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ABSTRACT

The taxonomy and phylogeny of the Betula L. genus remain unresolved and are very
difficult to assess due to several factors, especially because of frequent hybridization
among different species. In the current study, we used nucleotide sequences of two
internal transcribed spacer regions (ITS1 and ITS2), which are commonly used as
phylogenetic markers. In addition to their nucleotide variation we reconstructed their
secondary structure and used it to resolve phylogenetic relationships of some birch
species. We explored whether consideration of secondary structure in phylogenetic
analyses based on neighbor-joining, maximum parsimony, maximum likelihood,
and Bayesian inference methods would help us obtain more solid support of the
reconstructed phylogenetic trees. The results were not unambiguous. There were only
a few clades with higher support when secondary structure was included into analysis.
The phylogenetic trees generated using different methods were mostly in agreement
with each other. However, the resolving power of these markers is still insufficient to
reliably discriminate some closely related species. To achieve this aim more reliably
there is a need for application of modern genomic approaches in combination with
traditional ones.

Subjects Computational Biology, Evolutionary Studies, Genetics, Plant Science, Taxonomy
Keywords Betula, Taxonomy, Phylogeny, ITS, Secondary structure, Phylogenetics

INTRODUCTION

Birches (Betula L. genus) are common pioneer trees and shrubs of temperate and boreal
zones in the Northern Hemisphere. Trees classified within this genus are highly diverse,
especially in the Old World. Birches occupy habitats predominantly in cool and moist
regions, including peatlands, stream banks, lakeshores, cool, damp woods, and moist
slopes in cool coves. Most of them represent organisms adapted to low temperatures and
able to grow under different extreme conditions (bogs, high altitude mountains, sands,
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subarctic zone, etc.) and on very poor soils, frequently as the first colonizing pioneer woody
plants (Ashburner ¢ McAllister, 2013).

The taxonomy and exact phylogenetic relations in the Betula L. genus are still unresolved
and very difficult to assess because of several reasons. Number of taxa and their range
vary greatly in different studies or sources from ~30 (De Jong, 1993) to ~120 (World
Checklist of Selected Plant Families; Ashburner ¢» McAllister, 2013) species. Birches comprise
taxonomically a notoriously complex group because of their high morphological variation,
phenotypic plasticity, and frequent hybridization (especially introgressive one) (Johnsson,
1945; Johnsson, 1949; Brown, Kennedy & Williams, 1982; Anamthawat-Jonsson ¢ Tomasson,
1999; Anamthawat-Jonsson ¢ Thorsson, 2003; Thorsson, Salmela ¢ Anamthawat-Jonsson,
2001; Thorsson et al., 2010; Palmé et al., 2004; Bona, Petrova ¢ Jadwiszczak, 2018).

Earlier classifications were mostly based on morphological traits (Regel, 1865; Schneider,
1915; Schneider, 1916; De Jong, 1993; Walters, 1993; Chen, Manchester & Sun, 1999;
Skvortsov, 20025 Tzvelev, 2002; Ashburner ¢ McAllister, 2013). The internal classification of
the genus (subgenera, sections, and subsections) was changed several times, but even till
now it is still mostly based on morphological traits. However, they are often insufficient
to discriminate different birch species because of their high phenotypic plasticity and
frequent hybridization, which blurs boundaries between different taxa. Only a few birch
taxa were studied using different molecular genetic markers, such as rbcL and ITS sequences
(Chen, Manchester ¢ Sun, 1999), nuclear ADH and chloroplast matK sequences (Jarvinen
et al., 2004), nuclear ribosomal DNA sequences (Li, Shoupa ¢ Chen, 2005), nuclear nitrate
reductase DNA sequences (Li, Shoupa ¢ Chen, 2007), other multiple chloroplast and
nuclear regions (Singevar et al., 2020) and AFLP markers (Schenk et al., 2008), but sampling
sizes were quite low in most studies. In addition, there was a recent study of the genetic
structure and hybridization of some birch species across Eurasia that provided new data
regarding the hybridization patterns and the origin of B. pubescens (Tsuda et al., 2017).
Some birch taxa were recently reassessed with propositions to lower taxonomic ranks using
also internal transcribed spacers (ITS) as molecular genetic markers (e.g., Kunes et al.,
2019; Tarieiev et al., 2019; Jadwiszczak et al., 2020; Linda et al., 2020).

Genome-wide markers inferred by restriction site associated DNA sequencing (RAD-
seq) were used to study the phylogeny of 27 diploid and 31 polyploid birch taxa (Wang et
al., 2021) and specifically Costatae section with description of a new species, Betula buggsii
N. Wang (Wang et al., 2020). Complete reference genome sequence assemblies are also
available for three birch species, B. nana L. (Wang et al., 2013), B. pendula Roth (Salojéirvi
et al., 2017) and B. platyphylla (Chen et al., 2021) respectively.

ITS are among the most common phylogenetic markers in plants including also several
studies on birch genus (Chen, Manchester ¢ Sun, 1999; Li, Shoupa ¢ Chen, 2005; Wang et
al., 20165 Kunes et al., 2019; Tarieiev et al., 2019). There is a large number of ITS sequences
deposited and freely available in the NCBI GenBank, ITS2, and EMBL databases. The
most complex phylogenetic reconstruction of ~60 birch taxa (233 sequences in total) was
done relatively recently using ITS sequences as phylogenetic markers (Wang et al., 2016).
However, this phylogenetic study was unable to discriminate some closely related and
hybrid taxa. The objective of our study was to test whether inclusion of secondary structure
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of ITS would improve phylogenetic analysis. In our study we inferred secondary structure
of both ITS1 and ITS2.

MATERIALS & METHODS

ITS markers

We analyzed 223 complete nucleotide sequences of ITS1 that represented 73 birch taxa*
(57 species, including two species with hybrid origin, 6 subspecies, 9 varieties, and one
form) and 263 sequences of ITS2 that represented 78 birch taxa* (60 species, including
two with hybrid origin, one interspecific hybrid, 6 subspecies, 10 varieties, and one form)
retrieved from the NCBI GenBank and compared for secondary structure reconstruction
with the ITS2 Database (for ITS2 only; Ankenbrand et al., 2015) (see Table S1).

In addition, we sequenced several ITS sequences representing the two endemic birch
species from Ukraine B. borysthenica Klokov (Klokov, 1946) and B. klokovii Zaverucha
(Zaverucha, 1964), dark-barked birches B. pubescens var. sibakademica Baranov (Kuzeneva)
(=B. pubescens {. sibakademica (Baranov) Tarieiev), (Baranov, 1924; Kuzeneva, 1936;
Tarieiev et al., 2019) B. kotulae Zaverucha (=B. pendula f. obscura (Kotula) Tarieiev),
(Zaverucha, 1964; Tarieiev et al., 2019) B. atrata Domin (Domin, 1927) and carpathian
birch B. pubescens ssp. carpatica from Poland. We used specimens originating from natural
habitats of Ukraine (especially endemic species from type localities (locus classicus) and
type specimens listed in Olshansky et al., 2016), the Botanical Garden of the Georg-August
University of Gottingen, and other herbaria—GOET, KW, LE and the former herbarium of
Taras Shevchenko National University of Kyiv (see Table 52).

Birch taxa are listed in Tables S1 and S2 according to the NCBI taxonomy with more
detailed explanation provided in Data S1. However, the NCBI taxonomic ranks do not
always reflect the current changes in taxonomy and, therefore, could be wrong or outdated
in some cases.

ITS1 and ITS2 from ribosomal gene clusters were amplified and sequenced in nine
birch species either as a single fragment that included partial 188, ITS1, 5.8S, ITS2, and
partial 28S using universal PCR primers ITS5 and ITS4 (White et al., 1990) or in parts
using ITS5 and ITS2 primer pairs modified for birch species to amplify the ITS1 region
and ITS3 and ITS4 primer pairs to amplify the ITS2 region, respectively. PCR products
were sequenced on an ABI 3130x Genetic Analyzer (Applied Biosystems, Thermo Fisher
Scientific Inc., Waltham, MA, USA). Using BioEdit software (Hall, 1999) these sequences
were checked visually for quality and aligned together with 223 and 263 complete sequences
of ITS1 and ITS2 retrieved from the NCBI GenBank and ITS2 databases and presented
in Tables S1 and S2, respectively. Secondary structure (Mai ¢» Colerman, 1997; Coleman,
2000; Coleman, 2003; Coleman, 2007; Coleman, 2009; Miiller et al., 2007; Wolf et al., 2013)
was inferred for all analyzed sequences using mfold web server (Zuker, 2003). Obtained
structures were checked for correctness (e.g., correct position of conservative motives,
U-U mismatch, and 5.85-28S rRNA hybrid stem formation were manually inspected for
ITS2) and Gibbs energy value. Structures were compared with models proposed in the
ITS2-Database (Koetschan et al., 2010; Koetschan et al., 2012) and aligned automatically
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with manual adjustment afterwards using the 4SALE program (Seibel et al., 2006; Seibel et
al., 2008). Alignments are presented in Data S2 and S3. Obtained structures were visualized
using VARNA v3-93 (Darty, Denise & Ponty, 2009), and then their features were colored
using Inkscape v. 0.92.3 (Free Software Foundation, Inc.; https://inkscape.org).

Phylogenetic relationships were reconstructed using Bayesian inference implemented
in MrBayes 3.2.6. (Huelsenbeck ¢ Ronquist, 2001; Ronquist & Huelsenbeck, 2003; Ronquist
et al., 2012) on the same sequence set with exclusion of identical sequences. Secondary
structure was inferred by applying two different models: doublet model for paired regions
and 4 by 4 with GTR +I for unpaired ones, respectively. The analysis was performed in four
chains with sampling frequency 100 and different number of iterations —20,000,000,
50,000,000, and 100,000,000. Burnin was performed first separately in each run by
monitoring the standard error value, convergence was considered to be reached when the
standard error decreased below 0.01. The obtained final phylogenetic tree was visualised
using FigTree (http://tree.bio.ed.ac.uk/software/figtree) and TreeGraph2 (Stover ¢ Miiller,
2010).

To analyse the impact of rRNA secondary structure on the topology of the phylogenetic
tree and support of the clades the following four methods of phylogenetic analysis were
performed: (1) Bayesian analysis using an identical number of iterations and 4 by 4
GTR+I+G model suggested by the ModelTest in PAUP v.4.0a (http://paup.phylosolutions.
com; Swofford, 2003) for all the regions, (2) neighbor-joining (NJ) clustering in ProfDist
(Friedrich et al., 20055 Wolf et al., 2008) using GTR model, 1000 bootstrapping iterations
and rate matrix Q for ITS2 in case of considering secondary structure or rate matrix Q for
Chlorophyta in case of not considering secondary structure, (3) maximum parsimony (MP)
analysis using PAUP v.4.0a with GTR+1+G model, 1000 bootstrap iterations, and 12-letter
coding of secondary structure performed using 4SALE, 4) maximum likelihood (ML)
analysis using MEGA X without considering secondary structure and R script provided
with 4SALE package (http://4sale.bioapps.biozentrum.uni-wuerzburg.de/mlseqstr.html)
together with 12-letter coding to consider the structure. It should be noted that 12-letter
coding does not include IUPAC codes for ambiguous nucleotides, and, therefore, some
information is lost, especially in case of considering hCBCs.

Pairwise topology of phylogenetic trees was adjusted manually for better comparison
by merging and rearranging some clusters with statistically insignificant support, and
respective drawings were generated using Inkscape v. 0.92.3 (Free Software Foundation,
Inc.; https://inkscape.org).

RESULTS

Secondary structure reconstruction
Structural variation was observed for different groups of birch taxa. The consensus
structural models comprising all variants were reconstructed for the ITS1 and ITS2
markers (Fig. 1).

The ITS1 structure consists of five helices: for main (H1, H2, H3, and H4) plus one
additional (Ha). Additional helix Ha was present in four structural variants (Fig. 2): the A
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O non-structural base change
—— wobble base pair
—— canonical or wobble base pair

conditional bond

Figure 1 Consensus models of the secondary structure comprising all variants of ITS1 and ITS2 mark-
ers for the entire Betula L. genus. Indels are depicted by small letters.
Full-size &) DOLI: 10.7717/peerj.10889/fig-1

variant was common in most samples (Fig. 2A), B was specific for B. globispica (AB243883.1,
KT308904.1, KT308905.1, AY761111.1), B. chinensis (KT308917.1, KT308918.1), B. fargesii
(KT308906) from section Asperae, subsection Chinenses, B. glandulosa (AY761110.1) from
section Apterocaryon, B. lenta (AY761115.1, AY352330.1), B. medwediewii (AY761120.1),
and B. uber (AY352334) from section Lentae (Fig. 2B), C was specific for B. alnoides
(AY763114.1) and B. luminifera (KT308944.1) from the section Acuminatae (Fig. 2C), and
D occurred only in two haplotypes of B. apoiensis (AB243908.1 and AB243912.1) (Fig. 2D).
The H1 helix was the most variable in ITS1 and represented by seven structural variants
(Fig. 3). However, the last two ones (F and G, respectively) could be reduced to the first
and second one (A and B) depending on the nucleotide in ambiguous sites N and R. The
H2 helix was represented by two structural variants A and B (Fig. 4). B was specific only
for B. insignis (K1308927.1, KT308928.1, KT308929.1). The H3 helix was the same for all

analyzed sequences and without any structural variation. Four structural variants were
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Figure 2 Structural variants of additional helix Ha.
Full-size Gal DOI: 10.7717/peer;j.10889/fig-2

ITS1 Helix 1

Figure 3 Structural variants of helix 1 (H1) in ITSI1.
Full-size &8 DOI: 10.7717/peer;j.10889/fig-3

observed for the H4 helix (Fig. 5). The B variant was species-specific for B. nigra (see
detailed information about distribution of other variants in Data S4).

The ITS2 marker had no structural variation for H2 and H4 helices. Five structural
variants were observed for the H1 helix (Fig. 6) (see also details in Data S3). The helix
3 (H3) was the most variable with 10 structural variants in total (Fig. 7). Further details
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ITS1
Helix 2

Figure 4 Structural variants of helix 2 (H2) in ITS1.
Full-size &l DOI: 10.7717/peer;j.10889/fig-4

regarding distribution of different variants among analyzed sequences are presented in
Data S5.

There were no compensatory base changes (CBCs) detected in both structural models of
markers across all samples. However, there were several hemicompensatory base changes
(hCBCs): in total, 16 hCBCs sites were detected in ITS1 and 15 in ITS2, respectively (more
detailed information is in Data S6 and S7). The exact distribution of those hCBCs is
depicted in Figs. 1-7 in red color.

Neighbor-joining (NJ) phylogenetic analysis

NJ phylogenetic tree with consideration of the secondary ITS structure showed higher
statistical support of several clusters and more detailed clustering compared to the NJ
trees without such consideration (42 vs. 35 supported clusters, respectively, considering
50% as a cut-off for bootstrap support; Fig. 8, Figs. S1-52). In addition, 14 clusters that
were supported in both trees had higher bootstrap values when the secondary structure
was considered. However, the resolution power remained insufficient to delineate some
of closely related species and hybrids. In general, clustering was mainly in agreement with
genus taxonomy, but not always.
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in ITS1.

)

H4

Figure 5 Structural variants of helix 4 (

Full-size & DOI: 10.7717/peer;j.10889/fig-5

ITS2 Helix 1

Figure 6 Structural variants of helix 1 (H1) in ITS2.

Full-size & DOI: 10.7717/peer;j.10889/fig-6
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ITS2 Helix 3

Figure 7 Structural variants of helix 3 (H3) in ITS2.
Full-size Gal DOI: 10.7717/peerj.10889/fig-7

Maximum parsimony (MP) phylogenetic analysis

MP phylogenetic trees demonstrated the same pattern as the NJ trees: there were more
supported clusters when the secondary structure was considered compared to the MP tree
without such consideration: 27 vs. 18, respectively (Fig. 9, Figs. 53-54). In addition, twelve
clusters that were supported in both trees demonstrated higher bootstrap values when the
secondary structure was considered. However, the resolution power of the MP analysis was
lower than in the NJ analysis.

Maximum likelihood (ML) phylogenetic analysis

MP phylogenetic trees demonstrated 34 supported clusters when secondary structure was
considered, but only 28 ones when traditional analysis without consideration of secondary
structure was used (Fig. 10, Figs. S5-56). In addition, twelve clusters that were supported
in both trees demonstrated higher bootstrap values when the secondary structure was
considered.

Bayesian phylogenetic analysis

Bayesian phylogeny reconstructions showed some changes in phylogenetic trees; both
changes in the topology and support values (posterior probability) were observed when the
secondary structure of ITS was considered. Clusters supported with posterior probability
values >95% are highlighted in red in Fig. 11, Figs. 57-S11.

Several Bayesian trees were constructed using different number of iterations (20,000,000,
50,000,000, and 100,000,000). At 20,000,000 iterations the tree with consideration of the
secondary structure had greater statistical support values for several clades (Figs. 510, S11)
compared to the tree without consideration of the secondary structure (Fig. S9). However,
with increasing iteration number this difference vanished, and for 100,000,000 iterations
the situation is opposite —the tree without structure had greater statistical support (Fig. 11,
Figs. S7, S8). At the same time, the stability of the tree in terms of topology, number
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Figure 8 Two neighbor-joining (NJ) phylogenetic consensus trees based on 1,000 iterations without
(left) and with (right) consideration of ITS secondary structure generated using ProfDistS with GTR
model and rate matrix Q. They are presented also separately in Figs. S1-52, respectively. Clusters with

bootstrap value less than 0.5 (50%) were collapsed. Subgenera, sections, and subsections are marked by
different colors according to Ashburner ¢ McAllister (2013 ). Identical taxa are connected by lines.
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Figure 9 Two maximum parsimony (MP) phylogenetic consensus trees based on 1000 iterations
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Figure 11 Two Bayesian phylogenetic trees based on 100000000 iterations including 10% burnin and
4 by 4 model for all regions without consideration of ITS secondary structure (left) and doublet model
for paired regions, but 4 by 4 with GTR +I for unpaired ones with consideration of ITS secondary struc-
ture (right). They are presented also separately in Figs. S7-S8, respectively. Supported clades (> 0.95) are
highlighted in red. Subgenera, sections, and subsections are marked according to Ashburner ¢ McAllister
(2013). Identical taxa are connected by lines.
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of clusters and support values was greater for the trees with structure. However, despite
the fact that consideration of the secondary structure increased the stability of clusters,
many closely related taxa inside the genus were still not resolved. Even subgenera, sections,
and subsections (marked in Fig. 11, Figs. S7-S11 according to Ashburner & McAllister
(2013) using the same symbols as in Wang ef al. (2016) could not be clearly distinguished
since there are some cases where taxa from different sections and subsections have totally
identical ITS sequences.

DISCUSSION

Reconstructed secondary structure of ITS1 and ITS1 reveals a common pattern for the whole
genus Betula L. The secondary structure for both of these spacers is more conservative
than their sequences, and some common patterns are present across very large groups
(Coleman, 2007). At the same time, secondary structure reconstruction reveals several
types of nucleotide base changes, such as structural, non-structural, hemicompensatory
(hCBC) and compensatory (CBC) changes, and, therefore, they can considerably enhance
phylogenetic studies (Keller et al., 2010). The approach is described for a wide range of
land plants, algae and animals (Colernan, 2009). In case of birch, structural, non-structural
and hemicompensatory (hCBC) changes were detected, but compensatory base changes
(CBCs) were not found. This was expected because CBCs are usually observed for fully
reproductively isolated species (Coleman, 2000; Coleman, 2009; Miiller et al., 2007), and,
therefore, they could be used in delineation of biological species according to Mayr’s
biological species concept (Mayr, 1942). Meanwhile, birches have very weak reproductive
barriers with common hybridization events, and a number of taxa have hybrid origin
(Ashburner & McAllister, 2013; Anamthawat-Jonsson ¢ Thorsson, 2003; Anamthawat-
Jonsson & Tomasson, 1999; Brown, Kennedy ¢ Williams, 1982; Johnsson, 1945; Johnsson,
1949; Thorsson, Salmela ¢ Anamthawat-Jonsson, 2001; Thorsson et al., 2010; Palmé et al.,
2004; Thomson et al., 2015; Wang et al., 20145 Zohren et al., 2016). Therefore, the biological
species concept is hardly applicable to many birch species. There are several other species
concepts that could better accommodate this genus, but there is currently no strict
consensus on this. Genetic clustering is a common approach to delineate birch species, but
it could be spurious in case of species with high gene flow that can easily hybridize (Tsuda
etal., 2017).

Some birch taxa, even from different subgenera, sections, and subsections, have identical
ITS sequences and, therefore, cannot be resolved using ITS markers. Since most of the
sequences were retrieved from the GenBank, it is not always possible to verify the exact
origin of the samples and correct species identification. The errors could occur due to
morphological misidentification, and it is often impossible to check the accuracy of
morphological identification of those specimens. However, identity of ITS sequences in
species that have very distinctive morphology could be real, especially if it was confirmed
by sequence data obtained by different independent research groups for the same species.
It is likely that birch is still in the process of speciation, and reproductive barriers are
not established yet or weak isolation is beneficial for survival in extreme environments.
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This reproductive feature is likely under positive selection, which could also explain the
relatively low variation of ITS sequences within diverse groups. There are circa 15 known
hybrids between different subgenera, sections, and subsections (Ashburner ¢ McAllister,
2013). However, most of them were not included in this study. The exceptions are B.

x minor (Tuck.) Fernald, which is a hybrid between B. cordifolia Regel (2n = 2x =28,
sect. Betula) and B. glandulosa Michx (2n = 2x = 28, sect. Apterocaryon), and B. apoiensis
which is likely a hybrid between B. ermannii Cham. (2n = 4x = 56, sect. Costatae) and
B. fruticosa Pallas (2n = 4x = 56, sect. Apterocaryon) (Ashburner ¢ McAllister, 2013). This
could explain a variety of different haplotypes of B. apoiensis with different clustering

in the dendrograms. It should also be noted that those taxonomic categories such as
subgenera, sections and subsections within birch genus were based only on morphological
traits and do not necessarily reflect genetic differences. Multiple copies of ITS regions of
different origin could be present in allopolyploids and interspecific hybrids, but only one
of them could be amplified by PCR, which can also result in spurious phylogenetic trees.
Recent genome-wide RAD-seq studies (Wang et al., 2020; Wang et al., 2021) solved some
specific problems in birch taxonomy and phylogeny, especially clarifying parentage of some
tetraploid species, enhancing resolution for diploid birch species with proposing changes
on the level of sections and subsections and describing the new species B. buggsii that is
morphologically similar to B. utilis ssp. albosinensis. However, some problems especially
with polyploids with high ploidy levels remain. Therefore, we believe that further genome
wide analyses can help to resolve the phylogenetic and systematic uncertainties in genus
Betula even better.

CONCLUSIONS

The general models of secondary structure of the ITS1 and ITS2 sequences across the whole
genus Betula L. were presented for the first time in this study. Species-specific structural
variants were detected for B. insignis and B. nigra. In combination with sequence variation
it provides higher confidence in clustering, but only when the number of iterations is
relatively low or moderate. With increasing the number of iterations the number of
supported clusters and support values for the tree considering secondary structure remain
more or less the same, while for the tree without considering secondary structure the
number of supported clusters and support values tend to increase. In case of very closely
related and hybrid taxa, ITS markers did not provide sufficient discrimination, as well as
even some subsections and sections could not be clearly separated. In general, our data
were in agreement with the relatively recently published phylogenetic study of the entire
genus Betula L. based on the nucleotide variation of the ITS markers (Wang et al., 2016),
but structural variation can additionally be used to distinguish or support some taxa.
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