Supplementary information for Ancient diversity in host-parasite interaction genes in a model parasitic nematode

Lewis Stevens¹, Isaac Martinez-Ugalde², Erna King¹, Martin Wagah¹, Dominic Absolon¹, Rowan Bancroft², Pablo Gonzalez de la Rosa¹, Jessica L Hall², Manuela Kieninger¹, Agnieszka Kloch³, Sarah Pelan¹, Elaine Robertson⁴, Amy B Pedersen², Cei Abreu-Goodger², Amy H Buck⁴, Mark Blaxter¹

1. Tree of Life, Wellcome Sanger Institute, Hinxton, UK

2. Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK

3. Faculty of Biology, University of Warsaw, Warsaw, Poland

4. Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK

Supplementary Figure 1: Blob plot of Heligmosomoides polygyrus ngHelPoly2 dataset	3
Supplementary Figure 2: K-mer profiles of PacBio HiFi data for all Heligmosomoides bake and Heligmosomoides polygyrus individuals	ri 4
Supplementary Figure 3: Chromosome-level reference genomes for Heligmosomoides bakeri and Heligmosomoides polygyrus	5
Supplementary Figure 4: Telomeric repeat sequence in Heligmosomoides reference genomes	6
Supplementary Figure 5: GC-coverage bias in the H. bakeri nxHelBake1 and H. polygyrus ngHelPoly1 PiMmS data	7
Supplementary Figure 6: Cytochrome oxidase 1 (COI) phylogeny of Heligmosomoides and related nematodes	i 8
Supplementary Figure 7: Repeat content and synteny in the H. bakeri and H. polygyrus X chromosomes	9
Supplementary Figure 8: Synonymous site divergence between five nematode sister species pairs	10
Supplementary Figure 9: Distribution of heterozygous SNPs in Heligmosomoides bakeri and Heligmosomoides polygyrus	11
Supplementary Figure 10: Example hyper-divergent haplotype on H. bakeri nxHelBake1 chromosome V	12
Supplementary Figure 11: Optimising the hyper-divergent region calling pipeline	13
Supplementary Figure 12: Locations of hyper-divergent haplotypes across all three individuals	14
Supplementary Figure 13: Gene ontology (GO) enrichment for hyper-divergent haplotypes 16	
Supplementary Figure 14: Read alignments in a region in nxHelBake1.1 containing two Ancylostoma-secreted protein homologues showing evidence of trans-specific polymorphism	17
Supplementary Figure 15: RNA-seq support for genes predicted in the alternate H. bakeri haplotype	18
Supplementary Figure 16: Read alignments in a region in ngHelPoly1.1 containing two Ancylostoma-secreted proteins showing evidence of trans-specific polymorphism	19
Supplementary Figure 17: Trans-specific polymorphism in novel secreted proteins homologs	20
Supplementary Figure 18: Trans-specific polymorphism in a region containing multiple transthyretin-like proteins	21
Supplementary Figure 19: Trans-specific polymorphism in a homolog of H11 aminopeptidase	22
Supplementary Figure 20: Shared haplotypes show similar levels of divergence to the genome-wide average	23
Supplementary Table 1: Single-worm sequencing and assembly metrics	24
Supplementary Table 2: Protein-coding gene prediction metrics	25
Supplementary Table 3: Heterozygosity in the H. bakeri and H. polygyrus genomes	26
Supplementary Table 4: H. bakeri hyper-divergent haplotype metrics	27
Supplementary Table 5: GO terms significantly enriched in hyper-divergent haplotypes	28
Supplementary Table 6: Accessions of the data used in gene prediction and phylogenomic analyses	; 29
Supplementary Table 7: Heligmosomum genome assembly metrics	30
Supplementary Table 8: Genome assembly accession numbers	31

Supplementary Figure 1: Blob plot of *Heligmosomoides polygyrus* ngHelPoly2 dataset

Blob plot of the assembly of the *H. polygyrus* ngHelPoly2 dataset showing extensive contamination by host and two diplomonad parasites (a *Giardia* sp. and a *Spironucleus* sp.). Scaffolds are plotted based on their GC content (x-axis) and their PacBio HiFi read coverage (y-axis). Scaffolds are coloured by phylum of their best BLAST match in the NR NCBI database. Circles are sized in proportion to scaffold length on a square-root scale. Histograms show the distribution of scaffold length sum along each axis. Two groups of scaffolds are likely derived from Fornicata (Metamonada) parasites: the leftmost blob corresponds to a *Spironucleus* sp. and the rightmost blob corresponds to a *Giardia* sp. Note that scaffolds labelled as "Apicomplexa" are mislabelled *Apodemus sylvaticus* host scaffolds; all hits are to a *Plasmodium yoelii yoelii* genome in NCBI (GCA_000003085.2) which is contaminated with host rodent sequence.

Supplementary Figure 2: *K*-mer profiles of PacBio HiFi data for all *Heligmosomoides bakeri* and *Heligmosomoides polygyrus* individuals

K-mer profiles (k = 31) and fitted models for PacBio raw HiFi read data from GenomeScope 2.0 for (a) *H. bakeri* nxHelBake1, (b) *H. bakeri* nxHelBake2, (c) *H. bakeri* nxHelBake3, (d) *H. polygyrus* ngHelPoly1 and (e) *H. polygyrus* ngHelPoly2. The *k*-mer profile shown for *H. polygyrus* ngHelPoly2 is of the read set after removing reads that map to *Apodemus sylvaticus* and *Giardia muris*. The genome size and heterozygosity estimates for *H. bakeri* nxHelBake3 (c) and *H. polygyrus* ngHelPoly2 (e) are not reliable due to low coverage. In the high coverage datasets, we note that genome size estimates are substantially less than the assembled reference genomes, which may be caused by high copy number *k*-mers being poorly modelled.

Supplementary Figure 3: Chromosome-level reference genomes for *Heligmosomoides bakeri* and *Heligmosomoides polygyrus*

(a) Hi-C contact map for ngHelPoly1.1 reference genome. Chromosome names are indicated. (b) Distribution of BUSCO genes in the six ngHelPoly1.1 chromosomes coloured by Nigon element (Gonzalez de la Rosa *et al.* 2021). Distribution of BUSCO genes coloured by their location in the chromosome-level *H. contortus* (PRJEB506) genome in the (c) *H. bakeri* nxHelBake1.1 and (c) *H. polygyrus* ngHelPoly1.1 reference genomes. Source data for figures b-d can be found in the Source Data file.

Supplementary Figure 4: Telomeric repeat sequence in *Heligmosomoides* reference genomes

Counts of the nematode telomeric repeat sequence (TTAGGC) in 1 kb windows in the (a) *H. bakeri* nxHelBake1 and (b) *H. polygyrus* ngHelPoly1 reference genomes. Telomeric repeat counts are shown for the six chromosome-sized scaffolds only. Source data for this figure can be found in the GitHub repository.

Supplementary Figure 5: GC-coverage bias in the *H. bakeri* nxHelBake1 and *H. polygyrus* ngHelPoly1 PiMmS data

PacBio HiFi read coverage in 100 bp windows across the (a) *H. bakeri* nxHelBake1 and (b) *H. polygyrus* ngHelPoly1 reference genomes, binned by GC %. Histograms show the counts of windows in each bin. Only windows that were 100 bp in length and that had \leq 50% Ns are shown. No windows in either genome had a GC% of > 90%. Source data for this figure can be found in the GitHub repository.

Supplementary Figure 6: Cytochrome oxidase 1 (COI) phylogeny of Heligmosomoides and related nematodes

Maximum likelihood phylogeny of the mitochondrial cytochrome oxidase 1 gene in laboratory isolates of *H. bakeri*, wild isolates of *H. polygyrus*, and outgroup taxa. The sequences are derived from *Cable et al.* (2006) or the mitochondrial genomes of individuals sequenced as part of this work (highlighted in bold). The origin of each isolate is shown in parentheses. Bootstrap support values are shown for the branches subtending the *H. bakeri* and *H. polygyrus* clades. Branch lengths represent the number of substitutions per site; scale is shown. As noted by Cable *et al.* (2006) and Maizels *et al.* (2011), the COI sequence from the "*H. polygyrus*" isolate from Guernsey is highly divergent from other *H. polygyrus* isolates. We believe this is caused either by misidentification or a low-quality sequence. Source data for this figure can be found in the GitHub repository.

Supplementary Figure 7: Repeat content and synteny in the *H. bakeri* and *H. polygyrus* X chromosomes

Lower left panel: The relative position for 260 BUSCO genes in *H. bakeri* and *H. polygyrus* X chromosomes are shown as dots. The dots are coloured by their allocation to Nigon elements. Right panel and upper panel: Repeat content in 100 kb windows is shown for both X chromosomes; lines represent LOESS smoothing functions fitted to the data. The location of an apparent inversion is indicated with dotted lines. The inversion-containing regions in both X chromosomes are highly repetitive in both genomes and the order of the contigs within these regions are uncertain in our reference genomes. Source data for this figure can be found in the GitHub repository.

Supplementary Figure 8: Synonymous site divergence between five nematode sister species pairs

Mean synonymous site divergence between five nematode sister species. Single-copy orthologues were identified using BUSCO (with the nematoda_odb10 dataset); orthologue counts ranged from 2,539 to 2,954. Synonymous site divergence was calculated for each pair of orthologues using the Nei-Gojobori method implemented in codeml. Orthologues that had a divergence greater than 80% were filtered out before calculating the mean. Source data for this figure can be found in the Source Data file.

Supplementary Figure 9: Distribution of heterozygous SNPs in Heligmosomoides bakeri and Heligmosomoides polygyrus

Distribution of heterozygous SNPs in (a) *H. polygyrus* ngHelPoly2 relative to the ngHelPoly1.1 reference genome and the (b) *H. bakeri* nxHelBake2 and (c) *H. bakeri* nxHelBake3 relative to the nxHelBake1 reference genome. Points represent the density of biallelic SNPs in 10 kb windows. All three individuals were male and therefore the X chromosome is hemizygous; the SNP density peaks on the X chromosome are therefore erroneous and are a consequence of mismapped PacBio HiFi reads. SNPs called in repeat-containing regions were filtered and SNP density was calculated as the number of non-repetitive SNPs per non-repetitive base. Homozygous alternate variants (i.e. variants that represented differences from the reference genome rather than heterozygous SNPs) were ignored. Lines represent LOESS smoothing curves fitted to the data. Source data for this figure can be found in the GitHub repository.

Supplementary Figure 10: Example hyper-divergent haplotype on *H. bakeri* nxHelBake1 chromosome V

Nucleotide alignment between nxHelBake1 alternate contig atg001761I_1 and nxHelBake1 primary chromosome V (87.71 - 87.86) with each aligned segment coloured by its nucleotide identity. Repetitive alignments are not shown. The two non-divergent flanking alignments show high nucleotide identity (99.48% and 99.73%, respectively) whereas several aligned segments within the hyper-divergent haplotype have nucleotide identities of < 90%. Read alignments for this region are shown in Figure 3C. Source data for this figure can be found in the GitHub repository.

Supplementary Figure 11: Optimising the hyper-divergent region calling pipeline Each point represents an independent run of the hyper-divergent haplotype calling pipeline on PacBio CLR assemblies for 15 *C. elegans* strains (Lee *et al.* 2021) using a different parameter set. The output of each run is summarised by sensitivity on the X-axis (the number of overlapping bases divided by the total number of bases defined by Lee *et al.* (2021) and specificity (the number of overlapping bases divided by the total number of bases classified as hyper-divergent by our approach). Each panel represents different parameter: (a) flanking alignment identities of 94-97%, (b) flanking alignment lengths of 2-6 kb, (c) minimum size of alignment gaps to be considered as a hyper-divergent haplotype of 5-15 kb, and (d) SNP density, derived from assembly-based variant calling, within alignment gaps of 0.001-0.005. The diamond represents the chosen parameter set. Source data for this figure can be found in the Source Data file.

Supplementary Figure 12: Locations of hyper-divergent haplotypes across all three individuals

The locations of hyper-divergent haplotypes in all five non-reference haplotypes: (a) nxHelBake1 alternate, (b) nxHelBake2 primary, (c) nxHelBake2 alternate, (d) nxHelBake3 primary, (e) nxHelBake3 alternate. Red boxes represent locations of hyper-divergent haplotypes. Hyper-divergent haplotypes called on the X chromosome in the three alternate haplotypes were removed (2, 1, and 1 from nxHelBake1, nxHelBake2, and nxHelBake3 alternate assemblies, respectively). The distribution of heterozygous SNPs, derived from assembly-based variant calling, in 10 kb windows are shown for each haplotype. SNPs that overlapped with a repeat annotation were removed and SNP density was calculated using the remaining SNPs and the number of

non-repetitive bases in each window. Source data for this figure can be found in the GitHub repository.

Supplementary Figure 13: Gene ontology (GO) enrichment for hyper-divergent haplotypes

Gene ontology (GO) enrichment for the 1,734 genes found in hyper-divergent haplotypes in *H. bakeri*. GO terms from all three ontologies ('molecular function', 'biological process', and 'cellular component') are shown. P-values were calculated using the 'weight01' algorithm from TopGO which considers the GO hierarchy. Circles are scaled by the fold enrichment in hyper-divergent haplotypes. The dotted line represents a significance threshold of 0.05. Source data for this figure can be found in Supplementary Table 5.

Supplementary Figure 14: Read alignments in a region in nxHelBake1.1 containing two *Ancylostoma*-secreted protein homologues showing evidence of trans-specific polymorphism

PacBio HiFi read alignments of all sequenced individuals to the nxHelBake1.1 reference genome in a 287 kb region on chromosome I (I:8.92-9.19 Mb) showing evidence of trans-specific polymorphisms. Two genes in this region belong to the ASP family (nxHelBake1.g10196 and nxHelBake1.g10198; highlighted in red boxes). The top panel shows the coverage and the bottom panel shows aligned PacBio HiFi reads. The coloured vertical lines indicate mismatched bases at that position. Note that mismatched bases are only shown in the coverage tracks and not in the read alignments at this zoom level in IGV.

Supplementary Figure 15: RNA-seq support for genes predicted in the alternate *H. bakeri* haplotype

Alignments of short-read RNA-seq data collected from pools of *H. bakeri* individuals (Rausch *et al.* 2018) to the alternate haplotype from the nxHelBake2 primary assembly. The top panel shows the coverage and the bottom panel shows aligned RNA-seq reads. Both homologues of nxHelBake1.g10195 (which contains a growth factor receptor domain) and both homologues of the ASP nxHelBake1.g10196 (a member of the *Ancylostoma*-secreted protein family) are supported by RNA-seq reads.

Supplementary Figure 16: Read alignments in a region in ngHelPoly1.1 containing two *Ancylostoma*-secreted proteins showing evidence of trans-specific polymorphism

PacBio HiFi read alignments of both *H. polygyrus* individuals to the ngHelPoly1.1 reference genome in a ~383 kb region on chromosome I (I:8.62-9.01 Mb) showing evidence of trans-specific polymorphisms. Two genes in this region belong to the ASP family (ngHelPoly1.g16760.t1 and ngHelPoly1.g16763.t1; highlighted with red boxes). The top panel shows the coverage and the bottom panel shows aligned PacBio HiFi reads. Note that mismatched bases are not shown in reads at this zoom level, but can be seen as coloured vertical lines in the coverage tracks above the read alignments. This region is orthologous to the region shown in Figure 4 and Supplementary Figure 14.

Supplementary Figure 17: Trans-specific polymorphism in novel secreted proteins homologs

(a) PacBio HiFi read alignments to the nxHelBake1.1 reference genome in a ~570 kb region on chromosome III (0.58-1.15 Mb). The top panel shows the coverage and the bottom panel shows aligned PacBio HiFi reads. The coloured vertical lines indicate mismatched bases at that position. (b) Nucleotide alignments between the alternate *H. bakeri* haplotype (represented by nxHelBake2 primary), ngHelPoly1 primary and the nxHelBake1 reference haplotype. Repetitive alignments are not shown. Gene trees of (c) nxHelBake1.g15562.t1 and (d) nxHelBake1.g15563.t1 showing evidence of haplotype sharing between nxHelBake1 primary and various *H. polygyrus* haplotypes. Trees were inferred using IQ-TREE under the LG+F substitution model. Scale is shown in substitutions per site. Outgroup not shown. Source data for figures b-d can be found in the GitHub repository.

Supplementary Figure 18: Trans-specific polymorphism in a region containing multiple transthyretin-like proteins

(a) PacBio HiFi read alignments to the nxHelBake1.1 reference genome in a 177 kb region on chromosome II (20.9 - 21.1 Mb). The top panel shows the coverage and the bottom panel shows aligned PacBio HiFi reads. The coloured vertical lines indicate mismatched bases at that position. (b) Nucleotide alignments between the alternate *H. bakeri* haplotype (represented by nxHelBake1 alternate), ngHelPoly1 primary, ngHelPoly2 primary and the nxHelBake1 reference haplotype. Repetitive alignments are not shown. Gene trees of (c) nxHelBake1.g653.t1, (d) nxHelBake1.g654.t1, and (e) nxHelBake1.g655.t1 showing evidence of haplotype sharing between *H. bakeri* and *H. polygyrus* haplotypes. Tree inferred using IQ-TREE under the LG+Γ substitution model. Scale is shown in substitutions per site. Outgroup not shown. Source data for figures b-e can be found in the GitHub repository.

Supplementary Figure 19: Trans-specific polymorphism in a homolog of H11 aminopeptidase

(a) Gene tree of H11 homologs in *H. bakeri, H. polygyrus* and *H. contortus*. Tree inferred using IQ-TREE under the LG+ Γ substitution model. Scale is shown in substitutions per site. nxHelBake1.g5347.t2 is highlighted in bold. The names of *H. contortus* homologs are shown in parentheses which were inferred using phylogenetic relationships to previously published H11 protein sequences downloaded from NCBI. (b) PacBio HiFi read alignments to the nxHelBake1.1 reference genome in a 94 kb region on chromosome V (71.78-71.88 Mb). The top panel shows the coverage and the bottom panel shows aligned PacBio HiFi reads. The coloured vertical lines indicate mismatched bases at that position. (c) Gene tree of nxHelBake1.g5347.t2 and its homologs in the other *H. bakeri* and *H. polygyrus* haplotypes. Tree inferred using IQ-TREE under the LG+ Γ substitution model. Scale is shown in substitutions per site. Outgroup not shown. (d) Nucleotide alignments between the alternate *H. bakeri* haplotype (represented by nxHelBake1 alternate), ngHelPoly1 primary and the nxHelBake1 reference haplotype. Repetitive alignments are not shown. Source data for figures a, c, and d can be found in the GitHub repository.

Supplementary Figure 20: Shared haplotypes show similar levels of divergence to the genome-wide average

The average synonymous site divergence (d_s) for one-to-one orthologs in shared haplotypes (shared; *N*=189) and for all other orthologues (non-shared; *N*=9,753). A two-sided Wilcoxon test suggests no statistical difference between the mean d_s in shared and non-shared haplotypes (*p*-value = 0.1362). Source data for this figure can be found in the Source Data file.

Individual ToLID	nxHelBake1	nxHelBake2	nxHelBake3	ngHelPoly1 ¹	ngHelPoly2
Species	H. bakeri	H. bakeri	H. bakeri	H. polygyrus	H. polygyrus
Sex ²	Male	Male	Male	Female	Male
Read count (n)	1,884,536	2,422,012	626,996	3,502,508	2,768,938
Bases (Gb)	20.7	24.1	6.2	33.9	28.1
Read N50 (kb)	11.1	9.9	10.9	9.6	10.1
Coverage (x) ³	31.8	37.1	9.5	52.2	43.2
% PCR duplicates	15.6	18.3	5.9	12.6	14
Unique read count	1,590,050	1,979,754	589,768	3,061,678	2,380,870
Unique bases (Gb)	17.3	19.6	5.7	29.4	24
Unique read N50 (kb)	11	9.8	9.8	9.6	10.1
Unique coverage (x) ³	26.7	30.2	8.8	45.3	36.9
Primary assembly span (Mb)	654.6	656.5	572.8	658.3	620
Contigs in primary assembly (n)	3,585	4,235	8,129	7,427	7,366
Primary assembly N50 (kb)	314	266.8	102.3	310.2	136.7
BUSCO completeness of primary assembly (%)	91.5	91.3	80.5	92.9	87.7
BUSCO duplication of primary assembly (%)	1.7	1.6	1.7	3	3
Alternate assembly span (Mb)	304.5	328.3	154	623.8	464.7
Contigs in alternate assembly (n)	9,763	10,900	6,714	14,214	12,604
Alternate assembly N50 (kb)	37.1	38.9	24.8	71.8	50.7
BUSCO completeness of alternate assembly (%)	38.3	40	17.7	83.2	65.7
BUSCO duplication of alternate assembly (%)	1.3	1.6	0.3	3.5	2.3

Supplementary Table 1: Single-worm sequencing and assembly metrics

1. The library for this individual was run on two PacBio Sequel IIe flow cells; the metrics reported represent data from both flow cells combined.

2. Sex was inferred based on coverage of the X chromosome (males are hemizygous for X and therefore have half coverage).

3. Based on an estimated genome size of 650 Mb.

H. bakeri nxHelBake1.1					
	BRAKER1 (RNA-seq)	BRAKER2 (homology)	TSEBRA	TSEBRA+PASAx2	
Number of genes	17843	14512	19299	19117	
Number of transcripts	20425	15432	22188	28195	
Number of single exon genes	1373	2265	2438	2406	
Percent single exon genes	7.69%	15.61%	12.63%	12.59%	
Number of transcripts with 5' UTRs	0	C	0	11008	
Number of transcripts with 3' UTRs	0	C	0	14811	
BUSCO completeness (%)	92.50%	89.60%	92.70%	92.80%	
Number of complete BUSCOs	2895	2805	2903	2905	
Number of fragmented BUSCOs	42	85	46	47	
Number of missing BUSCOs	194	241	182	179	
Number of single-copy orthologues with H. contortus	8619	7461	8725	8725	
Number of single-copy orthologues that are within 10% of the H. contortus length	6129	3526	6303	6427	
Number of genes in orthogroups with H. contortus	15297	11918	16200	16110	
Percent of genes in orthogroups with H. contortus (%)	85.70%	82.10%	83.90%	84.30%	

Supplementary Table 2: Protein-coding gene prediction metrics

H. polygyrus ngHelPoly1.1				
	BRAKER1 (RNA-seq)	BRAKER2 (homology)	TSEBRA	TSEBRA+PASAx2
Number of genes	19576	15370	20735	20622
Number of transcripts	21754	16369	23651	24144
Number of single exon genes	2482	2661	3322	3277
Percent single exon genes	12.68%	17.31%	16.02%	15.89%
Number of transcripts with 5' UTRs	0	0	0	2843
Number of transcripts with 3' UTRs	0	0	0	7215
BUSCO completeness (%)	94.20%	91.20%	93.90%	94.00%
Number of complete BUSCOs	2948	2857	2941	2944
Number of fragmented BUSCOs	31	65	35	34
Number of missing BUSCOs	152	209	155	153
Number of single-copy orthologues with H. contortus	8496	7376	8563	8578
Number of single-copy orthologues that are within 10% of the H. contortus length	6210	3508	6260	6362
Number of genes in orthogroups with H. contortus	16853	12463	17376	17322
Percent of genes in orthogroups with H. contortus (%)	86.10%	81.10%	83.80%	84.00%

		nxHelBake1	nxHelBake2	nxHelBake3	ngHelPoly1	ngHelPoly2
Whole genome	Non-repeat span (Mb)	229.13	229.13	229.13	236.51	236.51
	Non-repeat SNPs	367,123	506,973	310,450	1,521,094	1,632,007
	Non-repeat SNP density	0.0016	0.0022	0.0014	0.0064	0.0069
	Average per bp	624.12	451.96	738.06	155.49	144.92
	Non-repeat homozygous span	166.21	154.36	167.88	38.15	56.58
	Non-repeat homozygous proportion	72.54%	67.37%	73.27%	16.13%	23.92%
Autosomes only	Non-repeat span (Mb)	197.71	197.71	197.71	204.19	204.19
	Non-repeat SNPs (n)	363,853	502,869	307,446	1,426,617	1,624,748
	Non-repeat SNP density	0.0018	0.0025	0.0016	0.007	0.008
	Average per bp	543.37	393.16	643.06	143.13	125.68
	Non-repeat homozygous span	138.42	126.8	138.85	31.5	30.54
	Non-repeat homozygous proportion	70.01%	64.14%	70.23%	15.42%	14.96%

Supplementary Table 3: Heterozygosity in the *H. bakeri* and *H. polygyrus* genomes

Supplementary Table 4: *H. bakeri* hyper-divergent haplotype metrics

Haplotype assembly	Number of hyper-divergent haplotypes	Span of hyper-divergent haplotypes (Mb)	Proportion of genome (%)	Number of hyper-divergent genes ¹	Proportion of gene set (%)
nxHelBake1 alternate	683	23.4	3.60%	665	3.50%
nxHelBake2 alternate	468	17.1	2.60%	542	2.80%
nxHelBake2 primary	861	27.4	4.20%	706	3.70%
nxHelBake3 alternate	153	4.5	0.70%	132	0.70%
nxHelBake3 primary	720	22.2	3.40%	619	3.20%
Total ²	1703	62	9.60%	1734	9.10%

1. Hyper-divergent genes are those where \geq 50% of their length was covered by a hyper-divergent haplotype

2. Total values are the result of merging overlapping hyper-divergent haplotypes from all

GO ID	Description	Count in genome	Count in HD haplotypes	Expected	p-value (weight01)	p-value (classic Fisher)¹
Molecular function						
GO:0005254	chloride channel activity	27	7	2.24	0.0075	0.0054
GO:0008191	metalloendopeptidase inhibitor activity	6	3	0.5	0.0094	0.0094
GO:0051082	unfolded protein binding	24	6	1.99	0.0118	0.0118
GO:0032217	riboflavin transmembrane transporter activity	3	2	0.25	0.0195	0.0195
GO:0009922	fatty acid elongase activity	9	3	0.75	0.0328	0.0328
GO:0030414	peptidase inhibitor activity	87	14	7.23	0.0363	0.0119
Biological pro	cess					
GO:1990456	mitochondrion-endoplasmic reticulum membrane tethering	2	2	0.17	0.0076	0.0076
GO:0006801	superoxide metabolic process	6	3	0.52	0.0108	0.0108
GO:0032012	regulation of ARF protein signal transduction	7	3	0.61	0.0177	0.0177
GO:0032218	riboflavin transport	3	2	0.26	0.0215	0.0215
GO:0007606	sensory perception of chemical stimulus	41	8	3.58	0.0232	0.0232
GO:0060828	regulation of canonical Wnt signaling pathway	9	3	0.79	0.0373	0.0373
GO:0051560	mitochondrial calcium ion homeostasis	4	2	0.35	0.0406	0.0406
Cellular comp	onent					
GO:0009986	cell surface	61	15	5.02	7.60E-05	7.60E-05
GO:0044233	mitochondria-associated endoplasmic reticulum membrane	2	2	0.16	0.0067	0.0067
GO:0000159	protein phosphatase type 2A complex	3	2	0.25	0.0191	0.0191
GO:0000814	ESCRT II complex	3	2	0.25	0.0191	0.0191
GO:0016589	NURF complex	3	2	0.25	0.0191	0.0191
GO:0005744	TIM23 mitochondrial import inner membrane translocase complex	4	2	0.33	0.0362	0.0362
GO:0016021	integral component of membrane	854	83	70.26	0.0419	0.0324

Supplementary Table 5: GO terms significantly enriched in hyper-divergent haplotypes

1. Fisher's exact test used in TopGo is a one-sided test.

Supplementary Table 6: Accessions of the data used in gene prediction and phylogenomic analyses

Species	Category	Source	BioProject
Ancylostoma caninum	Strongylomorpha	WBPS (version 17)	PRJNA72585
Ancylostoma ceylanicum	Strongylomorpha	WBPS (version 17)	PRJNA231479
Ancylostoma duodenale	Strongylomorpha	WBPS (version 17)	PRJNA72581
Angiostrongylus cantonensis	Strongylomorpha	WBPS (version 17)	PRJNA350391
Angiostrongylus costaricensis	Strongylomorpha	WBPS (version 17)	PRJEB494
Angiostrongylus vasorum	Strongylomorpha	WBPS (version 17)	PRJNA663250
Caenorhabditis elegans	Outgroup	WBPS (version 17)	PRJNA13758
Cylicostephanus goldi	Strongylomorpha	WBPS (version 17)	PRJEB498
Dictyocaulus viviparus	Strongylomorpha	WBPS (version 17)	PRJNA72587
Haemonchus contortus	Strongylomorpha	WBPS (version 17)	PRJEB506
Haemonchus placei	Strongylomorpha	WBPS (version 17)	PRJEB509
Heligmosomoides bakeri	Strongylomorpha	this work	PRJEB57615
Heligmosomoides polygyrus	Strongylomorpha	this work	PRJEB57641
Heterorhabditis bacteriophora	Outgroup	WBPS (version 17)	PRJNA13977
Heterorhabditis indica	Outgroup	NCBI	PRJNA720543
Necator americanus	Strongylomorpha	WBPS (version 17)	PRJNA72135
Nippostrongylus brasiliensis	Strongylomorpha	WBPS (version 17)	PRJEB511
Oesophagostomum dentatum	Strongylomorpha	WBPS (version 17)	PRJNA72579
Parelaphostrongylus tenuis	Strongylomorpha	NCBI	PRJNA729714
Strongylus vulgaris	Strongylomorpha	WBPS (version 17)	PRJEB531
Teladorsagia circumcincta	Strongylomorpha	WBPS (version 17)	PRJNA72569

Supplementary Table 7: *Heligmosomum* genome assembly metrics

Individual	Hm2	Hm16
Reads in read set (n)	250,957,362	231,078,046
Bases in read set (Gb)	31.4	28.9
Estimated coverage (x)	54.5	50.2
Number of merged reads (%)	83.80%	79.30%
Assembly span (Mb)	641	645.9
Scaffolds in assembly (n)	763,947	714,693
Scaffold N50 (kb)	2,577	3,051
BUSCO completeness (%)	42	42
BUSCO duplication (%)	0.7	0.7

Supplementary Table 8: Genome assembly accession numbers

Individual	Assembly	BioProject
nxHelBake1	Primary	PRJEB57615
nxHelBake1	Alternate	PRJEB57616
nxHelBake2	Primary	PRJEB67323
nxHelBake2	Alternate	PRJEB67322
nxHelBake3	Primary	PRJEB67321
nxHelBake3	Alternate	PRJEB67320
ngHelPoly1	Primary	PRJEB57641
ngHelPoly1	Alternate	PRJEB57642
ngHelPoly2	Primary	PRJEB67327
ngHelPoly2	Alternate	PRJEB67326