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Most previous imaging studies have used traditional Pearson correlation analysis to construct brain networks. This approach fails
to adequately and completely account for the interaction between adjacent brain regions. In this study, we used the L1-norm linear
regression model to test the small-world attributes of the brain networks of three groups of patients, namely, those with mild
cognitive impairment (MCI), Alzheimer’s disease (AD), and healthy controls (HCs); we attempted to identify the method that
may detect minor differences in MCI and AD patients. Twenty-four AD patients, 33 MCI patients, and 27 HC elderly subjects
were subjected to functional MRI (fMRI). We applied traditional Pearson correlation and the L1-norm to construct the brain
networks and then tested the small-world attributes by calculating the following parameters: clustering coefficient (Cp), path
length (Lp), global efficiency (Eg), and local efficiency (Eloc). As expected, L1 could detect slight changes, mainly in MCI
patients expressing higher Cp and Eloc; however, no statistical differences were found between MCI patients and HCs in terms
of Cp, Lp, Eg, and Eloc, using Pearson correlation. Compared with HCs, AD patients expressed a lower Cp, Eloc, and Lp and an
increased Eg using both connectivity metrics. The statistical differences between the groups indicated the brain networks
constructed by the L1-norm were more sensitive to detect slight small-world network changes in early stages of AD.

1. Introduction

The human brain network has been proven to possess small-
world properties that confer several advantages [1, 2] includ-
ing high local and global efficiency (Eloc and Eg, respectively)
in information communication [3], optimal synchronization
of neural activity among different brain regions via central
hubs, and most importantly, protection of the brain from
random failure through redundant densely neighbored con-
nections and from targeted attacks under disease conditions,
due to high resilience conferred by high centrality and clus-
tering [4]. These brain neuronal networks are well balanced

and highly efficient, with local specialization and global inte-
gration [5].

Alzheimer’s disease (AD) is the most common type of
dementia; it is a neurodegenerative disease characterized by
memory loss in its early stages, followed by a progressive
decline in other behavioral and cognitive functions [6]. Mild
cognitive impairment (MCI) may be a transitional state
between healthy aging and AD, according to neuropatholog-
ical studies [7, 8], and an estimated 10-15% of MCI patients
convert to AD each year [9].

AD has been considered a disconnection syndrome
according to research by Delbeuck et al., implying that a
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functional disconnection between distant brain areas could
plausibly explain the cognitive dysfunction in AD patients
[10], and changes in small-world properties may reflect this
disconnection. The clustering coeflicient (Cp) reflects the
connection status of the entire network, and the Eloc of the
network is described from the perspective of local informa-
tion transmission. The shortest path length (Lp) represents
the efliciency of the overall information transmission of the
network, and the Eg is a more intuitive measure of the rate
of information transmission across the network. Alterations
in small-world properties, particularly abnormal regions or
global changes, may serve as potential biomarkers for early
detection, diagnosis, and treatment evaluation [11]. Charac-
terizing the underlying architecture of brain networks may
contribute comprehensive insights into the pathogenesis of
network dysfunctional mechanisms in AD [12].

Many researchers have explored small-world brain net-
work properties in patients with AD and found inconsis-
tent results. Liu [13] and others found that patients with
AD demonstrated the largest clustering coefficients com-
pared to MCI patients and healthy controls. However,
YaPeng and colleagues [14] found that there was a decline
in clustering coefficients in AD patients compared with
healthy controls. According to a study by Lo et al. [15],
AD patients have an increased Lp and decreased Eg in
the white matter network. It is worth noting that studies
on the altered brain network pattern in AD patients have
not produced consistent results till date; this may be
attributed to differences in the disease stages in patients,
analytical approaches, and imaging modalities [16]. In this
study, we speculated that the analytical method may
explain the differences in the results to a certain extent.

The majority of previous brain network studies have been
based on threshold correlation, to localize the focal regions of
high connectivity [17-19]. A typical method is Pearson cor-
relation analysis, which constructs a time-series correlation
matrix for each study participant, and then calculates the
Pearson correlation coefficient for the brain regions of each
participant. A correlation coefficient value closer to 1 indi-
cates high synchronicity between the two brain regions.
The correlation is used as a measure of network connectivity
similarity between two regions; however, the main limitation
of correlation-based connectivity analyses is that it fails to
consider the interaction between adjacent regions [20]. In
addition to Pearson correlation, diverse methods are avail-
able for analyzing the similarity in fMRI data (between pairs
of time series and in a multivariate fashion); these include
partial correlation and mutual information. However, both
methods have certain limitations. First, although partial cor-
relation is a useful measure for removing confounding effects
in highly corrected networks after factoring out indirect
edges [21], it is obviously subject to the number of regions,
which must be smaller than the length of the time series
owing to the inverse covariance matrix [22]; therefore, it is
not used as extensively as the Pearson correlation. More
importantly, it has been demonstrated that the Pearson cor-
relation is more valid and reliable than the partial correlation
[23]. Second, mutual information is also a powerful method,
since it is sensitive in disclosing frequency-specific couplings;
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therefore, it is usually applied in the exploration of different
characteristics among different frequency bands of magneto-
encephalography or electroencephalography [23]. Addition-
ally, mutual information can reflect both, linear and
nonlinear dependencies [24]. In the present study, we used
an L1-norm regression model to construct a brain network,
which is also called sparse representation-based brain net-
work construction [20, 21, 25]. The Ll-norm regression
model fully considers the interaction between brain regions
when calculating the brain functional network. By using this
regression model, a sparse representation of brain connectiv-
ity can be obtained with only a few significant connections.
The contributions from insignificant or spurious connections
are nullified, making it relatively easier to interpret the con-
structed sparse connectivity. The linear regression model
enables a brain region to be represented (in terms of a time
series) by the linear combination of other brain regions, with
the contribution of every region reflected by the magnitude of
the regression coefficient (or connection strength). This
provides insight into the correlation between the specified
brain region and the rest of the regions, by filtering out the
insignificant or spurious connections; this has been exploited
in some previous studies. For instance, Wee et al. [20] and Li
et al. [25] proved that the L1-norm regression networks have
greater sensitivity and higher classification accuracy in
identifying patients, and Lee et al. [21] utilized the L1-norm
penalty to explore the differences in other network character-
istics (number of edges and clusters) within a lobe and
between lobes for comparing children with autism spectrum
disorders with pediatric control subjects. However, in the
first two cases, they concentrated on the classification accu-
racy via the support vector machine, instead of studying the
characteristics of small-world networks and the meaning of
the changed parameters of networks in patients. In this study,
we focused on studying the differences in parameters of
small-world networks constructed by both Pearson correla-
tion and L1-norm regression; the differences were evaluated
between the normal subjects and patients with AD and
MCI, with the purpose of providing some clues to the under-
standing of these conditions.

Most previous research used the network methods to
construct the network, and some of which focused on classi-
fication to patients and normal controls. In the present study,
we applied two network construction methods in graph the-
oretical analysis with statistical comparisons on the brain
network attributes. The statistical comparison of brain net-
work properties is just as important as the classification
papers as it can provide empirical evidence of disease-
related changes and help to reveal which regions are more
likely to be altered in the future (by using region-wise graph
theoretical metrics).

2. Materials and Methods

2.1. Subjects and Image Acquisition. Our study was approved
by the Ethics committee of Shanghai Huashan Hospital. A
total of 82 subjects were enrolled from this hospital; all par-
ticipants were categorized into three groups: healthy controls
(HCs) (n = 27), patients with MCI (n = 37), and patients with
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TaBLE 1: Demographics and clinical information.

Characteristics HC (n=27) MCI (n=33) AD (n=24) P

Age 63.74 £7.80 68.00 + 9.89 67.54 +10.48 0.166*

Female/male 11/16 22/11 13/11 0.133"

MMSE 28.84+1.19 26.61 £ 1.66 21.46 +1.67 <0.001*

Data are presented as the means + standard deviations (SD). “The P value was obtained using one-way ANOVA. *The P value was obtained using the Pearson

chi-squared test.

AD (n=28). AD patients were diagnosed by a qualified neu-
rologist using criteria for amnestic AD, which include a cul-
turally adapted Chinese version of the Mini-Mental State
Examination (CM-MMSE) scores of between 12 and 27
(inclusive) and clinical dementia rating (CDR) scores of 1
or 2. MCI patients had MMSE scores of between 23 and 30
(inclusive) and CDR scores of 0.5 or 1, and the HCs had
MMSE scores of between 26 and 30 (inclusive) and CDR
scores of 0. The data for 8 subjects (4 patients each, with
AD and MCI) were excluded owing to excessive motion.
Details regarding the clinical and demographic data of the
remaining 74 subjects are shown in Table 1; there were no
significant differences among the three groups in terms of
gender or age.

All subjects underwent whole-brain resting-state func-
tional magnetic resonance imaging (fMRI) with a 3.0 T Sie-
mens Verio scanner. Resting-state BOLD functional fMRI
data were collected using an echo-planar imaging (EPI)
sequence with the following scanning parameters: TR =
2000 ms, TE =35ms, FOV =25.6 cm x 25.6 cm, flip angle =
90°, matrix size = 64 x 64, slices = 33, and slice thickness = 4
mm, with no slice gap. Subjects were instructed to stay awake,
keep their eyes open, and minimize head movement; no
other instructions were provided.

2.2. Image Analysis

2.2.1. Data Preprocessing. Unless specifically stated other-
wise, all preprocessing was performed using statistical para-
metric mapping (SPM8, http://www.filion.ucl.ac.uk/spm).
The first 5 images were discarded considering the magnetiza-
tion equilibrium, and the remaining 155 images were cor-
rected for the acquisition time delay among different slices.
The images were then realigned to the first volume for
head-motion correction. The fMRI images were further spa-
tially normalized to the Montreal Neurological Institute
(MNI) EPI template and were resampled to a 2mm cubic
voxel. Several sources of spurious variance including the esti-
mated motion parameters, linear drift, and average time
series in the cerebrospinal fluid, and white matter regions
were removed from the data through linear regression.
Finally, temporal band-pass filtering (0.03-0.06 HZ) was per-
formed to reduce the effects of low-frequency drift and high-
frequency noise [26, 27].

The time course of head motion was obtained by estimat-
ing the translations in each direction and the angular rota-
tions around each axis for each of the 155 consecutive
volumes. All the subjects included in this study exhibited a
maximum displacement of less than 3mm (smaller than

the size of a voxel in plane) at each axis and an angular
motion of less than 3 degrees for each axis.

2.3. Brain Network Construction

2.3.1. Anatomical Parcellation. The registered fMRI data
were segmented into 90 regions (45 for each hemisphere)
using an automated anatomical labeling template [28, 29],
which has been used in several previous studies [26]. For each
subject, a representative time series of each individual region
was then obtained by simply averaging the fMRI time series
over all voxels in this region.

2.3.2. Brain Networks Constructed through Pearson
Correlation Analysis. The Pearson correlation coefficients of
each area were calculated for each pair of 90 functionally con-
nected regions. Considering the brain regions as a set of
nodes and the correlation coeflicients as signed weights on
the set of edges, the functional connectivity examines interre-
gional correlations in neuronal variability [25]. The sparse
brain functional connectivity of the ith and jth ROI can be
solved using the following formula:

Yo (1) =<x; > ) [x(1)—<x; > |

r(x,x;) =
] \/ZtT:I i (0)=<x; > PR ()< > ]

» (1)

where T is the total number of time points, x; is the time
series of the ith ROIL x,(t) is the tth time point of the ith
ROL x; is the average of the time series of the ith subject, <

x; > is the mean time series of the ith ROL, and r(x;, x;) is

the weight vector that quantifies the degree of influence of
the ith ROI to the jth ROI given that i # j.

The absolute r values were then converted into a binary
connection matrix to construct a graphic model of a brain
network.

All other considered topological properties were calcu-
lated using Gretna software. They included the small-world-
liness, Cp, Lp, Eg, and Eloc; each of which has previously
been described and used in several studies. Table 2 provides
an overview of the parameters and their meanings in brain
functional networks.

2.3.3. Brain Networks Constructed through L1-Norm Linear
Regression Model [22]. In order to provide an adequately
complete interaction between many brain regions, we forced
the inferred connectivity networks via L1-norm regulariza-
tion. Using a total of M ROIs, the regional mean time series
of the pth ROI for the nth subject, y7, is a response vector that
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TaBLE 2: Statistical difference in small-world parameters through the Pearson correlation analysis and the sparse L1-norm regularization

method.

Small-world parameter Cp Lp Eg Eloc Sigma Lambda Gamma
HCs & MCI Pearson X X X X X X N
HCs & MCI L1-norm v X X v v v v
HCs & AD Pearson v v v v X N v
HCs & AD L1-norm v v/ v N v i N

“x“implies no statistical difference between two groups at any threshold. “+/“ implies a statistical difference (P < 0.05) between two groups at certain thresholds.

can be estimated as a linear combination of time series of
other ROIs, as follows:

Yy =Apa, +ep, (2)
where e is the error; yj = [y7(1);y,(2; -5y, (T)] with T
being the number of time points in the time
series; Ap =y, - Yy 1> Vpyro = ¥V I8 @ data matrix of
the pth ROI (all time series except for the pth ROI),
and aj =af;-sap a0, ;5o is the weight vector
that quantifies the degree of influence of other ROIs to
the pth ROI The sparse brain functional connectivity
modeling of the nth subject and pth ROI can be consid-
ered a standard Ll-norm-regularized optimization prob-
lem, with the following objective function:

() -3

where A >0 is the regularization parameter controlling
the “sparsity” of the model, with a higher value corre-

sponding to a sparser model; ie., more elements in oc;’

j”‘ (3)

n_ AN N
Yo ~Ap%

n
%

>
1

are zero. A was preselected.

2.4. Small-World Properties of the Brain Functional Networks
Based on Two Methods. All the considered small-world prop-
erties including the Cp, Lp, Eg, and Eloc were calculated
using Gretna software. Statistical comparisons of small-
world properties between AD and HCs and MCI and HCs
were performed through a two-sample two-tailed t-test for
each value in the same sparsity degrees of 0.10 to 0.50, with
an interval of 0.01 (P < 0.05, Bonferroni correction).

3. Results

3.1. Judgment of Small-World Attributes. Figure 1 shows the
brain function connectivity matrix of a normal subject and
an AD patient obtained by the Pearson correlation and L1-
norm regularization method, and Supplementary Figure 2
represents the mean FC matrices of NC, MCI, and AD
patients obtained through the two methods. As it can be
seen from the figures, the networks constructed by L1-
norm regularization are more sparse.

The gamma indicates the ratio of the clustering coeffi-
cients between the real and random networks, the lambda
implies the ratio of the path length between real and random
networks, and the sigma is a scalar quantitative measurement

of the small-worldliness of a network. If gamma >1 and
lambda = 1, and/or sigma = gamma/lambda > 1 in a network
fit, it implies the network has small-worldliness.

The sigma, lambda, and gamma of the brain networks
of AD and MCI patients and HCs generated through the
Pearson correlation and L1-norm modeling are shown in
Supplementary Figure 1. The fit y>1 and A=1 in both
groups (Supplementary Figure 1); therefore, the functional
networks of AD and MCI patients and HCs fit the
definition of small-worldliness [30].

3.2. Altered Small-World Properties of Functional Networks in
AD Patients. Using the L1-norm regularization method, AD
patients showed a lower Cp and Eloc compared to the HCs
(Figures 2(a) and 2(c)) and a lower Lp and higher Eg
(Figures 2(b) and 2(d)). Pearson correlation analysis yielded
similar results (Figures 2(e) and 2(h)).

3.3. Changes in Small-World Properties in MCI Patients
through the LI-Norm Linear Regression Modeling Method.
Using the L1-norm regularization method, we found a higher
Cp and Eloc in MCI patients (Figures 3(e) and 3(g)); how-
ever, there was no statistical difference between the MCI
and HC groups in terms of Lp and Eg (Figures 3(f) and
3(h)). However, MCI patients exhibited no statistical dif-
ferences from HCs in Cp, Lp, Eg, and Eloc through Pear-
son correlation analysis (Figures 3(a)-3(d)). The statistical
differences in small-world parameters between AD patients
and HCs and MCI patients and HCs according to the two
methods are presented in Table 2, and the P values are
shown in Tables 3 and 4.

4. Discussion

In the present study, we have applied two kinds of network
construction methods in graph theoretical analysis with sta-
tistical comparisons on the brain network attributes among
healthy controls and patients with MCI and AD. The statisti-
cal comparison of brain network properties can provide
empirical evidence of disease-related brain network changes
and may help to identify which brain regions are more vul-
nerable to the disease.

4.1. Two Network Constructing Metrics on Small-World
Networks in AD Patients. In the present study, we used the
L1-norm regularization and Pearson correlation to construct
brain functional networks, and our results revealed that the
small-world properties of the networks in MCI and AD
patients were disrupted compared to HCs. Both methods
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FIGURE 1: (a, b) Images representing the brain function connectivity matrix of a normal subject and an AD patient obtained by the Pearson
method. (¢, d) Images showing the brain function connectivity matrix of a normal subject and an AD patient is obtained by constrained sparse
method. It can be clearly seen from the figure that the constraint sparse method calculates that the number of connections is sparser.

used in the present study manifested similar results in AD
patients. Furthermore, the sparse Ll-norm regularization
method detected differences between MCI patients and
HCs in terms of Cp and Eloc that were not revealed by the
Pearson correlation method. The network constructed via
L1-norm is relatively more sensitive to detecting changes in
brain networks at early stages of AD.

The sparse L1-norm regularization and Pearson corre-
lation results revealed that Cp and Eloc increased in MCI
patients compared to HCs; however, the Pearson correla-
tion results showed no significant differences in small-
world properties between MCI patients and HCs. Here,
we considered the L1-norm regularization to be more sen-
sitive in detecting changes in brain networks during dis-
ease progression.

Different AD small-world characteristics in previous
studies may have several possible explanations. Firstly, AD
subjects may have been at different stages of the disease
[16], or researchers may have applied different research
approaches to construct the brain networks, which obviously
cannot overlap among studies. The third explanation is
diverse brain network connectivity metrics among different

studies. The main connectivity metrics are wavelet correla-
tion [31, 32], Pearson correlation [16, 33], and synchroniza-
tion likelihood [34] among others. Different methods have
distinct emphases, resulting in various areas of application.
For instance, wavelet correlation, mutual information, and
synchronization likelihood are relatively sensitive to reveal
frequency-specific couplings; therefore, they are often
expected to focus on different characteristics among different
frequency bands [25, 35]. The rationale for comparing only
the Pearson correlation and L1-norm regression in this study
has been described in the Introduction. In this study, we used
two methods to study brain network topology connections;
our results indicate that the network constructed through
Ll-norm is more sensitive in detecting brain network
changes at early stages of AD than traditional the Pearson
correlation analysis. Lastly, the temporal band-pass filtering
frequency intervals of fMRI data have been shown to influ-
ence small-world characteristics [35]. The small-world topol-
ogy exhibited variations in different frequency intervals, and
the small-world topology connections were most prominent
from 0.03 to 0.06 Hz [35]. Therefore, different studies using
different frequency bands may affect the research results.
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FIGURE 2: Small-world network parameters of the HCs (grey line) and AD patients (red line) using Pearson correlation (a-d) and sparse L1-
norm regularization (e-f). Shaded areas indicate the standard error.

0.65 35 085 0.75
06 084 074
34 0.65
0.55 073
07 0.6
0.5 257 £ 0 0.55 4
a 2 0.65 4 o0
Q -
0.45 = =054
0.6
0.4 1 0.45 4
0.55 044
0.35 4 15 0.5 0.35 4
wl— ———————— M
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Threshold Threshold Threshold Threshold
MCI MCI MCI MCI
—_ HC —— HC — HC —— HC
(a) (b) () (d)
0.65 35 0.85 0.75
0.6 0.8 0.7 4
34 0754 0.65 -
0.55 4
0.7 061
0.5 254 3 0.5 -
5 & £ 0654 &
0.45 0.5
R 0.6
| 0.45 4
0.4 0.55 4
0.4 4
0.35 4 | 0.5
15 0.35
B — 04— 17— T 03
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 S 10 15 20 25 30 35 40
Threshold Threshold Threshold Threshold
MCI Ml Mcl Ml
— HC —HC — HC —_HC
(e) (®) (® (h)

FIGURE 3: Small-world network parameters of the HCs (grey line) and MCI patients (blue line) using Pearson correlation (a-d) and sparse L1-
norm regularization (e-f). Shaded areas indicate the standard error.

4.2. Changes of Small-World Parameters in AD and MCI
Patients. AD is associated with regional brain damage, and
the first degenerative changes in the progression of the dis-

ease occur in the medial temporal lobe, including the hippo-
campus and entorhinal cortex [36]. The change in structure
may be related to changes in functional connectivity; AD is
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TaBLE 3: P values of statistical tests on the small-world parameters using the Pearson correlation.
Pearson
HCs-MCI HCs-AD

Density Cp Lp Eloc Cp Lp Eloc Eg
0.10 0.1268 0.9187 0.1155 0.9525 0.0003 0.2392 0.0037 0.2360
0.11 0.3087 0.9684 0.2561 0.8327 0.0015 0.0015 0.0015 0.1167
0.12 0.2659 0.9690 0.2193 0.8313 0.0056 0.1149 0.0447 0.1338
0.13 0.4545 0.7472 0.4051 0.6461 0.0053 0.1526 0.0309 0.1665
0.14 0.5202 0.7936 0.4554 0.7249 0.0142 0.1386 0.0679 0.1429
0.15 0.5859 0.9621 0.3493 0.8537 0.0294 0.1636 0.0811 0.1651
0.16 0.4722 0.9518 0.1644 0.9834 0.0274 0.1316 0.0453 0.1332
0.17 0.5262 0.8694 0.2357 0.9360 0.0243 0.1051 0.0554 0.1043
0.18 0.5761 0.9350 0.2965 0.9977 0.0227 0.1123 0.0379 0.1089
0.19 0.6939 0.9829 0.4784 0.9780 0.0405 0.0755 0.0529 0.0751
0.20 0.5394 0.9560 0.2543 0.9457 0.0602 0.0692 0.0809 0.0702
0.21 0.4987 0.9668 0.2059 0.9706 0.0621 0.0606 0.0613 0.0610
0.22 0.6309 0.9575 0.3123 0.0948 0.0514 0.0460 0.0540 0.0453
0.23 0.8353 0.9446 0.4697 0.9571 0.0530 0.0509 0.0779 0.0517
0.24 0.9606 0.9696 0.7109 0.9354 0.0581 0.0419 0.1052 0.0421
0.25 0.8044 0.9403 0.4114 0.9264 0.0513 0.0431 0.0597 0.0428
0.26 0.9847 0.8136 0.7172 0.8084 0.0757 0.0492 0.0788 0.0489
0.27 0.8434 0.8457 0.9301 0.8383 0.0986 0.0475 0.1162 0.0469
0.28 0.8173 0.7518 0.8996 0.7447 0.1258 0.0457 0.1949 0.0449
0.29 0.7488 0.7970 0.7585 0.7904 0.1113 0.0547 0.1781 0.0536
0.30 0.7482 0.8693 0.8552 0.8633 0.1158 0.0586 0.1667 0.0564
0.31 0.7721 0.9482 0.8242 0.9617 0.0840 0.0452 0.0961 0.0443
0.32 0.8327 0.9876 0.9435 0.9967 0.0709 0.0376 0.0614 0.0367
0.33 0.8401 0.9403 0.9304 0.9254 0.0835 0.0291 0.1004 0.0282
0.34 0.7937 0.9522 0.9274 0.9656 0.0812 0.0289 0.0763 0.0282
0.35 0.7832 0.8418 0.8605 0.8518 0.0788 0.0388 0.1017 0.0382
0.36 0.8013 0.9321 0.8800 0.9439 0.0692 0.0321 0.0895 0.0315
0.37 0.8055 0.8433 0.7944 0.8546 0.0632 0.0288 0.0927 0.0282
0.38 0.7331 0.7647 0.7207 0.7751 0.0577 0.0344 0.0749 0.0337
0.39 0.7362 0.7284 0.6966 0.7359 0.0635 0.0688 0.0919 0.0678
0.40 0.7569 0.6168 0.7407 0.6229 0.0705 0.0652 0.0762 0.0644
0.41 0.7640 0.6147 0.7313 0.6198 0.0668 0.0986 0.0762 0.0979
0.42 0.7556 0.5889 0.6980 0.5930 0.0658 0.1195 0.0784 0.1189
0.43 0.7405 0.6004 0.6796 0.6044 0.0692 0.1613 0.07980 0.1608
0.44 0.7279 0.4710 0.6795 0.4731 0.0623 0.2047 0.0678 0.2043
0.45 0.7556 0.4533 0.7202 0.4549 0.0495 0.1766 0.0517 0.1763
0.46 0.7977 0.4604 0.7725 0.4620 0.0461 0.1350 0.0426 0.1348
0.47 0.8088 0.9559 0.7894 0.9562 0.0438 0.1573 0.0402 0.1571
0.48 0.8237 0.6741 0.8026 0.6743 0.0422 0.2881 0.0434 0.2880
0.49 0.8359 0.9303 0.7923 0.9307 0.0411 0.2309 0.0417 0.2309
0.50 0.8142 0.8711 0.8203 0.8713 0.0442 0.2390 0.0434 0.2390

characterized by a significantly lower Cp, which is indicative
of disrupted local connectivity, according to fMRI research
by Supekar and his colleagues [31]. Similar results have been
observed in previous MEG studies [37]; however, structural
MRI has shown opposite results in that AD patients revealed
higher Cp [6, 33]. Additionally, some researchers have found

no difference between AD and HCs in terms of Cp using EEG
[9] and fMRI [38] data.

In addition to regional damage, AD is associated with the
abnormal functional integration of different brain regions
through disconnection mechanisms [39]; at present, it is
well-recognized that supporting daily cognitive activities
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TABLE 4: P values of statistical tests on the small-world parameters using L1-norm regularization.
L1
HCs-MCI HCs-AD

Density Cp Lp Eloc Cp Lp Eloc Eg
0.10 0.6404 0.6401 0.2053 0.6698 0.0094 0.0609 0.0087 0.0650
0.11 0.8735 0.6150 0.4472 0.6107 0.0571 0.0276 0.0464 0.0289
0.12 0.2529 0.8256 0.6400 0.8083 0.1530 0.0240 0.02705 0.0221
0.13 0.3362 0.7639 0.7519 0.7210 0.1158 0.0309 0.2327 0.0249
0.14 0.5208 0.6125 0.7867 0.5841 0.2948 0.0321 0.7430 0.0250
0.15 0.1987 0.5490 0.2687 0.5339 0.4026 0.0240 0.9364 0.0188
0.16 0.0615 0.5434 0.0315 0.5273 0.5959 0.0164 0.5482 0.0128
0.17 0.1097 0.3825 0.0414 0.3702 0.4658 0.0106 0.5719 0.0077
0.18 0.1713 0.3504 0.0392 0.3455 0.4488 0.0086 0.5532 0.0056
0.19 0.1935 0.3035 0.0329 0.3001 0.3856 0.0088 0.7197 0.0058
0.20 0.2930 0.3442 0.0780 0.3360 0.4392 0.0052 0.6151 0.0031
0.21 0.2393 0.3440 0.0634 0.3292 0.4695 0.0090 0.5605 0.0061
0.22 0.2863 0.3161 0.0749 0.3060 0.3866 0.0162 0.8317 0.0117
0.23 0.1949 0.3589 0.0224 0.3522 0.4969 0.0205 0.5873 0.0176
0.24 0.1506 0.3247 0.0116 0.3107 0.5647 0.0151 0.6287 0.0132
0.25 0.1500 0.2947 0.0203 0.2876 0.5015 0.0155 0.8236 0.0131
0.26 0.1252 0.3362 0.0079 0.3272 0.5859 0.0226 0.6054 0.0204
0.27 0.1268 0.3625 0.0055 0.3528 0.5271 0.0157 0.5921 0.0146
0.28 0.1231 0.5806 0.0073 0.5630 0.4757 0.0063 0.6751 0.0058
0.29 0.1084 0.4627 0.0083 0.4503 0.4424 0.0020 0.8784 0.0019
0.30 0.1204 0.4288 0.0073 0.4158 0.3962 0.0028 0.9967 0.0026
0.31 0.1390 0.5207 0.0168 0.5065 0.4080 0.0045 0.8910 0.0043
0.32 0.1529 0.4481 0.0241 0.4324 0.4109 0.0050 0.8349 0.0048
0.33 0.1489 0.4787 0.0297 0.4626 0.4345 0.0072 0.8090 0.0070
0.34 0.1563 0.5108 0.0366 0.5022 0.4657 0.0067 0.8855 0.0065
0.35 0.1744 0.6842 0.0422 0.6702 0.4738 0.0038 0.9402 0.0037
0.36 0.1311 0.6812 0.0357 0.6682 0.5861 0.0042 0.9568 0.0041
0.37 0.1139 0.9121 0.0365 0.9262 0.5866 0.0017 0.9777 0.0017
0.38 0.1082 0.9140 0.0371 0.9014 0.6304 0.0018 0.9563 0.0017
0.39 0.1125 0.1125 0.9457 0.0470 0.6672 0.0024 0.9689 0.0024
0.40 0.9689 0.9824 0.0502 0.9936 0.7539 0.0041 0.9337 0.0041
0.41 0.0883 0.8723 0.0513 0.8820 0.7815 0.0096 0.9568 0.0096
0.42 0.0963 0.7882 0.0510 0.7959 0.8187 0.0253 0.9438 0.0253
0.43 0.0869 0.2272 0.0435 0.2263 0.8455 0.0293 0.9137 0.0293
0.44 0.0900 0.2301 0.0533 0.2293 0.8602 0.0400 0.9498 0.0400
0.45 0.0550 0.3039 0.0282 0.3031 0.9713 0.0641 0.7727 0.0641
0.46 0.0496 0.7239 0.0267 0.7225 0.9647 0.1426 0.7920 0.1426
0.47 0.0419 0.8847 0.0256 0.8838 0.9285 0.2016 0.7830 0.2016
0.48 0.0428 0.5887 0.0291 0.5882 0.9356 0.1712 0.8272 0.1712
0.49 0.0397 0.6768 0.0297 0.6765 0.8201 0.1953 0.7302 0.1953
0.50 0.0403 0.6358 0.0346 0.6355 0.7253 0.2424 0.6726 0.2424

requires a high level of functional interaction between differ-
ent brain regions [13]. Both methods used in our study
revealed that the global efficiency and Lp decreased in AD
patients; this may reflect the impairment of functional con-
nections between different brain regions, implying abnormal
topological organization. This result is consistent with those

of numerous previous studies [16]. The present results
showed that the network topological properties were dis-
rupted in AD patients, and combined with the evidence for
decreased long-distance and local efficiency, our data further
support the notion of AD as a disconnection syndrome. AD
patients have been shown to have disrupted system integrity
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in the brain neuronal networks that could possibly be respon-
sible for cognitive and memory decline, thus potentially pro-
viding insight into the basic mechanisms underlying this
disease [40].

Unlike in AD patients, Cp and Eloc increased in MCI
patients compared to that of HCs. MCI is considered a tran-
sitional stage between healthy aging and early AD; it is there-
fore a state of progressive global cognitive decline that
includes the loss of memory, reasoning, and language.
Abnormalities in functional integrity and functional com-
pensation coexist in patients with MCI, and the increased
Cp and Eloc may primarily result from a compensatory
mechanism. Increased activity or functional connectivity
within the right hemisphere has been observed in patients
with MCI in a resting state or during various cognitive tasks
[41-44]. In attention-demanding tasks, patients with MCI
exhibit greater activation in the bilateral posterior parietal
and dorsolateral prefrontal cortices than healthy elderly sub-
jects. In a word-memory task, patients with MCI exhibit a
significant increase in the activation of many compensatory
regions compared to HCs [41-43]. According to a study by
Liang et al. [45], patients with MCI may use additional neural
resources in the right prefrontal regions to compensate for
losses in cognitive function. It is worth mentioning that Lp
and Eg did not differ significantly between MCI patients
and HCs using both methods. We suggest that several local
areas of the brain are affected, and the global connection is
disrupted in AD patients.

5. Limitations

This study has certain limitations. First, the sample size in
our study was small. We intend to further expand the sample
size in the future to perform more in-depth and comprehen-
sive research. Second, we only compared the differences
between small-world networks that were constructed using
the L1-norm regularization and Pearson correlation. Other
approaches to construct brain networks will be included in
further research.

6. Conclusions

In this study, we used the sparse L1-norm regularization and
Pearson correlation to construct the brain network of AD
and MCI patients and HCs and demonstrated that the func-
tional networks of all the groups exhibited small-world topol-
ogy. More importantly, we showed that AD patients had
significantly decreased characteristic Cp and local efficiency
in functional networks, implying a disconnectivity and topo-
logical disruption in the AD brain networks; we also found
that instead of Lp and Eg, Cp and Eloc were impaired first
during AD progression. In particular, constructing the brain
network through the sparse L1-norm regularization is rela-
tively more sensitive in detecting brain network changes in
early stages of AD. The present study provided further
important implications for understanding the basic mecha-
nisms of AD.
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