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Abstract: GBM is the most common primary brain tumor in adults, and the aggressive nature of this
tumor contributes to its extremely poor prognosis. Over the years, the heterogeneous and adaptive
nature of GBM has been highlighted as a major contributor to the poor efficacy of many treatments
including various immunotherapies. The major challenge lies in understanding and manipulating
the complex interplay among the different components within the tumor microenvironment (TME).
This interplay varies not only by the type of cells interacting but also by their spatial distribution with
the TME. This review highlights the various immune and non-immune components of the tumor
microenvironment and their consequences f the efficacy of immunotherapies. Understanding the
independent and interdependent aspects of the various sub-populations encapsulated by the immune
and non-immune components will allow for more targeted therapies. Meanwhile, understanding
how the TME creates and responds to different environmental pressures such as hypoxia may allow
for other multimodal approaches in the treatment of GBM. Ultimately, a better understanding of
the GBM TME will aid in the development and advancement of more effective treatments and in
improving patient outcomes.

Keywords: glioblastoma; microenvironment; immunosuppression; blood-brain-barrier; tumor-
associated myeloid cells; regulatory T cells; immune cells

1. Introduction

Occurring with an incidence of 3.19 per 100,000 persons, glioblastoma (GBM) repre-
sents the most common primary brain tumor in adults [1]. Even with the scientific advances
that have allowed for greater knowledge of genomics, molecular biology, and more tar-
geted therapies, patient outcomes remain poor, with a median survival following diagnosis
of approximately 14 months [2]. The Stupp Protocol, comprising surgical resection plus
adjuvant radiation therapy and temozolomide chemotherapy, followed by temozolomide
has remained the standard of care since 2005 [3]. GBM patients with methylation of the
O-6-methylguanine-DNA methyltransferase (MGMT) promoter, a DNA repair gene, have
shown improved response to temozolomide chemotherapy, leading to improved patient
outcomes [4]. The heterogeneity and adaptability of these tumors are the main contributors
to their resistance to various therapeutic modalities. In 2010, data from The Cancer Genome
Atlas (TCGA) were used to create a novel molecular classification system in which GBM
could be group into proneural, classical, or mesenchymal subtypes. In 2010, four molecular
subtypes of GBM were described as classical, mesenchymal, neural, and proneural [5].
Key genetic modifications were used to characterize these subtypes including epidermal
growth factor receptor (EGFR) mutation/amplification/overexpression in the classical
subtype, neurofibromin 1 (NF1) mutations/deletions in the mesenchymal subtype, EGFR
amplification/overexpression in the neural subtype, and platelet-derived growth factor
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receptor alpha (PDGFRa) amplification in the proneural subtype [6]. A majority of GBM
arise de novo from a specific trigger mutation in a glioma stem cell (GSC), known as
primary GBMs. Secondary GBMs comprise a smaller percentage of GBMs and arise from
lower-grade gliomas that acquire additional individual mutations. GBMs that arise from
mutations in isocitrate dehydrogenase 1 (IDH1), commonly secondary GBMs, have a better
prognosis than GBMs with wild-type IDH1 [7].

In addition to the previously mentioned genetic factors and mutational burden that
affects prognosis, the GBM microenvironment contributes significantly to the dynamic and
heterogeneous nature of GBM. The tumor microenvironment (TME) describes the active
milieu of a tumor and is composed of stromal cells, signaling molecules, immune cells, and
the surrounding extracellular matrix (ECM). The heterogeneous nature of GBM and the
complex interplay among the different cell populations within its TME have wide-reaching
implications (Figure 1). This dynamic interplay contributes to the establishment of hypoxic
and necrotic tumor regions, infiltration into the surrounding parenchyma, resistance to
radio-chemotherapy, and vascular proliferation [5]. Moreover, despite tumor infiltration via
lymphocytes, GBM is considered to be a “cold tumor” due to its high amounts of regulatory
B and T cells as well as immunosuppressive myeloid cells. Altogether, this creates a
challenging setting for any immunotherapy to be fully efficacious against GBM, and there
remains a need for a better understanding of the TME and its contributions towards the
clinical picture seen in GBM. This review will summarize interactions within the TME and
discuss their implications for the efficacy of immunotherapy.
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2. The Extracellular Matrix

In a healthy individual, the extracellular matrix (ECM) is composed of various types
of proteins and polysaccharides, which make up roughly 20% of the total volume in an
adult human brain [8]. These macromolecules interact with neurons, astrocytes, and other
cells to ultimately affect nearly all aspects of development and function. In the brain,
various cell types contribute to ECM production, maturation, and structure, whereas ECM
proteins in many other tissues are exclusively synthesized and deposited by fibroblasts
and other mesenchymal cells [9]. In the setting of malignancies, the changes imposed by
the tumor result in the ECM undergoing compositional changes based on their parent cell
types. Typically, in the healthy human brain, the ECM is made up of a large proportion of
proteoglycans (such as lecticans), glycoproteins (such as tenascin), and glycosaminoglycans
(such as hyaluronan) as well as collagen and other fibrous matrix proteins [10]. In the
setting of GBM, the composition of the ECM changes, which is physically reflected by the
increased stiffness of the tumor-associated ECM [11]. Previous literature has highlighted
that increased secretion of ECM components such as hyaluronic acid (HA), fibronectin,
thrombospondin, and tenascin-C by glioma cells contribute to this change in ECM com-
position [12]. The increase of fibronectin and HA in the ECM, as well as the increased
expression of particular receptors and integrins on the tumor cell, allow for increased mobil-
ity and invasiveness of glioma cells. For example, glioma cells can increase their expression
of CD44, the main surface receptor for HA that also binds to matrix metalloproteinase
9 (MMP9) found in the ECM [13]. One specific component of the ECM, mesenchymal
stromal cells (MSCs), play an important role in tumor migration. MSCs within the TME are
able to release cytokines such as IL-6, CXCL1, and CXCL2, as well as metalloproteinases
(MMPs), and contribute to the degradation of the local extracellular matrix [14,15]. Physical
changes within the TME such as edema and cellular compression act as physical stressors
for cells that cause increased stiffness of the tumor and can contribute to gliomagenesis.
Interestingly, murine models have also demonstrated immunomodulation that occurs
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via the interaction of the innate immune system with the ECM of the tumor. The tumor
ECM was shown to be intricately linked to CD47-mediated macrophage phagocytosis
signaling through the expression of tumor-associated extracellular matrix protein tenascin
C (TNC) [16].

3. The Blood–Brain Barrier

Another important non-immune component of the TME is the blood–brain barrier
(BBB). The BBB is a unique attribute of the brain that allows for the tight regulation of
molecules and cells [17]. The BBB is formed via the interaction of astrocyte foot processes
with endothelial cells and pericytes. The BBB is considered one of the contributors to the
poor chemotherapeutic efficacy often seen when treating brain malignancies with intra-
venous agents [18–20]. In the setting of GBM, the BBB is compromised not only because
of inflammation and physical distortion but also because of the increased vascularity that
contributes to the leakiness of blood vessels [21,22]. The dystrophic growth of the vascu-
lature contributes to the heterogeneity of permeable vessel walls as well as to increased
perfusion of the tumors. This increased angiogenesis is primarily due to the high amounts
of vascular endothelial growth factor (VEGF) in the TME. Bevacizumab, an antibody that
inhibits VEGF, was a therapy that initially showed promise against GBM but ultimately did
not improve overall survival. Much of the false hope was due to the anti-angiogenic agent
decreasing the leakiness of the vessel walls, leading to less gadolinium contrast within the
tumors and the appearance of a smaller tumor on imaging. VEGF, interestingly, also causes
the reduction of immune cell extravasation via the reduction in intracellular adhesion
molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1) adhesion [23,24]. Ulti-
mately, the BBB becomes compromised and leaky, allowing for the influx of some immune
cells. Poor blood flow within the central necrotic areas of the tumors decreases oxygen
delivery, contributing to the establishment of hypoxic regions that attract macrophages and
promote their immunosuppressive phenotype [25,26].

4. The Central Nervous System Resident Cells

In addition to neurons, the glial compartment in the healthy adult brain comprises
astrocytes, oligodendrocytes, and microglia, which serve various functions such as mainte-
nance of the BBB, myelination of axons, and immune surveillance, respectively [27]. In the
presence of GBM, the glial compartment within the TME undergoes numerous changes.
Although oligodendrocyte-like cells have been found in many pathologic GBM sections,
the extent to which these cells contribute to gliomagenesis requires further elucidation.
During the growth of the tumor, healthy astrocytes are displaced by GBM-associated as-
trocytes, further contributing to the weakening of the BBB. Astrocytes within the GBM
TME have been shown to undergo reactive astrogliosis similar to phenotypic changes
undergone by astrocytes following a traumatic brain injury [28]. This reactive astrogliosis
has been noted to contribute to tumor cell infiltration through the activation of zinc finger
E-box-binding homeobox 1 (ZEB1), an epithelial–mesenchymal transition (EMT) transcrip-
tion factor [29,30]. These tumor-associated astrocytes have also been highlighted for their
involvement in modulating the immune system within the tumor microenvironment [14].
In fact, through the utilization of programmed death ligand 1 (PD-L1), tumor-associated
astrocytes enhance immune suppression within the TME [28]. Microglia also exhibit an
intricate interplay with cells encapsulated within the TME. Microglia are recruited to the
TME by pro-migratory signals such as granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF), stromal derived factor-1 (SDF-1), and glial cell line-derived neurotrophic
factor (GDNF) secreted by tumor cells [31]. Microglia are further affected within the TME
through their interactions with glioma cells. It was recently demonstrated that glioma
cells use extracellular vesicles to interact directly with microglia [32]. This interaction
causes genotypic and phenotypic changes that decrease their anti-tumor activity. Similarly,
neurons, which also make up the glial compartment, have been shown to promote glioma
progression [33,34]. Along with tumor-associated macrophages (TAMs), microglia largely
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contribute to immunosuppression through the interaction and synergistic release of soluble
factors such as granulocyte-macrophage colony-stimulating factor (GM-CSF), C-X3-C Motif
Chemokine Ligand 1, (CX3CL1), and SDF1 [35].

5. GBM Cells and Glioma Stem Cells

The communication between GBM cells and the TME is crucial for the proliferation,
migration, and immunosuppression of the TME. One key chemokine utilized by tumor
cells is C–C motif chemokine ligand 2 (CCL2), which functions to enhance angiogenesis and
attract macrophages and microglia to the TME, further contributing to tumor growth [36].
GBM cells also secrete CXCL8, which can function to alter the ECM through the activation
of MMPs within the TME [37,38]. GBM cells are also able to interact with microglia and
increase their invasiveness by activating TGFβ and EGFR signaling pathways [39]. More
recently, extracellular vesicles (EVs) have been highlighted as an important mechanism
by which GBM cells communicate bidirectionally with the TME. EVs are used by GBM
cells to interact with endothelial cells to promote angiogenesis and with astrocytes to
promote ECM degradation [40]. EVs are also used by GBM cells to inhibit apoptosis of
astrocytes, further contributing to the aggressiveness of the tumor [41]. Furthermore, EVs
incorporating PD-L1 on their surface are able to inhibit T cell activation, further promoting
the immunosuppressive environment of the TME [42]. Glioma stem cells (GSCs), like
other cancer stem cells, serve as a reservoir for self-renewal and differentiation within the
tumor. The differentiation into many unique cell lineages contributes to the heterogeneity
seen in GBM and, consequently, to the decreased sensitivity to chemoradiotherapy [43–46].
In fact, subpopulations of GSCs within the TME have been shown to contribute to the
differing susceptibility of GBMs to immunotherapy [47]. GSCs interact with endothelial
cells, which results in an enhancement of stemness markers. These cells can be identified
via several cell surface markers such as CD133, CD15/SSEA, CD44, and A2B5, although the
heterogeneity of these cells prevents one marker from identifying and allow therapeutical
targeting of all GSCs [48]. GSCs also contribute to the infiltrative nature of GBM, as studies
have shown an association between the number of GSCs in the tumor bulk and the degree
of invasiveness [49–51]. Their invasive capabilities are in fact enhanced in the presence of
TAMs through TGF-β signaling.

6. Immune Cells
6.1. Tumor-Associated Myeloid Cells

A large portion of the tumor mass consists of immune cells. Tumor-associated myeloid
cells (TAMCs) can make up as much as 50% of the tumor bulk [52]. TAMCs represent a
heterogenous population composed of dendritic cells (DCs), neutrophils, bone marrow-
derived macrophages (BMDMs), microglia, and myeloid-derived suppressor cells (MDSCs).
It is thought that the majority of these tumor-infiltrating immune cells originate in the
periphery rather than from the innate immune cells of the CNS [53]. Within the TAMC
cellular compartment, TAMs are one of the most numerous subtypes, consisting of both mi-
croglia and bone-marrow-derived macrophages (BMDMs). The quantity of TAMs present
within the TME correlates with tumor grade and inversely correlates with overall survival
in patients with recurrent GBM [54,55]. TAMs can either release immunosuppressive fac-
tors such as interleukin 10 (IL-10) and transforming growth factor beta (TGF-β) or release
anti-tumor-promoting factors such as IL-12, TNF-α, depending on the conditions within
the TME [56,57]. Using a murine model, recent work has elucidated the phenotypic differ-
ences of TAMs based on their origins. TAMs derived from microglia are large, immobile
cells with wide arrays of processes extending into the tumor, whereas TAMs derived from
monocytes are small and mobile. These unique populations have been demonstrated in
human GBM as well [35,58]. MDSCs are another heterogeneous population of cells that
impart potent immunosuppressive effects on the TME. MDSCs can be divided into two
subtypes: monocytic MDSCs (m-MDSCs) and polymorphonuclear MDSCs (PMN-MDSCs).
Although similar in their immunosuppressive functions, each subtype has its own unique
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genomic profile [59]. M-MDSCs contribute to the overall pool of TAMs within the TME and
aid in their aggregation within the tumor bulk. M-MDSCs within the hypoxic regions of the
tumor undergo phenotypic changes that result in their differentiation into TAMs through
the HIF-1α signaling pathway [60]. Similar to TAMs, increased quantities of MDSCs are
correlated with the grade of the glioma as well as with a poor prognosis [61,62]. Likewise,
at the time of recurrence, high percentages of MDSCs can be used as a poor predictive
marker [63]. It has been highlighted that the majority of murine GBM-associated MDSCs
in a murine model are M-MDSCs, yet the majority of MDSCs found in patient-derived
GBMs are PMN-MDSCs [59]. A keyway in which MDSCs can suppress CD8+ T cell activ-
ity is through the increased catabolism of L-arginine. By using arginase-1 and inducible
NO synthase, MDSCs utilize L-arginine in the surrounding TME, preventing T cells from
utilizing this important amino acid and thus preventing proliferation [64]. They are also
able to render the T cell receptor (TCR) non-functional by creating reactive oxygen species
(ROS) that cause the nitration of the receptors [65]. Finally, MDSCs also contribute to the
pool of IL-10 and TGF-β within the TME, further leading to immunosuppression.

6.2. Tumor-Associated Neutrophils

Neutrophils are another population of TAMCs that is found to accumulate within the
GBM TME. Although not as numerous as MDSCs or TAMs, tumor-associated neutrophils
(TANs) have been negatively associated with the prognosis of patients with GBM, and the
quantity of TANs can serve as a negative prognostic marker for resistance to bevacizumab
in patients who did not receive steroids [66]. TANs are typically found in the center of
the tumor bulk and are attracted to the TME via macrophage migration inhibitory factor
(MIF), C–X–C motif chemokine ligand 8 (CXCL8), and interleukin 8 (IL-8) [67]. TANs
aid in tumor progression through their secretion of elastase, which functions to promote
tumor proliferation and angiogenesis [68]. To a minor degree, TANs also contribute to the
immunosuppressive TME via the secretion of arginase-1, granulocyte colony stimulating
factor (G-CSF), and S100 calcium binding protein A4 (S100A4) [66,69].

6.3. Foxp3+ Regulatory T Cells

T cells play a vital role in the adaptive immune response to malignancies. Regulatory
T cells (Tregs) are a unique population of T cells that serve to modulate the overall immune
homeostasis through immunosuppressive measures. Of particular importance are Tregs
that express Forkhead Box P3 (FOXP3) transcription factor. This transcription factor can
downregulate the NFAT and NFκB signaling pathways, which consequently downregulates
the expression of important effector cytokines such as IL2 [70,71]. A worse prognosis in
GBM is associated with a higher Treg-to-T effector cell ratio [72,73]. Tregs are believed to
be recruited to the TME via cytokines such as CXCL9/10/11-CXCR3 and CCL5-CCR5 [74].
These cytokines are secreted by innate immune cells within the CNS and glioma cells. Once
within the TME, Tregs are subjected to favorable conditions which allow for increased
viability and expansion, in addition to promoting the transition of other T cells into Tregs
via cytokines such as tumor-derived IL-10 and TGF-β. Tregs themselves also secrete IL-10
and TGF-β [75–77] to further promote immunosuppression. These molecules are able
to exert an immunosuppressive effect on natural killer (NK) cells, aid in the generation
of MDSCs, and impair the antigen-presenting ability of DCs. Tregs also highly express
key immune checkpoint molecules such as cytotoxic T lymphocyte-associated protein 4
(CTLA-4), programmed-death 1 (PD-1), and glucocorticoid-induced TNFR family-related
gene (GITR) [78–80]. These molecules interact with their respective receptors on the surface
of other immune cells to suppress the cells’ effector activities. Thus far, clinical trials
investigating immune checkpoint inhibitors have mainly focused on targeting CTLA-
4 and PD-1 in order modulate the anti-tumor response [81–83]. The use of T cells as
immunotherapeutic tools has been explored in various malignancies including GBM.
Chimeric antigen receptor (CAR) T cell therapy has been heavily investigated in several
types of cancers [84–87]. These engineered T cells utilize tumor-associated antigens (TAAs)
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to allow T cells to become activated and gain greater specificity against tumor cells. TAAs
such as variant III of the EGFR (EGFRvIII), human epidermal growth factor receptor 2
(HER2), or interleukin 13 (IL-13) receptor α2 (IL-13Rα2) have been investigated as possible
targets [88–91]. More recent studies have investigated the efficacy of bispecific and trivalent
CAR T cells [92]. Trivalent CAR T cells targeting HER2, IL13Rα2, and ephrin-A2 (EphA2)
demonstrated improved cytotoxicity when compared to monospecific or bispecific CAR T
cells [93]. Nevertheless, these T cells are subjected to the harsh TME of GBM and require
further development.

6.4. Natural Killers

The innate immune system also contributes to the unique nature of the tumor mi-
croenvironment. NK cells are an important part of the innate immune system and are
critical for the antitumor immune response, particularly through their interactions with
major histocompatibility complex class I molecules (MHC-I). NK cells use granzyme B
and perforin to provoke cellular apoptosis through contact-dependent cytotoxicity [94].
NK cells have been identified as part of the population of immune cells that infiltrate the
GBM TME [95]. It has been shown that GBM with the R132H mutation in IDH1 contains
neurons that can recruit NK cells to the CNS via the CX3CL1 chemokine [96]. NK cells
have also been shown to be able to control tumor growth through cytokine secretion which
is promoted via the NKp44 receptor. PDGF-D is expressed by most GBMs and binds to
the activating NKp44 receptor to stimulate cytokine secretion from NK cells and innate
lymphoid cells [97]. Tumor progression is also associated with B7-H6, which is known
to augment NK cell functionality through the activation of their NKp30 receptors [98].
Nevertheless, NK cells are subjected to immunosuppressive factors within the TME. One
key way by which the antitumor functionality of NK cells is suppressed is through cellular
contact with glioma cells. Glioma cells can express unique MHC-I molecules that can bind
to receptors on the surface of NK cells, thus suppressing their functions [99]. NK cells
within the TME have been shown to regulate the levels of IFN-γ, which in turn can promote
GSCs differentiation [100]. Furthermore, this change allows GSCs to become more resistant
to NK cell cytotoxicity [101]. It has also been observed that radio-chemotherapy decreases
the quantity of tumor-infiltrating NK cells [102]. The therapeutic potential of NK cells has
been investigated by creating cytokine-induced killer (CIK) cells. CIK cells are created via
culturing NK cells with IFN-γ, IL-2, and anti-CD3 monoclonal antibody (CD3 mAb) [103].
When tested in an open-labeled phase III clinical trial based in South Korea, this treatment
did not show a significant difference in patient’s overall survival, highlighting the need for
further investigation [104].

6.5. Dendritic Cells

Dendritic cells (DCs) are a class of antigen-presenting cells that serve as a vital bridge
between the innate and the adaptive immune systems. DCs are important in monitoring
pathogens or inflammatory responses throughout the body. DCs can endocytose, pro-
cess, and present antigens to B and T cells, promoting their activation [105]. DCs are
typically found in the meninges and the choroid plexus, but not within the healthy brain
parenchyma [106]. In the setting of chronic inflammation, like that seen in GBM, DCs have
been found within the brain. It has been shown in murine models that DCs are recruited to
the TME via chemokines such as CCL5 and XCL1, similar to NK cells [107]. NK cells are
also able to recruit DCs to the TME through the use of CCL5 and XCLI [107]. DCs have been
shown to produce antitumor-augmenting cytokines such as IL12, which in turn can recruit
more CD8+ T cells and reinvigorate anergic T cells [108]. Nevertheless, DCs are subjected
to immunosuppressive effects from the TME which can induce a regulatory phenotype.
These regulatory DCs can in turn activate Tregs and downregulate the recruitment of CD8+

T cells [109]. DCs have been a topic of interest for the development of new vaccines against
GBM. Previous studies have highlighted the efficacy of DC-based vaccines in preclinical
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models as well as early-stage clinical trials [110–112]. Still, no successful phase III trials
have been completed utilizing this type of vaccine.

6.6. B Cells

The role of B cells in antitumor immunity has remained nebulous in human and
in in vivo studies. For one, tumor-infiltrating B cells have been correlated with poor
prognosis of patients with metastatic carcinomas, while patients with breast carcinoma
had improved survival [113,114]. Still, B cells are critical in their role as antigen-presenting
cells and for their ability to induce clonal expansion of T cells sensitized to TAAs. B cells
expressing 4-1BBL+ costimulatory surface protein have also been shown to be able to
improve the functionality and viability of CD8+ T cells [115]. They do this by the secretion
of cytokines such as TNFα [116]. Research efforts have now highlighted that regulatory B
cells can also be found within the TME. Regulatory B cells were identified to overexpress
immunosuppressive molecules such as PD-L1 and CD155 in addition to producing IL-10
and TGF-β [117] as a result of microvesicle-mediated interactions with MDSC. MDSCs
were shown to secrete microvesicles containing PD-L1, which is then endocytosed by
tumor-infiltrating B cells [52]. These B cells then act as potent inhibitors of CD8+ T cell
cytotoxicity.

7. Implications of the TME on Immunotherapies

Immune checkpoint inhibitors (ICIs) are monoclonal antibodies which target inhibitory
ligands and their receptors which are commonly expressed by GBM cells, lymphocytes,
and myeloid cells [118]. Consequently, ICIs allow for a more robust antitumor response by
CD8+ T cells. Most research into ICIs has focused on PD-1, PD-L1, and CTLA-4, important
components of immune checkpoints pathways [78,80]. The use of ICIs has led to increased
survival when compared to chemotherapy in patients with various tumors; however, it has
had limited efficacy in the treatment of GBM in clinical trials [119–121]. Tumor vaccines
utilize one or several tumor-associated antigens (TAAs) to stimulate a cellular and/or
humoral immune response. Dendritic-based vaccines are created utilizing dendritic cells
primed with whole cell tumor lysates or particular TAAs, while peptide-based vaccines
activate T cells through the use of short amino acids [122]. For example, the variant III of
the epidermal growth factor receptor (EGFRvIII) is a commonly acknowledged target for
the use of peptide-based vaccination in GBM [123]. Clinical trials on both peptide- and
dendritic-based vaccines have shown limited clinical benefits, despite the ability of these
two strategies to invoke immune responses [112,124–126]. Another immunotherapeutic
modality employs T cells with modified tumor-specific T cell receptors (TCRs) or chimeric
antigen receptors (CARs) to generate a more precise anti-tumor response [127]. Currently,
early-stage clinical trials involving CAR T cell therapy have shown safety and encour-
aging immune responses [128]. The various components of the GBM TME contribute
to the limited efficacy of the current immunotherapeutic modalities. The non-immune
components serve critical roles in the limited efficacy and eventual resistance through the
creation of niches within the TME. The BBB and the irregular neovasculature prevent the
optimal delivery of drugs, such as ICIs [129]. Furthermore, the inelastic and dense ECM
increases metabolic stress and hypoxia, which ultimately activate pathways that inhibit
apoptosis in cells closely interacting with the ECM [130]. GSCs are typically found within
perivascular niches and closely interact with the ECM to modulate their function [131].
GCS contribute to tumor growth, invasion, and immunosuppression within the TME. The
immunosuppressive nature of the TME remains one of the major limitations to achieving
an effective anti-tumor response. Components such as regulatory B cells, regulatory T cells,
and TAMCs secrete soluble factors such as IL-10 and TGF-β. This further promotes the
recruitment and differentiation of additional regulatory B and T cells [132,133]. GBM cells
are also able to interact with the TME, particularly the innate immune system, through the
use of EVs containing PD-L1 on their surface [134]. These niches and complex interplay
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among the components of the TME create the intra- and inter-tumor heterogeneity which
further limits the efficacy of immunotherapies.

8. Conclusions

The limited efficacy of the current treatments and the associated poor long-term
prognosis of GBM is in a large part a consequence of the TME. This review highlights the
intricate interplay among the immune and non-immune components of the TME. This
interplay contributes to the establishment of a heterogeneous and adaptive TME which
ultimately serves to increase the degree of immunosuppression, invasiveness, proliferation
in these tumors. The non-immune components, particularly the BBB, as well as neurons,
microglia, and ECM are important contributors to the alterations that take place within
the TME. Still, the immune component made up of macrophages, DCs, B cells, and T cells
can account for the majority of the extensive tumor-promoting effects seen within and
outside of the TME. Several therapeutic approaches particularly targeting the TME have
led to improved outcomes; however, this has been limited to very select sub-groups of
patients. Immunotherapies such peptide-based and cell-based vaccines as well as immune
checkpoint inhibitors aim to bolster the adaptive immune system to promote more robust
anti-tumor responses. Yet, low tumor immunogenicity and immunosuppressive stressors,
as a consequence of the interplay of various components of the TME, ultimately lead to
resistance to immunotherapies. More recent work has allowed for further classification and
identification of unique subpopulations of cells within the TME, further highlighting its
heterogeneous nature. Continued investigation into the TME will aid in our understanding
of how these elements contribute to the therapeutic response and interact with one another.
This will lead to the creation of a more multimodal, yet targeted approach to the treatment
of GBM.
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