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Abstract

Background and purpose

Architecture of the cerebral network has been shown to associate with IQ in children with

epilepsy. However, subject-level prediction on this basis, a crucial step toward harnessing

network analyses for the benefit of children with epilepsy, has yet to be achieved. We com-

pared two network normalization strategies in terms of their ability to optimize subject-level

inferences on the relationship between brain network architecture and brain function.

Materials and methods

Patients with epilepsy and resting state fMRI were retrospectively identified. Brain network

nodes were defined by anatomic parcellation, first in patient space (nodes defined for each

patient) and again in template space (same nodes for all patients). Whole-brain weighted

graphs were constructed according to pair-wise correlation of BOLD-signal time courses

between nodes. The following metrics were then calculated: clustering coefficient, transitiv-

ity, modularity, path length, and global efficiency. Metrics computed on graphs in patient

space were normalized to the same metric computed on a random network of identical size.

A machine learning algorithm was used to predict patient IQ given access to only the net-

work metrics.

Results

Twenty-seven patients (8–18 years) comprised the final study group. All brain networks

demonstrated expected small world properties. Accounting for intrinsic population heteroge-

neity had a significant effect on prediction accuracy. Specifically, transformation of all

patients into a common standard space as well as normalization of metrics to those com-

puted on a random network both substantially outperformed the use of non-normalized

metrics.

Conclusion

Normalization contributed significantly to accurate subject-level prediction of cognitive func-

tion in children with epilepsy. These findings support the potential for quantitative network
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approaches to contribute clinically meaningful information in children with neurological

disorders.

Introduction

Pediatric epilepsy is a prototypical disorder of network dysfunction: even in the setting of a

highly localized structural lesion, children with epilepsy demonstrate widespread alterations in

cerebral cortical networks[1,2]. Whether established by genetic/developmental processes or by

activity-dependent reorganization, and there is evidence to support a role for each, global net-

work dysconnectivity undermines the brain’s capacity to support normal neuro-cognitive

development[3–5]. Furthermore, the negative effects of epilepsy on intellectual function seem

to be exaggerated in children, which may reflect the fact that developmental physiology is

primed for cerebral growth and network reorganization[6]. Regardless of origin, the impact of

network dysfunction can be seen in the range and severity of cognitive failings exhibited by

these children, often far beyond what would be expected based on the location and extent of

their structural abnormalities[7]. The ability to understand and predict the impact of global

network dysconnectivity in an individual child with epilepsy would be of great value to the

care of these patients. Current understanding points to the emergence of cognitive function

from complex interactions occurring across large-scale brain networks that support both seg-

regation into, as well as integration across, subspecialized systems[8]. Non-invasive methodol-

ogies that capture the organization of the brain as a network of interacting elements, therefore,

represent an appealing approach by which to study neurologic dysfunction in children with

epilepsy.

Resting-state functional MRI, which measures the blood oxygen level-dependent (BOLD)

signal over time, is one method by which connectivity within a neural network can be mea-

sured[9]. Its acquisition in the MR scanner does not require cooperation with task paradigms

and can even be acquired under sedation[10]; it is therefore of particular value to the young or

developmentally impaired. Elements of the cerebral cortex that interact to support a given

function continue to exhibit similar spontaneous BOLD fluctuations at rest[11]. Functional

connectivity, defined as the magnitude of this similarity, can therefore be used to create a com-

prehensive map of connections in the brain[12]. Within this framework, the brain is repre-

sented as a collection of “nodes”, or anatomical elements in the network, and the connection

between each pair of nodes as an “edge”. Although the field capitalizes on diverse techniques,

one prominent approach leverages graph theory to characterize global topological features of

the cerebral network[12]. An array of graph theory metrics has been described, each of which

has the potential to capture specific topological features of the network[13]. In general terms,

though, these graph metrics measure in some way the degree to which the network supports

either integration (efficient exchange of information) across, or segregation (the network sub-

strate for functional sub-specialization) within, the brain. Integration and segregation have

been found to be critical features of brain function in healthy populations of adults and chil-

dren[14–16] as well as in children with focal epilepsy[17]. Network features have also been

shown to capture the pathophysiologic impact of epilepsy on the cerebral network[18].

A prodigious body of work has leveraged resting state constructs to characterize features of

patient groups that deviate from groups of normal subjects[19–21]. Yet in the clinical realm, it

is more often the variation within a patient group–for example, disease severity, stage, progno-

sis—that is most relevant to patient care. Recent work has demonstrated the potential of

machine learning to translate continuous quantitative imaging data into meaningful subject-
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level markers[18,22–24]. One major obstacle to realizing the full promise of these techniques,

however, is the inter-individual variation observed in all populations, even those comprised of

normal adults[19]. This obstacle is exaggerated in pediatric cohorts whose individual trajecto-

ries of brain development add to the otherwise expected variation. Variation in network scale

in particular has been shown to be an important potential confound—global properties of a

given brain vary considerably with the number of nodes arbitrarily defined therein. Growth of

the brain over the course of normal development therefore represents a significant obstacle for

those that aim to apply these techniques in children[25,26]. Methods that capture network

organization in a way that generalizes across development would be of great value in this

regard.

Developmental variation in brain networks is most commonly addressed by transforming

the imaging data from all patients into a common three-dimensional space by registration to a

standard template[27]. In this network registration strategy, every patient’s network is theoreti-

cally constructed using the same nodes at identical locations in template space. However,

transformation makes assumptions regarding similarity in shape and folding pattern that may

not be valid, particularly in a pediatric cohort[28]. It therefore has the potential to remove or

obscure some of the inter-subject variation that is actually meaningful to individual brain

function. Recent work has demonstrated potential benefit in computing network measures in

each patient’s native space[28]. To account for differences in scale, the output network metrics

can then be normalized to the same metric computed on a null or random network model of

identical size[29]. Although this metric normalization strategy avoids errors in misregistration

related to individual differences in brain morphology, it remains largely untested. The goal of

this study was to compare these two fundamental strategies in terms of their ability to optimize

subject-level inferences on the relationship between brain network architecture and brain

function.

Material and methods

Study population

This HIPAA-compliant, retrospective study was approved by the Baylor College of Medicine

institutional review board. Written informed consent was waived for this study using imaging

data already in existence in the medical record. Consecutive patients were identified from the

medical record according to the following inclusion criteria: 1. Pediatric age group (less than

21 years of age); 2. a clinical diagnosis of focal epilepsy[30] established by a pediatric epileptol-

ogist based on clinical history and semiology; 3. A 3 Tesla MRI examination of the brain,

including a resting state fMRI sequence, performed after a major scanner upgrade (multi-

transmit/multi-receive) in April, 2013; 4. Full-scale intelligence quotient measured according

to an age-appropriate version of the Wechsler Intelligence Test administered by a pediatric

neuropsychologist within 3 months of the MRI. Refinements to the above-defined population

were planned based on the following exclusions: 1. prior brain surgery. Intelligence tests were

performed by a single pediatric neuropsychologist with more than 25 years experience in pedi-

atric epilepsy.

Magnetic resonance imaging

Imaging was performed on a 3 Tesla magnet (Philips, Achieva, Andover, Massachusetts) using

a 32-channel phased array head coil. The following sequences were performed for each patient:

Structural Imaging: T1-weighted, three-dimensional volume acquisition fast field echo (TR/

TE: 7.2/2.9 ms, flip angle: 7 degrees, TI: 1100 ms, voxel size: 0.9 x 0.9 x 0.9 mm3); Functional

Imaging: Single-shot echo planar blood oxygenation level dependent images (TR/TE: 2000/30

Brain network features and individual intelligence

PLOS ONE | https://doi.org/10.1371/journal.pone.0212901 March 5, 2019 3 / 14

https://doi.org/10.1371/journal.pone.0212901


ms, flip angle: 80o, voxel size: 3 x 3 x 3.75 mm3). Functional images were acquired in the resting

state for 10 minutes (300 volumes) for each patient. Patients were instructed to lie quietly in

the scanner with their eyes closed. All images were visually inspected for artifacts, including

susceptibility and subject motion.

Image processing and analysis

The common processing pipeline was implemented using MATLAB scripts (version 7.13,

MathWorks, Inc) in which adapter functions were embedded to execute FreeSurfer recon-

struction (version 5.3.0; http://surfer.nmr.mgh.harvard.edu) as well as several tools from the

FMRIB Software Library (FSL)[31]. Details regarding this pathway have been previously

described[18,23]. An overview is provided here:

Network node definition. Nodes in the network were defined according to parcellation

of whole-brain gray matter. First, FreeSurfer reconstruction of cerebral cortical surfaces was

performed on the T1 structural image according to the Destrieux Atlas[32]. FreeSurfer was

selected for this task as surface based registrations that take into account sulcal and gyral anat-

omy are likely to improve subject to subject comparison and thereby minimize inter-subject

variability[19]. This processing stream included motion correction, skull stripping, segmenta-

tion of white matter and gray matter structures, surface deformation following intensity gradi-

ents which optimally place the gray matter/white matter and gray matter/CSF borders, and

parcellation of the gray matter and white matter boundary[33,34]. Pial and gray white surfaces

were visually inspected using the Freeview software for accurate placement. Next, a self-devel-

oped MATLAB program was applied to the FreeSurfer output to further subdivide the 74 stan-

dard gray matter parcels (per hemisphere) until they reached the desired size. This step

utilized the FreeSurfer output white surface, which is a 3D triangulated surface mesh placed at

the boundary of the gray and white matter of the brain, and the standard gray matter (cortical)

parcels generated according to the Destrieux atlas[32]. At each iteration, existing cortical par-

cels were evaluated according to their surface area on the white surface mesh. For parcels

greater in surface area than the predetermined size threshold (see below for details regarding

size threshold definition), that parcel was divided into two smaller parcels of equal size as fol-

lows: 1. the distance (along the white surface) between all vertices within a parcel were mea-

sured. 2. the largest distance between vertices within a parcel was defined as vector n; 3. the

original parcel was divided into two new cortical parcels along a line perpendicular to n. This

process continued until all parcels were smaller than the predetermined size threshold. Each

surface parcel was then converted into a volume mask of gray matter (cortex) at that region to

form a node on the network. This kind of random (not conforming to any known anatomic

boundary) subdivision of standard cortical parcels in order to construct larger network sizes

(larger number of nodes) is standard practice going back to the origin of the field[12,25]. It has

been shown that, although the network properties are affected by the network size, nodes

defined in this manner retain their network properties[25,35].

Network edge definition. The first 5 volumes in each resting state fMRI data were

removed to allow magnetization to reach equilibrium. Preprocessing and independent compo-

nent analysis (ICA) of the functional data sets was performed using FSL MELODIC[31], con-

sisting of motion correction, interleaved slice timing correction, brain extraction, spatial

smoothing with a Gaussian kernel full width at half maximum of 5 mm, and high pass tempo-

ral filtering equivalent to 100 seconds (0.01 Hz). Noise related to motion and other physiologic

nuisance was addressed according to an ICA technique[36]. All non-signal components were

identified manually by an expert operator. FSL’s FLIRT was then used to align the functional

image volumes for each patient to that individual’s structural T1 dataset using linear
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registration. The inverse transformation matrix was calculated in this step and subsequently

used to transform all masks from structural to functional space. Mean BOLD-signal time series

were then extracted on the previously defined nodes. The strength of an edge between two

nodes was defined as the absolute value of the Pearson correlation coefficient between their

time series.

Generation of weighted graphs. Weighted, undirected graphs were constructed for each

patient consisting of the pair-wise correlation between BOLD signal time series over all net-

work nodes. Non-significant correlations were excluded based on Bonferroni adjusted (to

account for multiple comparisons) p-values thresholded at 0.05.

Network metric calculation. For each weighted, undirected connection matrix, the fol-

lowing graph theoretical metrics were calculated using The Brain Connectivity Toolbox (http://

www.brain-connectivity-toolbox.net): clustering coefficient, transitivity, modularity, character-

istic path length, and global efficiency. A brief description for each metric is provided in

Table 1. These metrics were selected as they each capture the degree to which the network sup-

ports either integration across, or functional sub-specialization within, the brain[13].

Normalization. Within the confines of the above common processing pipeline, two dif-

ferent strategies were applied to account for expected variations of scale inherent to a clinical

pediatric cohort:

Network registration:In this condition, prior to entering the common processing pipeline,

structural imaging data for each patient were aligned to a standard template (Montreal Neuro-

logical Institute (MNI) 152) using non-linear registration[37–39]. Node definition was per-

formed on the template itself. Therefore, every patient’s network was constructed using the

same nodes in identical locations in the standard template space.

In detail, we used FSL FLIRT to accomplish linear boundary-based registration between

each patient’s functional and structural images; we also used nonlinear 12 degree-of-free-

dom registration to transform each patient’s structural images into the standard template

(MNI152). A single node parcellation for all patients was performed. Nodes were generated

using the strategy above (network node definition) using one patient selected from our

pediatric cohort based on the best registration to MNI space. This strategy was selected as it

has been shown to reduce potential confounds related to registration in a pediatric cohort

[39].

Metric normalization:In this condition, by contrast, network nodes were defined individu-

ally for each patient in their native space. After metric generation via the common processing

pipeline, each network metric was then normalized to the same metric computed on a random

network of identical size and conserved degree, strength, and weight distribution[29].

Table 1. Graph theoretical metrics of global network architecture.

Metric Description

Clustering Coefficient The fraction of a given node’s neighbors that are also neighbors of each other. Reflects

segregation/subspecialization in a network

Transitivity The fraction of node threesomes in the network that form a completely connected triangle;

a variant of clustering coefficient. Reflects segregation/functional subspecialization in a

network

Modularity The degree to which nodes tend to form relatively independent modules or subnetworks.

Reflects segregation/subspecialization within a network

Characteristic Path

Length

The number of network edges required to traverse the distance between two nodes.

Reflects the ease of information transfer across the network

Global Efficiency The inverse of the shortest path lengths between two nodes averaged over the network.

Reflects integration in a network

https://doi.org/10.1371/journal.pone.0212901.t001
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Raw metrics:In this condition, network measures were not normalized in any fashion.

Nodes were defined individually for each patient in their native space, with no metric

normalization.

Network size. The optimal number of network nodes for the purpose of patient-level pre-

diction is unknown[25]. Therefore, networks were constructed at multiple sizes. This was

accomplished by defining three different size thresholds during network node definition: 600

mm2, 350-mm2, and 150 mm2. This step resulted in networks of approximately 420, 705, and

1620 nodes for each patient. These sizes were selected in order to cover the span of network

sizes commonly seen in the literature.

Statistical analyses

All statistical analyses were performed using R Language, version 3.0.2 (R Foundation for Sta-

tistical Computing, Vienna, Austria).

In the primary analysis, a random forest machine learning algorithm was used to predict

each patient’s full scale IQ on the basis of the five global network metrics. In this step, the algo-

rithm was given access solely to the network metrics and no other variables. This machine

learning method tests the predictive capacity of a “learned” statistical model on a subset of the

cohort omitted during training. In other words, the ability of the model to predict IQ in each

individual was tested in a previously unseen subset of patients. Details regarding this particular

technique have been previously described[40]. In brief, Random Forests are an ensemble

learning method that operates by constructing a multitude of decision trees during training.

The forest is then used to make predictions that reflect the average output from the individual

decision trees. During training, approximately one third of the cohort is omitted at random

from the training set—this portion of the dataset is considered “out-of-bag”. The IQ of each

individual held out of bag is then predicted based on the “learned” model. Prediction accuracy

for each condition was then compared over the cohort using fractional variation explained

[41].

As a control, an alternative predictive model was developed with only potential confound-

ers, including physiologic (age, gender, total cortical volume, and the number of network

nodes) and nuisance variables (rotational and translational motion during MRI). To be spe-

cific, network metrics were not included in the control model. The control model was then

tested for its ability to predict full-scale IQ using an otherwise identical Random Forest

algorithm.

Linear regression was used to assess potential relationships between continuous variables,

including age, cortical volume, and full scale IQ (alpha: 0.05).

Results

Patients

Thirty-six patients met inclusion criteria. Ten were excluded on the basis of prior brain sur-

gery. Hence, twenty-six patients with focal epilepsy (age range: 8–18 years) comprised the final

study group. Five patients had structurally normal brains at anatomic MRI; twenty-one had

structural abnormalities. Patient characteristics of the cohort are provided in Table 2. All

patients were imaged as part of the evaluation for surgical management of their epilepsy. The

Wechsler Intelligence Scales for Children (WISC-IV) was successfully administered in all

patients[42]; full scale intelligence quotient in the cohort ranged from 52 to 129. As expected,

cortical volume was significantly related to age (p: 0.018). However, neither age (p: 0.45) nor

cortical volume (p: 0.34) were significantly related to IQ.

Brain network features and individual intelligence
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Network construction

In standard space, each patient’s network consisted of 1620, 705, and 420 nodes for the small

(150 mm2), intermediate (350mm2) and large (600 mm2) node thresholds respectively. Net-

work sizes constructed in patient space for the three node size thresholds are summarized in

Table 3. As described above, the number of nodes defined in patient space relates to the vol-

ume of the cortex in each child; in turn, this number is correlated with the age of the child.

Mean network sizes for the two conditions did not differ significantly at any of the node size

thresholds. For networks constructed in patient space, there was no significant association

between the number of nodes and IQ (p: 0.37). All brain networks demonstrated small world

properties, characterized by a tendency to form communities (clustering coefficient greater

than that of a random graph) while at the same time maintaining efficiency (path length

approximating that of a random graph).

Network metrics and intelligence

Accuracy of the machine learning algorithm for patient IQ prediction is presented in Table 4.

Prediction accuracy consistently increased with the number of nodes in the constructed net-

work. Accounting for network scale had a significant effect on prediction accuracy at all node

sizes. Specifically, both normalization strategies significantly outperformed the use of raw met-

rics (derived from networks constructed in patient space without normalization to metrics

computed on a random network). Metric normalization in patient space demonstrated higher

accuracy than network registration into standard space for all but the largest nodes (Table 4).

Table 3. Summary of network sizes when constructed in standard space and patient space.

Node Size Network Nodes

Standard Space Patient Space

600 mm2 420 420 [35]

350 mm2 705 705 [65]

150 mm2 1620 1620 [144]

For standard space, all subjects have the same number of network nodes for a given node size threshold. For patient

space, the mean [standard deviation] nodes per network are provided for the cohort.

https://doi.org/10.1371/journal.pone.0212901.t003

Table 2. Characteristics of the patient cohort.

Patient Characteristics

Sample Size 26 patients

Gender 14 males; 12 females

Age Mean (SD): 13.9 (3.0) years

Full Scale IQ Mean (SD): 89 (17)

Age of onset Mean (SD): 5.3 (4.2) years

Duration of Epilepsy (at time of MRI) Mean (SD): 8.6 (5.3) years

Medications (number) at time of MRI Median (range): 3 (1–8)

Anesthesia during MRI 9/26 patients

MR Structural Lesions Focal cortical dysplasia 9

Mesial temporal sclerosis 5

Normal MRI 5

Low-grade tumor 4

Tuberous sclerosis Complex 3

https://doi.org/10.1371/journal.pone.0212901.t002
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The choice of normalization strategy did not alter the specific network features most impor-

tant to full scale IQ; path length and clustering coefficient were the dominant metrics contrib-

uting to IQ prediction in both conditions (Fig 1). The control model based on covariates only

(age, gender, total cortical volume, number of network nodes and patient motion during

image acquisition) was a poor predictor of patient IQ (fractional variation explained [95%CL]:

0 [-0.03, 0.03]). Metrics computed on random networks (ie. metrics used for normalization)

were also poor predictors of full–scale IQ, consistent with the idea that metric normalization

did not introduce potentially useful variation into the model.

Discussion

We evaluated two strategies that aim to address the inter-individual variation in brain net-

works inherent to a clinical pediatric cohort. We specifically assessed the impact of these strat-

egies on output metrics of global brain architecture in terms of their capacity to support the

prediction of global intelligence in children with focal epilepsy. We report the following pri-

mary findings: 1. Normalization by either strategy significantly improved subject-level predic-

tion of global intelligence; 2. Metric normalization in patient space outperformed the use of

network registration into standard space under most conditions; and 3. Prediction improved

across all conditions with increasing nodes in the network.

Higher order functions of the brain emerge from parallel processing within sub-specialized,

but distributed, functional systems. A complex neural network formed by approximately 1010

neurons forms the structural substrate for efficient communication across the cerebrum.

Within this network, segregation into relatively independent local neighborhoods provides an

architectural framework for functional sub-specialization. Yet a complete range of function

only emerges from efficient integration of these sub-specialized neighborhoods across the

entire brain. Small world organization–characterized by both high clustering coefficients and

short path lengths—is an effective means by which both functional sub-specialization and inte-

gration can be concomitantly supported by the same network. It has been suggested that the

efficiency derived from small world organization contributes to the biologic underpinnings of

cognitive function in the human brain[15,43,44]. Only recently, however, have we begun to

explore the primary role that dysfunction of this network plays in the pathogenesis of human

disease. At the leading edge of such initiatives are mathematical approaches to quantitative

imaging that model the human brain specifically as a network of discrete, interacting elements

[12]. Optimal methods by which to create such constructs, however, remain the subject of

debate. These inconsistencies reflect, at least in part, the multiplicity of anatomic and func-

tional scales across which the human brain is organized[45]. At one extreme, encoding each

neuron as a node in the network represents an intuitive schema by which to depict the true

organization of the cerebral network. Techniques that reliably probe the brain at this scale,

however, are not yet widely available. At the macroscopic scale, by contrast, large scale brain

networks are accessible to systematic study through noninvasive MR technologies, including

diffusion weighted imaging and BOLD acquisitions. At this scale, however, there are no

Table 4. Fractional variation explained [95% confidence limits] of the machine learning algorithm for predicting

patient IQ based on network metrics.

Node

Size

None Metric Normalization Standard Space

600 mm2 0.03 [0.01, 0.05] 0.17 [0.14, 0.20] 0.14 [0.12, 0.18]

350 mm2 0.05 [0.02, 0.08] 0.31 [0.28, 0.34] 0.17 [0.14, 0.20]

150 mm2 0.08 [0.05, 0.11] 0.34 [0.31, 0.37] 0.20 [0.17, 0.23]

https://doi.org/10.1371/journal.pone.0212901.t004
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objective criteria by which to establish boundaries between elements in the network[25]. As a

consequence, investigators have parcellated the cortex according to an array of definitions, a

strategy which has led to a relative lack of comparability across studies[19]. The gravity of this

problem was underscored by Zalesky et al. who demonstrated large (up to 95%) variations in

global network properties solely on the basis of network scale[25]. Within any given study, this

problem is substantially mitigated by internal consistency; the same node definition results in

Fig 1. Importance of global metrics of network architecture to intelligence quotient (IQ) prediction. Metrics were

computed in (a) standard space or (b) in patient space with normalization of output metrics to a random network of

the same size. The independent contribution of each metric was estimated as the error of the learning algorithm’s IQ

prediction compared to the error which results when that metric is negated. The most negative value of importance

defines the limit of noise. Hence, variables with importance greater in magnitude than the most negative variable are

significant.

https://doi.org/10.1371/journal.pone.0212901.g001
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a similar number of nodes across subjects. In a pediatric cohort, however, the diversity of

developmental stages within the study population contributes to a range of network sizes even

for the same node definition. Prediction using machine learning would likely benefit from

strategies that account for this diversity such that the entire population can be considered by a

cohesive approach. We observed that two such strategies–network registration by transforma-

tion of all patients into a common template space and metric normalization to the same output

metric computed on a random network of identical size–significantly enhanced prediction of

a child’s IQ based on the global network properties of his/her brain. Overall, the findings sup-

port the potential for normalization to improve subject-level inferences from resting state net-

works. These results are consistent with the small but growing body of evidence that single

sessions of resting state fMRI contain sufficient information to make predictions about indi-

viduals[46], including those with focal epilepsy[22].

We also observed that normalization of metrics computed in each patient’s native space

supported more accurate prediction than network registration into standard space. Under

ideal circumstances, the standard space solution considers the same nodes in the same location

in every patient. However, the variation in cortical shape and folding patterns inherent to a

pediatric population poses a challenge to accurate registration of individual brains to the stan-

dard template[19]. Even small errors in registration result in variable placement of nodes

across the cohort, thereby altering the global properties of individual networks in random

fashion[35]. Given that they contribute variation that is irrelevant to intellect, such errors

could explain the reduced accuracy of the learning algorithm. Alternatively, it is possible that

brain shape and folding might actually be meaningful to patient intelligence[47]. Removal of

this variation during transformation to a standard template, therefore, could also contribute

negatively to prediction. A final possible explanation lies in the potential diagnostic value

imparted specifically by normalizing metrics to a random network. By comparing to a network

with no consistent organization, metric normalization emphasizes the degree to which a given

network tends to form local communities within a small world framework. Given the sugges-

tion that small world properties underpin, at least in part, the development of cognitive func-

tion, it would not be surprising to find added value in methods that highlight such features

[15,43,44]. It is important to note, these potential explanations need not act in isolation; all

three or any combination thereof could have contributed to the findings observed in this

study. Regardless of origin, our results are consistent with previous work that has demon-

strated the impact of node definition on global metrics derived from brain networks[25,28]

and, further, has suggested the potential superiority of parcellation in the patients’ native space

[28].

The above discussion has centered on the variation in network scale inherent to a pediatric

cohort for the same node size. However, the optimal size of network nodes is also yet to be

established[25]. During network construction, large nodes potentially include adjacent but

functionally distinct cortical regions into a single region of interest. The averaged BOLD time

course from a large node, therefore, may not accurately reflect the actual time-course of any of

the functional regions contained therein[48]. Measuring pair-wise correlations between such

time courses would then be handicapped with respect to its ability to capture the brain’s true

interactions. By contrast, small nodes are accompanied by lower signal-to-noise ratios, all

other parameters being equal; they also add to the computational burden of network analyses.

At some point, parcellation schemes may become noise-limited. Hence, optimal parcellation

should balance these competing concerns in such a way that global metrics most closely reflect

true brain network topology. We observed that IQ prediction improved across all conditions

with increasing nodes in the network. This finding is consistent with the idea that, over the

range of node sizes commonly reported in the literature, the benefits of node homogeneity
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may outweigh the competing costs to SNR. It remains to be seen, however, whether further

increases in network scale would continue to strengthen the relationship between brain net-

work architecture and brain function.

Consistent with previous work, we observed that full scale IQ was directly related to cluster-

ing coefficient (segregation) but inversely related to path length (integration)[17,49]. The asso-

ciation of short path lengths with lower cognitive function has been shown to be statistically

mediated by seizure duration, suggesting that ongoing seizures are associated with rewiring of

the cerebral network[18]. These findings reinforce the idea that network metrics in epileptic

brains may not have the same physiologic meaning as in normal subjects. Synaptic efficacy,

according to Hebbian theory on neural plasticity, arises from repeated and persistent stimula-

tion[50]. In this manner, connections contributing to useful and efficient sub-networks are

strengthened over time, while those associated with less functional/inefficient networks are

pruned[51]. In the setting of epilepsy, however, synapses are strengthened along pathways

related to seizure propagation, essentially hijacking Hebbian processes[52]. Connectivity in

this setting is potentiated without regard to network function, resulting in aberrant and poten-

tially maladaptive pathways[53,54].

This study has several limitations. First, it was performed in a selected cohort of pediatric

patients with focal epilepsy. Generalization of these results to other patient groups would

require further study. Analogously, we studied the impact of these strategies specifically on

global metrics derived from a network graph theory approach to resting state fMRI. Optimal

methods for other types of resting state data analysis, including the study of intrinsic resting

state functional networks, will not necessarily parallel those presented here. Third, all imaging

was performed on the same MR scanner with the same phased array coil according to the

same resting state fMRI sequence. Further study regarding the utility of these metrics across a

wider range of MR hardware would be of great practical value to widespread implementation.

Finally, the goal of this study was to promote the development of methods that remove or miti-

gate the effects of normal variation, thereby highlighting those features most relevant to indi-

vidual brain function. However, the boundary between variation that is “normal” and that

which is clinically important may not always be clear. Along similar lines, variation that is

important in one context may be irrelevant under other circumstances. It is therefore possible

that alterations of the data inherent to these and similar techniques could, albeit unintention-

ally, remove variation that is clinically important under some circumstances. Ultimately, the

success of machine learning in pediatric neuroimaging will rely on the development of patient

databases large enough to allow the algorithm to learn on its own which variation is relevant to

each application.

Conclusion

In conclusion, normalization contributed significantly to the prediction of individual intelli-

gence in a cohort of children with focal epilepsy. Both of the tested normalization strategies

significantly augmented prediction by the learning algorithm. However, under most condi-

tions, normalization of metrics computed in patient space outperformed transformation of all

patients into a standard space. These findings support the potential for network science to pro-

vide clinically meaningful markers of brain function in children with epilepsy.
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