involved choosing a constant value for each component,

denoted as P0. P0 was defined as the maximum steady state of gene P, which is the ratio of total

production rates over total degradation rates. Hill represents the Hill function, which describes

the effects of upstream regulation as

Hillact ¼
½Activator�n

kn þ ½Activator�n
ð2Þ

for the activating process and

Hillrep ¼
kn

kn þ ½Repressor�n
ð3Þ

for the repression process. As mentioned previously, the Hill input function is a monotonic, S-

shaped function, which is used to describe the effect of the transcription factor on the tran-

scription rate of its target gene [112]. Here, κ represents the concentration of the activator or

repressor needed to achieve half maximal effect. It is related to the binding affinity between the

transcriptional factor gene and its site on the promoter region [112]. The n represents the Hill

coefficient that governs the steepness of the input function, which is related to sensitivity of the

process in the cell. Employing n allows us to describe ultra-sensitivity of many cellular pro-

cesses, such as multisite phosphorylation, stoichiometric inhibitor, cooperativity, reciprocal

regulation, and substrate competition [113]. Previously, several clock proteins have been

shown to form a dimer [27,114,115]. Because of this reason, many mathematical models set

n = 2, which corresponds to this dimerization process [22,48,116]. However, in this study, we

allowed n to be> 2 to accommodate other possible regulations (Table 1). Following previous
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studies, we used an ‘AND’ gate to describe a combination of two or more source of regulations,

where the two Hill functions are multiplied [22,24,48].

Finally, we also fixed the maximum possible steady-state concentration of each component

to 1000 molecules per cell by assuming the Hill function as its maximum possible value, 1. In

this way, the maximum production rates (β’s) were fixed to be 1000 times higher than the total

degradation rates (γ’s). The time t in the current work was in the unit of hours. After obtaining

a regularly oscillating parameter set in the wild-type setting, we re-scaled all the time-related

parameters such that the oscillation period is 24 hr.

Model M1: Transcriptional control based repressilator.

dX
dt
¼ bx:Hillrep Y � gx:X; ð4Þ

dY
dt
¼ by:Hillrep Z � gy:Y; ð5Þ

dZ
dt
¼ bz:Hillrep X � gz:Z: ð6Þ

Model M2: Post-translational control based repressilator.

dX
dt
¼ bx � ðgbasal X þ gdeg X:Hillact YÞ:X; ð7Þ

dY
dt
¼ by � ðgbasal Y þ gdeg Y :Hillact ZÞ:Y; ð8Þ

dZ
dt
¼ bz � ðgbasal Z þ gdeg Z:Hillact XÞ:Z: ð9Þ

We assumed that the target degradation happened much faster than basal degradation. Hence,

the searching space for γdeg was set 2 orders higher (Table 1).

Model M3: Transcriptional control based repressilator with additional positive feed-

back loop. In model M3, Eq (4) was modified into Eq (10),

dX
dt
¼ bx:Hillrep Y þ bpos:Hillact X � gx:X; ð10Þ

whereas the other two equations remained the same (Eqs (5) and (6)). There were two addi-

tional parameters (the corresponding production rates (βpos) and κ value in the new Hill func-

tion Hillact_X) added in this model. The parameters were treated similarly as those in M1.

Table 1. Search ranges for parameters.

Parameters Range Units Search scale

γbasal
1 0.01–10 1/Hr Logarithm

γdeg 1–1000 1/Hr Logarithm

κ’s (in all Hill functions) 1–1000 Dimensionless Logarithm

n’s (in all Hill functions) 2 2–8 Dimensionless Linear

1 β’s are set to be 1000 times higher than the corresponding γ’s for a dimensionless unit for the concentration of each gene and for a reduction in number of parameters.
2 Only integer value was used for this hill coefficient.

https://doi.org/10.1371/journal.pcbi.1007740.t001
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Model M4: Post-translational control based repressilator with additional positive feed-

back loop. For model M4, Eq (7) was modified into Eq (11),

dX
dt
¼ bx þ bpos:Hillact X � ðgbasal X þ gdeg X:Hillact YÞ:X; ð11Þ

while other two equations (Eqs (8) and (9)) were kept the same. There were again two addi-

tional parameters added in this model. The parameters were treated similarly as those in M2.

Model M5: Coupled transcriptional and post-translational control-based oscillator.

For model M5, we combined the regulation of model M2 into model M1 and described it as:

dX
dt
¼ bx:Hillrep Y � ðgbasal X þ gdeg X:Hillact YÞ:X; ð12Þ

dY
dt
¼ by:Hillrep Z � ðgbasal Y þ gdeg Y :Hillact ZÞ:Y; ð13Þ

dZ
dt
¼ bz:Hillrep X � ðgbasal Z þ gdeg Z:Hillact XÞ:Z: ð14Þ

Although the transcriptional and post-translational regulations are usually controlled by

different genes, for simplicity, we assumed that it might be originated from the same transcrip-

tional regulator. For instance, to post-translationally modify protein Z, gene X might actually

need to activate another protein, X’, that can bind to and modify protein Z. However, if we

assume that the expression of gene X’ is solely dependent on gene X and this activation process

happens fast enough, we can omit gene X’ in our model and replace this regulation by a hill

function. By doing so, we can greatly reduce the complexity of the model M5.

Various variant of coupled transcription and post-translation model. To overcome the

limitations of using simplified models, we next tried to elaborate our model by taking into con-

sideration several types of regulations that have been commonly discussed in the other studies.

Here, we tested four different network motifs, Coherent feed-forward loop (CFFL), Incoherent

feed-forward loop (IFFL), negative feedback loop (NF), and positive feedback loop (PF).

1. Coherent Feed-Forward Loop (CFFL)

dX
dt
¼ bx:Hillrep Y � ðgbasal X þ gdeg X:Hillact EyÞ:X; ð15Þ

dY
dt
¼ by:Hillrep Z � ðgbasal Y þ gdeg Y :Hillact EzÞ:Y; ð16Þ

dZ
dt
¼ bz:Hillrep X � ðgbasal Z þ gdeg Z:Hillact ExÞ:Z: ð17Þ

dEx
dt
¼ bEx:Hillact X � gEx:Ex; ð18Þ

dEy
dt
¼ bEy:Hillact Y � gEy:Ey; ð19Þ

dEz
dt
¼ bEz:Hillact Z � gEz:Ez; ð20Þ
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2. Incoherent Feed-Forward Loop (IFFL)

dX
dt
¼ bx:Hillrep Y � ðgbasal X þ gdeg X:Hillact EyÞ:X; ð21Þ

dY
dt
¼ by:Hillrep Z � ðgbasal Y þ gdeg Y :Hillact EzÞ:Y; ð22Þ

dZ
dt
¼ bz:Hillrep X � ðgbasal Z þ gdeg Z:Hillact ExÞ:Z: ð23Þ

dEx
dt
¼ bEx:Hillrep X � gEx:Ex; ð24Þ

dEy
dt
¼ bEy:Hillrep Y � gEy:Ey; ð25Þ

dEz
dt
¼ bEz:Hillrep Z � gEz:Ez: ð26Þ

3. Negative Feedback (NF)

dX
dt
¼ bx:Hillrep Y � ðgbasal X þ gdeg X:Hillact ExÞ:X; ð27Þ

dY
dt
¼ by:Hillrep Z � ðgbasal Y þ gdeg Y :Hillact EyÞ:Y; ð28Þ

dZ
dt
¼ bz:Hillrep X � ðgbasal Z þ gdeg Z:Hillact EzÞ:Z: ð29Þ

dEx
dt
¼ bEx:Hillact X � gEx:Ex; ð30Þ

dEy
dt
¼ bEy:Hillact Y � gEy:Ey; ð31Þ

dEz
dt
¼ bEz:Hillact Z � gEz:Ez: ð32Þ

4. Positive Feedback (PF)

dX
dt
¼ bx:Hillrep Y � ðgbasal X þ gdeg X:Hillact ExÞ:X; ð33Þ

dY
dt
¼ by:Hillrep Z � ðgbasal Y þ gdeg Y :Hillact EyÞ:Y; ð34Þ

dZ
dt
¼ bz:Hillrep X � ðgbasalZ þ gdeg Z:HillactEzÞ:Z; ð35Þ
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dEx
dt
¼ bEx:Hillrep X � gEx:Ex; ð36Þ

dEy
dt
¼ bEy:Hillrep Y � gEy:Ey; ð37Þ

dEz
dt
¼ bEz:Hillrep Z � gEz:Ez: ð38Þ

Searching, propagation, and selection process

All independent parameters in each model were obtained by random searches, propagated,

and screened for regular oscillation. Here, random parameters were drawn from a uniform

distribution in the log scale because we do not have any prior knowledge of the real parameter

distribution. Hence, we assume all random numbers are equally plausible to be picked. The

search was performed at a logarithmic scale across three orders of magnitude, for γ’s and κ’s,

and a linear scale for n (Table 1). Here, a parameter set is selected if the trajectory can oscillate

regularly, defined by examining the period and amplitude change in each cycle. We calculated

the relative difference in period and amplitude change for each cycle, defined as
jx1 � x2 j

minðx1 ;x2Þ
, where

x1 and x2 are the period or amplitude calculated from two consecutive cycles. An acceptable

regular oscillation was defined as that with less than 5% relative change for more than 10

cycles. For all searching, we used similar initial conditions, which is 10% of maximum possible

steady-state concentration. Finally, all simulations were performed by using Python 3.6 (Ana-

conda 4.4.0).

Stochastic simulations

For all models, the stochastic simulation was done using Gillespie algorithm [53,117]. Here,

each gene is described in three different levels: gene, mRNA, and protein levels. For instance,

for any gene A in model M5 (can be either X, Y, or Z), the ODE equation can be transformed

into:

dGA

dt
¼ kg A: 1 � GAð Þ � gg A:GA; ð39Þ

dMA

dt
¼ km A:GA:Hill � gm A:MA; ð40Þ

dPA
dt
¼ kp A:MA � gpA þ gdeg A:Hill

� �
:PA; ð41Þ

where GA is the fraction of active gene A for transcription, whileMA and PA is the amount of

mRNA and proteins of gene A, respectively. k represents the activation or production rates

and γ is the deactivation or degradation rate. It has been shown previously that both mRNAs

and protein are produced in bursts [118,119]. Following previous study, we defined the ratio

between
km
γg

as the mean burst frequency (Bm) and the ratio of
kp
γm

as mean burst size (Bp) [120].

For simplicity, but without loss of generality, we fixed our Bm and Bp into 2 and 10, respec-

tively. Last, we also set γg and γm at 100 and 10 times of γp, , which satisfies the condition of
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burst production in both mRNA and protein levels as described previously [120]. By doing so,

we can obtain all necessary propensity functions from our ODE equation without any addi-

tional parameter value to be searched (Table 2).

Measuring the oscillations under stochastic simulations

There are several ways to measure the “goodness” of oscillatory behavior [121,122]. However,

in this study, we make use of the autocorrelation function to measure the “goodness” of the

oscillations. Let P(M.Δt) be a time series data, corresponding to one protein component in our

simulations, with length of M times Δt (in our simulation, Δt is fixed into 0.1 Hr). Mathemati-

cally, the autocorrelation function of P(M.Δt) is defined as:

ACF nDtð Þ ¼
1

ðM � nÞ
:
XM� n

i¼0

ðPi � mÞ:ðPiþn � mÞ
s2

; ð42Þ

where n can be any value between 0 to M-1. In our simulation, we fixed our n such that it is

between 0 and 2400 (equivalent to 10 days). Using this equation, the maximum value of Eq

(42) is when ACF(0), which is 1. If P(M.Δt) is the output of deterministic simulation with sus-

tained oscillation, then Eq (42) will also oscillate in a sustained manner. This kind of oscillation

can be estimated by using Eq (43),

Aþ cos
2pX
T

� �

; ð43Þ

where X is the autocorrelation function value, and T is the period of the oscillation. However,

if P(M.Δt) describes a realization of a stochastic oscillatory process, Eq (42) will show a damped

oscillation. In this case, this dampened oscillation can be estimated by Eq (44),

Aþ cos
2pX
T

� �

e� bX; ð44Þ

where b represents the damping rate or characteristic time of the decay of the autocorrelation

function [122,123]. Notice that parameter b will still carry the time dimension. Hence, it can

be nondimensionalized by dividing it with the period parameter, T. In this study, we can even

further simplify this estimation process by just fitting the dampened autocorrelation function

Table 2. Summary of parameter conversion (using gene X of model M5 as an example).

Propensity function Corresponding values

γp_X γx
1

γm_X γp_X
� 10

γg_X γp_X
� 100

kg_X
b1
x

Bm�Bp

km_X Bm � (kg_X +γg_X)

kp_X Bp � γm_X

Hillrep_Y Hillrep_Y
1

γdeg_X γdeg_X
1

Hillact_Y Hillact_Y
1

1 Parameter value obtained from ODEs simulation.

https://doi.org/10.1371/journal.pcbi.1007740.t002
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with an exponential function,

normalized decay rate ¼ Aþ e� bX
0

; ð45Þ

where X’ represents all the peak value obtained in the autocorrelation function.

Modified stochastic simulations

Adding transcriptional leakage. To add a transcriptional leakage in our stochastic simu-

lations, we modified Eq (40),

dMx

dt
¼ kmX :Gx: basalð1 � Hillrep XÞ þ Hillrep X

� �
� gm X:Mx; ð46Þ

and applied it to all genes in each model. Other equations (Eqs (39) and (41)) were kept the

same. We argue that this representation is more realistic than simply adding a constant basal

expression in the mRNA level, because with this modification, the maximum value of the hill

function is kept.

Mutation and overexpression of degradation control in M5. For the overexpression

test of model M5, we modified the X degradation control of gene Z (Hillact_X in Eq (14)) from

Eq (2) into Eq (47),

hillact X ¼
ðX þ constant OXÞn

kn þ ðX þ constant OXÞn
ð47Þ

with other equations kept the same. In this analysis, we cannot simply overexpress gene X,

because it would also affect the gene X transcriptional regulation of gene Z (hillrep_X in Eq

(14)). Next, we varied the value of constant_OX, from 3% to 30%, based on the maximum pos-

sible steady state of ODE oscillation (which is 1000). For the null-mutant test, we simply set

γdeg_Z in Eq (14) to 0.

Mutation and overexpression of degradation control in other models. For the other

models (CFFL, IFFL, NF, PF), the genetic perturbation tests were done by scaling up (for over-

expression) or scaling down (for null-mutant) the production rates (β) of gene Ex (for CFFL

and IFFL) or gene Ez (for NF and PF), while keeping the same degradation rates (γ). We again

varied it from 3% to 30%, based on the maximum possible steady state of ODE oscillation

(which is 1000).

Testing the effect of different network motifs in the coupling degradation

control to transcriptional oscillator

To test whether a certain network motif has better capability in controlling basal expression,

we built partial models consisting of only the type-3 coherent feed-forward loop (CFFL), type-

2 incoherent feed-forward loop (IFFL), negative feedback (NF), and positive feedback (PF) in

either ‘pure’ transcriptional or combined transcriptional and degradation controls.

Here, we measured the concentration of the output gene (O) in the presence (I:ON, t = 40)

or absence (I:OFF, t = 80) of an input signal (I), which we called the basal OFF condition. For

the basal ON condition, we added the leakage term on both input and output genes (leakage

level = 0.2, or 20% of the maximum steady state) and re-measured the concentration of the

output genes. After that, we calculated the normalized difference of output gene expression,

PLOS COMPUTATIONAL BIOLOGY Basal leakage in oscillation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007740 September 3, 2020 21 / 29

https://doi.org/10.1371/journal.pcbi.1007740


which is defined as:

normalized DO ¼
ðObasalON � ObasalOFFÞ

0:2
ð48Þ

Finally, we subtracted the normalized ΔO of transcriptional model to the normalized ΔO of

the combined transcription and post-translation model (Δnormalized ΔO) and report it as an

indicator of how good a given motif is in controlling transcriptional leakage (Fig 4 and S4–S7

Figs).

Supporting information

S1 Fig. Sample trajectories of mRNA (left), protein (middle), and auto-correlation func-

tion (right) of one randomly chosen parameter set in model M1 (a) and M2 (b).

(TIF)

S2 Fig. The effect of transcriptional leakage on the robustness of an oscillator. (Upper pan-

els) box plot representing the normalized decay rates for each leakage level of model M1 (A),

M3 (B), and M5 (C). (Lower panels) the percentage of parameter sets showing sustained oscil-

lation under stochastic simulation. Red line indicates the median, and box edges indicate the

25th (Q1) and 75th (Q3) percentiles. The whiskers are defined as 1.5�(Q3-Q1).

(TIF)

S3 Fig. Time trace trajectory of one randomly chosen parameter sets of (A) CFFL, (B)

IFFL, (C) NF and (D) PF, with (lower panel) and without (upper panel) basal leakage.

(TIF)

S4 Fig. Contour plot representing the dynamics of type-3 coherent feed-forward loop in

controlling transcriptional leakage under different parameter combinations. I, E, and O

representing the input, intermediate, and output genes, respectively. For simplicity, but with-

out loss of generality, the production and the degradation rates of all genes was fixed at 1, the

threshold value of I activation of E (K_Ei) at 0.5, and the Hill coefficient at 8. Furthermore, the

leakage level (when Basal = ON) was fixed at 0.2 (or 20% of the maximum possible steady

state).

(TIF)

S5 Fig. Contour plots representing the dynamics of type-2 incoherent feed-forward loop in

controlling transcriptional leakage under different parameter combinations. I, E, and O

represent the input, intermediate, and output genes, respectively. For simplicity, but without

loss of generality, the production and the degradation rates of all genes was fixed at 1, the

threshold value of I inhibition of E (K_Ei) at 0.5, and the Hill coefficient at 8. Furthermore,

the leakage level (when Basal = ON) was fixed at 0.2 (or 20% of the maximum possible steady

state).

(TIF)

S6 Fig. Contour plots representing the dynamics of positive feedback in controlling tran-

scriptional leakage under different parameter combinations. I, E, and O represent the

input, intermediate, and output genes, respectively. For simplicity, but without loss of general-

ity, the production and the degradation rates of all genes was fixed at 1, the threshold value of

O inhibition of E (K_Eo) at 0.5, and the Hill coefficient at 8. Furthermore, the leakage level

(when Basal = ON) was fixed at 0.2 (or 20% of the maximum possible steady state).

(TIF)
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S7 Fig. Contour plots representing the dynamics of negative feedback in controlling tran-

scriptional leakage under different parameter combinations. I, E, and O represent the

input, intermediate, and output genes, respectively. For simplicity, but without loss of general-

ity, the production and the degradation rates of all genes was fixed at 1, the threshold value of

O activation of E (K_Eo) at 0.5, and the Hill coefficient at 8. Furthermore, the leakage level

(when Basal = ON) was fixed at 0.2 (or 20% of the maximum possible steady state).

(TIF)

S8 Fig. Our general models showed similar dosage-dependent effect of proteasome degra-

dation control on the robustness of the oscillator. (Upper panel) box plot representing the

normalized decay rates for each mutant condition of model M5 (A), and CFFL (B). Red line

indicates the median, and box edges indicate the 25th (Q1) and 75th (Q3) percentiles. The

whiskers are defined as 1.5�(Q3-Q1). (Lower panel) The percentage of parameter sets showing

sustained oscillation under stochastic simulation.

(TIF)

S9 Fig. The distribution of mRNA (first panel), protein (second panel), Hill function of

transcriptional control (third panel), and Hill function of degradation control (last panel)

for one randomly chosen parameter set in M5. The distribution was collected from the wild

type (WT) (blue) or over-expression condition (red) with 10% basal leakage.

(TIF)

S1 Appendix. Codes used in this study.

(ZIP)
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