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Abstract

The one-arm, non-randomized, one/two-stage phase II designs have been a

mainstay in oncology trials for evaluating response rates or similar variants

(i.e., tests about single proportions). With the goal of screening new therapies

that have the potential to move into a randomized phase III trial or a subse-

quent randomized phase II trial, all while maintaining a logistically feasible

sample size. However, since the implementation of the Food and Drug Admin-

istration's Fast Track Designation, there has been a trend toward randomized

phase II clinical trials as a source of stronger evidence for those seeking fast-

track approvals. While there are many single- and multi-stage randomized

designs for evaluating proportions in this phase II setting, there still exist limi-

tations in terms of sample size (which directly impacts cost and study dura-

tion) or operating characteristics (ex. maintained type I error). In this article,

we propose a new test for comparing two binomial proportions, which is a

modification across existing methods (the standard z-test and Jung's test). This

approach is contrasted with existing methods via numeric evaluation and fur-

ther contrasted using a real-world oncology trial. The proposed method dem-

onstrates improvements in efficiency and robustness against deviations from

design assumptions. When applied to the existing trial, significant savings with

respect to cost and time are illustrated. Our proposed test for comparing bino-

mial proportions provides an efficient and robust alternative in the random-

ized phase II oncology setting, especially when the control arm has a high rate.
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1 | BACKGROUND

The one-arm non-randomized two-stage Simon design,1 or similar variants,2–5 have been a mainstay for oncology trials
in the phase II setting for testing about a single proportion, for example, testing about the proportion of complete or
partial responders. The goal of these designs is to screen new therapies that have the potential to move into a random-
ized phase III trial or a subsequent randomized phase II trial while maintaining a logistically feasible sample size.
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The test of interest for the traditional single arm two-stage Simon design about a proportion takes the form:

H0 : π¼ π0 versusH1 : π> π0,

where π0 is the current response rate for the standard of care for a given cancer type, often determined by some criteria
such as RECIST6 or disease progression at some fixed time. The design itself has several desirable properties including
an algorithm that allows one to search for the bounded α levels for each futility decision rule configuration near the
desirable exact α rate. These designs treat π0 as a fixed known value, though it should be noted that in many instances
π0 is wrongly treated as fixed when in fact it is derived from previous studies and should be considered a historical esti-
mate.7

In recent years, investigators are turning to the two-arm randomized design for not only the statistical consider-
ations (ex. bias, error control, and quality of evidence) and evolving treatment outcomes (ex. use of delayed tumor
progression),8 but also as an alternative business strategy. The Food and Drug Administration (FDA) has a fast-track
designation,9 which “provides for the designation of a drug as a fast-track product… if it is intended, whether alone or
in combination with one or more other drugs, for the treatment of a serious or life-threatening disease or condition,
and it demonstrates the potential to address unmet medical needs for such a disease or condition. This provision is
intended to facilitate development and expedite review of drugs to treat serious and life-threatening conditions so that
an approved product can reach the market expeditiously.” Under this definition, many cancer disease site specific ther-
apies are eligible for this designation. A randomized two-arm trial provides a stronger degree of evidence for approval
in the fast track seeking as compared to a one-arm trial, providing strong motivation for carrying forth a randomized
phase II trial.

However, a two-arm trial requires a substantially greater sample size as compared to a single-arm trial. For example,
the maximum sample size needed for a Simon minimax two-stage design, stopping for futility, for testing H0 : π¼ 0:3
versus H1 : π>0:3 to detect an alternative rate of π = 0.5 or larger at type I error rate α = 0.05 and power 1�β = 0.8 is
n = 39. By comparison the single stage sample size for testing H0 : πT ¼ πC versus H1 : πT > πC in a two-arm randomized
setting, where πT and πC denote the new treatment and standard-of-care rates, respectively, requires a total sample size
of n = 83+ 83 = 166 using Fisher's exact test at α=0.05 and 1� β = 0.8. This difference in sample size comes with an
increased cost; where, in 2013, it was estimated that the average cost per subject in an oncology trial is roughly
$59,500.10 Hence, under simplifying assumptions, the average approximate cost difference for our simple example is
$7,556,500.

In terms of design choices for testing H0 : πT ¼ πC versus H1 : πT > πC in the randomized two-arm phase oncology II
setting, the focus has been on generalizations of Simon type two-stage ideas for comparing two proportions using a vari-
ety of test statistics and methods for generating exact null distributions. If we let π0 denote the historical standard-of-
care rate that one would utilize in a typical one-arm design, Jung11 developed an exact two-stage test about the null
hypothesis H0 : πT ¼ πC ¼ π0 versus H1 : πT > πC,πC ¼ π0. The null distribution is then given by a straightforward product
of two independent binomials under a fixed value for π0, e.g., from our previous example above π0 = 0.3. Decision rules
for early stopping due to futility are obtained in a similar fashion to the approach of Simon1 in the one-arm two-stage
setting. The obvious limitation of this approach is again the reliance on the precise choice of π0. This work was followed
by an exact two-stage test based on Fisher's exact test12 where in reference to the first test by Jung11 it was noted that
“…if the true response probabilities are different from the specified ones, the testing based on binomial distributions
may not maintain the type I error close to the specified design value.” Jung11 proposed to use as a general rule π0 = 0.5
for all designs. While this approach better maintains the type I error under misspecifications of the null, it also creates
a very conservative test if the true π0 ≠ 0.5 and asymptotically converges to the incorrect distribution. A similar two-
stage design is given by utilizing Barnard's test statistic.13 Kepner also provides a general exact sequential procedure,
which contains a two-stage design as a special case, stopping for futility, efficacy, or both.14 Additional methods have
been proposed in which the total sample size is minimized and the type I error rate controlled through critical region
sculpting15 or by utilization of a Bayesian framework.16 In this note, we provide a method for modifying the single-stage
version of Jung's approach11 that is accurate, efficient, and robust to the choice of π0.

In this work, we introduce our modified two-group test about proportions and compare the operating characteristics
of our modified Jung test to commonly used methods (large sample z-test, Fisher's exact test, Barnard's unconditional
test, and Jung's single-stage approach) via numeric evaluations and illustration involving an existing clinical trial. In
the discussion, we further contrast our modified Jung test with the existing methods.
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2 | TWO-GROUP TEST FOR COMPARING TWO PROPORTIONS

In keeping with the standard single-arm trials and Jung,11 we have developed our test around a fixed historic rate (π0)
and the hypotheses:

H0 : πT ¼ πC ¼ π0 versusH1 : πT > πC ¼ π0: ð1Þ

Let XT and XC denote the number of responders from samples of size nT and nC, corresponding to the experimental
treatment arm and the standard-of-care arm, respectively. The key feature of our approach is to incorporate an Agresti–
Coull type continuity correction17 that allows us to correct a z-type statistic to have precise and bounded type I error
control. In addition, we will show that this approach is theoretically robust to misspecification of π0. Toward this end,
our modified Jung test statistic takes the form:

T XT,XC;δð Þ¼ π̂T� π̂Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π̂T 1�π̂Tð Þ
nTþ2 þ π̂C 1�π̂Cð Þ

nCþ2

q þ δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nTþnC

p , ð2Þ

where π̂T ¼ XTþ1
nTþ2, π̂C ¼ XCþ1

nCþ2, and δ is a fixed constant depending upon α, π0, nT, and nC. Adding one success and one fail-
ure to the estimators π̂T and π̂C, similar to Agresti and Coull,17 provides a mechanism such that we are not dividing by
zero in Equation (2).

Determination of δ. First, let:

α̂δ ¼
XnT
i¼0

XnC

j¼0

I 1�Φ T XT,XC;δð Þð Þ≤ αð Þ �P XT ¼ ijπ0ð Þ�P XC ¼ jjπ0ð Þ, ð3Þ

where I �ð Þ denotes the indicator function, P XT ¼ ijπ0ð Þ is a b nT,π0ð Þ binomial probability calculated under H0,
P XC ¼ jjπ0ð Þ is a b nC,π0ð Þ binomial probability calculated under H0, and Φ �ð Þ denotes the standard normal c.d.f. Now,
determine the value of δ, which we will denote δ0, such that minδ j α̂δ�α j subject to the constraint α̂δ ≤ α. The determi-
nation of δ0 is a straightforward process from a numerical solutions standpoint. In essence, we are correcting the z test
statistic in Equation (2) to have a precise and bounded α level in the finite sample setting using exact binomial probabil-
ities calculated under H0. For unbalanced designs, a minimum (nmin, where nC and nT ≥nmin) and maximum
(n¼nCþnT) sample sizes are specified, then all combinations of nC, nT, and δ0 that satisfy the α constraint are identi-
fied. The optimum design is that combination which maximizes the power for the effect size of interest (Δ¼ π1�π0;
where π1 is a clinically relevant treatment rate).

Once δ0 has been determined, the calculation of the one-sided p-value for testing the hypotheses specified in Equa-
tion (1) is given by P¼ 1�Φ T XT,XC;δ0ð Þð Þð Þ; where we replace δ0 for δ in Equation (2). A key feature of our approach
that is distinct from Jung11 is that the form of our test statistic provides an asymptotically type I error controlled and
exact test for either a correctly specified π0 or for π0∈ l,uð Þ; where the value of δ0 is constant for a given l and u under a
pre-specified set of design conditions. For example, for α = 0.10 and n = 10+ 10 = 20, we generated a plot of δffiffiffiffiffiffiffiffiffiffi

nTþnC
p ver-

sus π0 in Figure 1.
As the sample sizes nT and nC increase jointly, the limit of the adjustment factor, δffiffiffiffiffiffiffiffiffiffi

nTþnC
p , will tend toward

0 (as illustrated in Figure 2). The other component of the test statistic, π̂T�π̂Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π̂T 1�π̂Tð Þ

nTþ2 þπ̂C 1�π̂Cð Þ
nCþ2

q , is asymptotically normally dis-

tributed. Therefore, in large samples, Equation (2) approaches normality and the type I error is asymptotically con-
trolled. For large sample sizes, the exact approach and the asymptotic z-test approach have very similar type I error
control.

An additional benefit to this approach is that unbalanced designs nT ≠nCð Þ are permitted without altering the test sta-
tistic. For a fixed n = nT+nC; the values of nT, nC, and δ would be selected such that the power is maximized, that is:

max
nT ,nC ,δ

XnT

i¼0

XnC

j¼0

I 1�Φ T XT,XC;δð Þð Þ≤ αð Þ �P XT ¼ ijπ1ð Þ�P XC ¼ jjπ0ð Þ,
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where π1 > π0 is the treatment rate under the alternative hypothesis. In some scenarios, given a maximum total sample
size, an unbalanced design can provide more power than the corresponding balanced design nT ¼nCð Þ. This is illus-
trated in Figure 3, where the power for testing H0 : πT ¼ πC ¼ 0:1 versus H1 : πT > πC ¼ 0:1 across different effect sizes is
plotted for unbalanced and balanced designs when nTþnC ¼ 40.

3 | NUMERICAL EVALUATION OF COMPETING APPROACHES

The operating characteristics (type I error rate and power) of the modified Jung test (balanced and unbalanced
designs) were evaluated numerically and compared to those of Fisher's exact test, Barnard's unconditional test
(single stage version of Reference 13 and calculations made using the Exact package in R v4.0.218 with the Boshloo
method for finding extreme tables), the asymptotic z-test, and the single-stage test of Jung.10 Using binomial enu-
meration, the probability of rejection was calculated for the following hypotheses: H0 : πT ¼ πC ¼ π0 versus

FIGURE 1 Plot of δffiffiffiffiffiffiffiffiffiffiffi
nTþnC

p versus π0 for α¼ 0:05 given a sample size of nT ¼nC ¼ 10

FIGURE 2 Plot of δffiffiffiffiffiffiffiffiffiffiffiffi
nTþnCÞ

p versus n¼nT ¼nC for α¼ 0:05 and π0 ¼ 0.1, 0.25, and 0.5
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H1 : πT > πC ¼ π0. A range of realistic π0's, effect sizes (Δ¼ πT�πC), and sample sizes (n¼n1 ¼n2) were considered,
which are outlined in Table 1.

Additional numeric evaluations were used to evaluate the impact of an incorrectly specified π0 on the type I error
rates. Only the Jung type tests are evaluated, as the decision threshold for Jung's single-stage test and the test statistic
(specifically δ) for the modified Jung test depend on π0; whereas the null distributions of the test statistic corresponding
to Fisher's exact and the z-tests are independent of π0: Using binomial enumeration, the type I error rates were calcu-
lated for a variety of scenarios (outlined in Table 2) where the true and null π0 are unequal.

The last numeric evaluations examine the efficiency of these tests in the design phase. For each test, the required sam-
ple size to achieve a minimum power (80% or 90%) is calculated for realistic significance levels (5% or 10%) and effect sizes
(0.1 and 0.2). Additionally, using binomial enumeration, the actual power and type I error rates are calculated.

3.1 | Correctly specified π0

Table 1 reports the numeric evaluation of power under a correctly specified π0. In general, when π0 is correctly speci-
fied, the type I error rates of the single-stage and modified Jung's tests are bounded by the target α; where Jung's single-
stage test tended to have lower error rates. Within the sample size range we considered, as n increases, the type I error
rate for the modified Jung test approaches the target α; whereas this is not the case for Jung's single-stage test. Fisher's
exact test is also bounded, but the actual type I error rate tends to be much lower than specified (and relative to the
other tests) and requires a large n to approach the specified α. Barnard's test is both bounded and approaches the target
α as n increases. The z-test is not bounded by the target α and tends to have higher error rates relative to the Jung type
tests, but does approach the target α for large n.

In terms of power, Jung's single-stage test tends to be the most powerful test when π0 < 0.5 (noticeably when πC
= 0.1); while the modified Jung test and z-test tend to be the most powerful when π0 ≥ 0.5. This result may be due to
the nature of the test statistics; where the test statistics for modified Jung test and z-test have symmetric distributions,
but the distribution of Jung's single-stage test statistic is discrete, skewed, and bounded by n. Fisher's exact test had the
lowest power across all examined scenarios, which is consistent with the significantly lower type I error rates. The mod-
ified Jung test was comparable to Barnard's test across all scenarios.

3.2 | Incorrectly specified π0

Table 2 reports the numeric evaluation of power under an incorrectly specified π0. When π0 is incorrectly specified, the
actual type I error rate for Jung's single-stage test can be significantly higher or lower than the target α.11 These changes

FIGURE 3 Plot of power versus πT for balanced and unbalanced designs
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appear to be dependent on both the specified and true π0, and, within the range of values considered, do not appear to
be mitigated by an increased n. The type I error rate for the modified Jung test does, however, approach the target α for
large n.

3.3 | Design phase

Table 3 provides the sample size calculations for a specified type I error rate, power, and effect size. When
π0 < 0.50, the modified Jung test was less efficient relative to Jung’ single-stage test, requiring a 0% to 18.9%
larger n. It was significantly more efficient than Fishers exact test, requiring a 5.0% to 20.3% smaller n. At
π0 = 0.5, the modified Jung test was the most efficient method, requiring sample sizes that are 3.0% to 16.7%, 5.8% to
18.0%, and 0% to 7.4% smaller than those required for Jung's single-stage test, Fisher's exact test, and the z-test,
respectively.

When π0 > 0.50, the modified Jung test is still more efficient than Jung's single-stage and Fisher's exact tests (reduc-
tions in n of 9.7% to 32.1% and 6.2% to 17.4%, respectively). These results, on conjunction with the controlled type I
error rates (for a properly or poorly defined π0), indicate that the modified Jung test is preferable over the other
approaches for scenarios where π0 ≥ 0.50.

TABLE 2 Numeric evaluation of type I error under an incorrectly specified π0

α = 0.05 n = 40 n = 80 n = 120

Assumed π0 True π0 J mJ J mJ J mJ

0.1 0.050 0.0067 0.0067 0.0110 0.0226 0.0110 0.0352

0.075 0.0179 0.0178 0.0276 0.0350 0.0280 0.0457

0.100 0.0315 0.0311 0.0458 0.0460 0.0464 0.0492

0.125 0.0456 0.0439 0.0630 0.0541 0.0637 0.0503

0.150 0.0589 0.0541 0.0784 0.0584 0.0791 0.0521

0.175 0.0710 0.0608 0.0918 0.0609 0.0926 0.0543

0.200 0.0818 0.0642 0.1034 0.0631 0.1042 0.0554

0.25 0.15 0.0225 0.0296 0.0206 0.0447 0.0148 0.0460

0.20 0.0367 0.0388 0.0342 0.0445 0.0260 0.0493

0.25 0.0493 0.0473 0.0462 0.0480 0.0363 0.0485

0.30 0.0595 0.0510 0.0560 0.0521 0.0449 0.0481

0.35 0.0672 0.0494 0.0635 0.0508 0.0517 0.0520

0.40 0.0727 0.0457 0.0687 0.0474 0.0564 0.0564

0.5 0.40 0.0373 0.0546 0.0431 0.0557 0.0381 0.0551

0.45 0.0396 0.0496 0.0456 0.0503 0.0404 0.0531

0.50 0.0403 0.0473 0.0465 0.0483 0.0412 0.0499

0.55 0.0396 0.0496 0.0456 0.0503 0.0404 0.0531

0.60 0.0373 0.0546 0.0431 0.0557 0.0381 0.0551

0.65 0.0334 0.0584 0.0390 0.0591 0.0343 0.0519

0.75 0.65 0.0672 0.0494 0.0635 0.0508 0.0517 0.0520

0.70 0.0595 0.0510 0.0560 0.0521 0.0449 0.0481

0.75 0.0493 0.0473 0.0462 0.0480 0.0363 0.0485

0.80 0.0367 0.0388 0.0342 0.0445 0.0260 0.0493

0.85 0.0225 0.0296 0.0206 0.0447 0.0148 0.0460

Note: n¼ nT ¼nC. J = single-stage Jung's test. mJ = modified Jung test with balanced sample size.
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The Jung type tests are generally more efficient than Barnard's unconditional test across all scenarios. The modified
Jung test tends to achieve a type I error rate closer to the specified level as compared to Barnard's test, which may
explain the improved efficiency.

4 | ILLUSTRATIVE EXAMPLE

As a real-world illustration of the modified Jung test, we consider a randomized phase II trial of the addition of
Bevacizumab to chemotherapy in the treatment of acute myeloid leukemia.19 In this study, the complete response
(CR) rate was compared between the chemotherapy alone and chemotherapy plus Bevacizumab arms using Fisher's
exact test. The historic CR rate for the chemotherapy alone arm was 55%, while they expected a 15% increase by adding
Bevacizumab. The study design (n = 85 per arm) achieved only 72.1% power at a one-sided significance level of 0.10.
The study enrolled a total of n = 171 evaluable subjects over 30 months and concluded that there was no statistically
significant difference in the CR rate.

A study design based on the modified Jung test would require only n = 72 subjects per arm and enrollment could
be completed in approximately 25.3 months (assuming similar enrollment rates); a significant savings in both cost
(approximately $1,547,000 in savings based on recent cost estimates9) and time. The study designs based on Jung's
single-stage or Barnard's tests would require only n = 80 or n = 73 subjects per arm, respectively. An efficiency over
Fisher's exact test, but less efficient than that of the modified Jung test.

The observed CR rate for the chemotherapy alone arm was 0.65, larger than the 0.55 specified in the design phase.
Therefore, the actual type I error rate associated with Jung's design is not as specified in the design phase: design α
= 0.088 versus actual α = 0.076. For a study design using the modified Jung test, the actual type I error rate (α = 0.095)
is nearly equivalent to that of the design phase (α = 0.099) and closer to the target α of 0.10.

5 | DISCUSSION

In a time where the FDA fast track designation may lead to more randomized phase II studies, it is important to
develop efficient, yet robust, statistical tools to control study costs and timelines. This article presents a novel and effi-
cient test that evaluates the following hypotheses about proportions: H0 : πT ¼ πC ¼ π0 versus H1 : πT > πC,πC ¼ π0; which
are in line with the traditional single-arm phase II trials.1 The Jung type tests were generally more efficient and power-
ful than the standard Fisher's exact test, and comparable to Barnard's unconditional exact test. As compared to Bar-
nard's test, this approach does rely on an additional assumption regarding π0. However, we demonstrated that minor
misspecification of π0 does not have a dramatic impact on the operating characteristics of the proposed test. The single-
stage Jung test11 was the most efficient test when π0 < 0.5; however, there is potential for inflated type I errors when π0
is incorrectly specified. Our modified Jung test was the most efficient when π0 ≥ 0.5, which may provide this test with a
niche in the setting of evaluating modifications to already effective treatments (e.g., adding immunotherapy to an exis-
ting treatment regimen). Additionally, this approach utilized a test statistic such that the type I error is effectively
bounded, even under an incorrectly specified π0. As with the Jung test,11,12 this approach can be extended to multi-stage
designs (ex. two-stage design) based on Simon type optimization criterion.1 However, this becomes computationally
intensive unless pre-specified futility criteria are utilized at the interim analysis, as in Reference 12.

In conclusion, the modified Jung test for comparing two binomial proportions would allow us to efficiently evaluate
candidate treatments (especially when π0 ≥ 0.5) in a manner that is relatively robust to assumptions made in the design
phase.
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