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INTRODUCTION
Coronavirus disease 20191 has taken the world by storm. 
The disease is caused by a novel strain of coronavirus, Severe 
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). 
The virus primarily affects the respiratory system and 
manifests as pneumonia, which frequently can be seen on 
imaging, especially CT.2,3 The disease started from main-
land China in 2019, and by the end of January 2020 was 
declared as a global health emergency by the World Health 
Organization.4,5 The disease has highlighted the lack of 
preparedness of health care to deal with a new and emerging 

pandemic.6,7 The therapeutic options, long-term effects, 
and methods to follow up the disease are still being studied. 
Given the public health concerns with the disease, any step 
that can help understand disease pathogenesis, improve the 
diagnosis, prognostication, or management of the disease 
will be critical. Currently, there are significant challenges 
and questions pertaining to the diagnosis and management 
of the disease. Some of the challenges include the choice of 
test for screening and diagnosis of the disease (especially 
when the reverse transcriptase-polymerase chain reaction 
(RT-PCR) tests have not been readily available or were 
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ABSTRACT

Increasingly, quantitative lung computed tomography (qCT)-derived metrics are providing novel insights into chronic 
inflammatory lung diseases, including chronic obstructive pulmonary disease, asthma, interstitial lung disease, and 
more. Metrics related to parenchymal, airway, and vascular anatomy together with various measures associated with 
lung function including regional parenchymal mechanics, air trapping associated with functional small airways disease, 
and dual-energy derived measures of perfused blood volume are offering the ability to characterize disease pheno-
types associated with the chronic inflammatory pulmonary diseases. With the emergence of COVID-19, together with 
its widely varying degrees of severity, its rapid progression in some cases, and the potential for lengthy post-COVID-19 
morbidity, there is a new role in applying well-established qCT-based metrics. Based on the utility of qCT tools in 
other lung diseases, previously validated supervised classical machine learning methods, and emerging unsupervised 
machine learning and deep-learning approaches, we are now able to provide desperately needed insight into the acute 
and the chronic phases of this inflammatory lung disease. The potential areas in which qCT imaging can be beneficial 
include improved accuracy of diagnosis, identification of clinically distinct phenotypes, improvement of disease prog-
nosis, stratification of care, and early objective evaluation of intervention response. There is also a potential role for qCT 
in evaluating an increasing population of post-COVID-19 lung parenchymal changes such as fibrosis. In this work, we 
discuss the basis of various lung qCT methods, using case-examples to highlight their potential application as a tool for 
the exploration and characterization of COVID-19, and offer scanning protocols to serve as templates for imaging the 
lung such that these established qCT analyses have the best chance at yielding the much needed new insights.
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unreliable), assessment of disease severity, triage of patients for a 
hospital vs home care, appropriate prognostication of individual 
patients, and assessing early response to therapy.8 A recent state-
ment from the Fleischner Society9 has highlighted that key roles 
for imaging are to identify patients at risk of disease progression 
and to help triage moderate-to-severe cases for hospital vs home 
care. With PCR availability and accuracy improving, at this stage 
of the pandemic (as of October 2020), tools are needed that allow 
better characterization of the lung disease phenotypes leading to 
an enhanced understanding of the lung pathology and variable 
patient prognosis. Hence, in this practice and policy paper, we 
outline a set of well-utilized set of quantitative lung CT (qCT) 
metrics that can be applied to COVID-19 if basic principles of 
qCT scanning are followed.

We would add that, as we seek to identify interventions, there 
is a need for tools to detect successes early in the course of the 
disease rather than waiting to treat late. In addition, early studies 
have demonstrated that imaging will likely play an important, 
retrospective role in understanding the unique phenotypes of 
this disease10 as well as understanding the residual pathologies 
upon recovery.11

Understanding of the role of CT imaging in the disease is 
evolving. Initial reports suggested that chest CT may be more 
sensitive than the current tests of choice, such as RT-PCR.12 
These reports suggested that CT should be used for screening 
in symptomatic or suspected patients, but such an observation 
may be related to a lack of technical expertise with RT-PCR. 
Additionally, CT imaging can be very non-specific with regard 
to COVID-19, with features overlapping with other pathol-
ogies, such as influenza, bacterial pneumonia, or inflamma-
tory drug reactions. Factors currently inhibiting the use of CT 
are concerns, which include poor imaging room ventilation, 
relative lack of personal protective equipment, difficult logis-
tics involved in patient transportation to the CT facility, and 
the need for lengthy room disinfection after testing. Hence, 
major radiology organizations worldwide (American College 
of Radiology [ACR], Society of Thoracic Radiology, and 
American Society of Emergency Radiology [STR and ASER], 
British Society of Thoracic Imaging [BSTI], The Royal Austra-
lian and New Zealand College of Radiologists [RANZCR]) 
have suggested that CT should not be used for screening or 
diagnosis if reliable RT-PCR testing is available. The role of 
CT should be reserved for hospitalized, symptomatic patients 
with specific clinical indications for CT, and a portable chest 
radiograph should be preferred in the suspected patients.13–16 
However, the clinical manifestations frequently overlap with 
other diseases for which CT imaging is usually performed (i.e. 
chest pain, shortness of breath, fever in immunocompromised 
patients, rule-out pulmonary embolism etc.), and both chest 
CT and radiographic imaging are being performed among 
COVID-19 suspected or confirmed cases. As putative inter-
ventions emerge, qCT can provide a better understanding 
of disease pathogenesis and an early objective assessment of 
outcomes, allowing for continuance of the intervention or 
early termination.

The methodology of qCT allows for automated, reproducible, 
and quantifiable metrics that can measure normal and diseased 
lungs on CT images. Quantitative lung CT metrics have been 
primarily studied and validated for chronic lung diseases and, 
compared to a conventional review of images or pulmonary 
functional tests (PFTs), have been shown to provide a better 
characterization of distribution and percent of the lung affected 
by the disease17; disease prognostication18; prediction of worse 
clinical outcomes and mortality18 ;as well as objective moni-
toring of early response to therapy.19,20 Quantitative lung CT 
applications in inflammatory lung disease have included, for 
instance, chronic obstructive pulmonary disease (COPD),21–25 
interstitial lung disease (ILD),26–28 or lymphangioleiomyo-
matosis (LAM).29,30 However, qCT metrics have not been as 
well studied in acute lung diseases. Pulmonary applications of 
qCT in association with COVID-19 are a novel application, 
allowing the following of rapidly changing pulmonary disease 
processes. Quantitative features that can be applied to lung CT 
images are based on lung density, texture, and airway or vascular 
mapping.28,31,32 These advanced lung imaging tools have been 
developed using a consistent imaging protocol that has been 
validated and applied in various multicenter studies.33 The use 
of these validated advanced lung imaging tools can help better 
quantify the disease burden and may help triage the patients. 
Additionally, as COVID-19 patients with comorbidities or base-
line lung disease34 have a poor prognosis and are at higher odds 
for severe disease, qCT can help by objectifying the characteri-
zation of the underlying disease phenotypes associated with, e.g. 
COPD, asthma, ILD and most certainly have a new role to play 
in the acute and potentially more chronic state of the lung asso-
ciated with COVID-19. These tools can help with better patient 
prognostication and aggressive management, when needed. In 
this practice and policy document, we highlight the applications 
of advanced lung imaging tools as applied to COVID-19 disease 
and their potential role. With the desire for objective quantifi-
cation comes the need for standardizing imaging protocols to 
ensure accuracy of the resulting metrics and to allow for harmo-
nization of image findings across centers,33 which in turn will 
allow for the application of emerging technologies such as deep 
learning.35–38

Current status of artificial intelligence (AI) and 
machine learning-based tools
As with the understanding of the disease itself, the role of AI (e.g. 
classical ML or deep learning methodologies) for COVID-19 
pneumonia is evolving by utilizing the quantitative information 
from CT images and submitting these to various computer-based 
processes. Radiomics is a methodology that extracts a large 
number of features from imaging data that would not other-
wise be apparent to visual inspection. Radiomics uses a data-
characterization algorithm to bin the features into clusters that 
are most relevant for a specific clinical context. Such processes 
yield new insights into distinct disease phenotypes, which in 
turn can provide for an understanding of underlying pathology. 
A recent position statement by RANZCR briefly addresses this 
topic and highlights that AI research and technological imaging 
advances for their added role in the clinical care of patients 
should be supported.15 A few critical but very important points 
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highlighted in the position statement are that quantitative image 
analysis tools should add value to visual image inspection by 
providing a better understanding of the disease rather than 
simply targeting a reduction in workload or turnaround times 
as those are currently not the limiting factors. Another vital step 
towards the usefulness of quantitative image analysis tools is 
generalizability to different population groups and integration 
into the existing clinical practices.

In the current stage of the pandemic (as of October 2020), 
there is increasing utilization of CT imaging in patients with 
COVID-19 pneumonia. Based on the experience with the use 
of quantitative analysis tools for multiple other lung patholo-
gies, there is a potential for valuable applications in COVID-19 
disease. The initial reports on applications of AI-based tools 
for COVID-19 disease are promising.5,39–42 Some of the deep 
learning-based methods are focused on improving the sensitivity 
or diagnostic accuracy for COVID-19, which are new and have 
scant (if any) validation data for their generalized or wide-spread 
applicability.5,39,43 In this work, we will focus on established qCT 
methodologies that have been validated and utilized in various 
multicenter studies in collaboration with our research laboratory 
over last two decades.31,32,44–51 These methodologies have been 
combined with various statistical and other machine-learning 
analyses, imparting added insights into lung diseases. If appro-
priately used, these methods can provide direct insights into the 
disease severity, distribution, progression, and regression as well 
as identify underlying variations (sub-phenotypes such as paren-
chyma vs vasculature) in pathology, which may not be otherwise 
apparent. The development and testing of the generalizability of 
these tools require the use of standardized imaging protocols. By 
organizing such commonality of imaging practices, we have an 
opportunity to utilize this crisis to bring radiology fully into the 
emerging era of computer-assisted objective, quantitative image 
analysis.52

Quantitative lung CT imaging tools
Density and histogram-based disease quantification
The attenuation values of voxels on the lung CT vary between 
−1000 Hounsfield units (HUs) (air), 0 HU (water), and 
+1800 HU (cortical bone) and is related to the tissue character-
istics. Various lung diseases can be objectively measured using 
quantification of voxel attenuation. The image feature to be 
quantified is based on the type of abnormality on the CT image 
(low attenuation area [LAA] vs high attenuation area [HAA]). 
Because the lung is composed essentially of air and tissue with 
just two HU values, the HU value of a voxel allows one to deter-
mine the percent air and percent “tissue” (blood, tissue, and 
extracellular fluid).53,54 As regional inflammation progresses, 
voxel “tissue” volume increases. Thus, short-term (weeks or 
months) longitudinal changes in tissue volume can serve as 
an index of progression or regression of inflammation, since it 
would not be expected that actual parenchymal volume would 
change acutely. Emphysema quantification is performed by 
measuring the LAAs. Initially, for emphysema quantification, a 
cut-off HU unit value of −910 HU was suggested (areas having 
an attenuation of −910 HU or less characterized as emphy-
sema).55 It has now been demonstrated that the cut-off value of 

−950 correlates better with the pathological finding of emphy-
sema,56,57 while −910 HU58 captured emphysema at earlier stages 
of the pathology. Other studies suggest that a threshold of −960 
or −970 HU can be used59,60; the differentiation between these 
thresholds is mostly immaterial.61 One needs to remain consis-
tent, and −950 HU for advanced disease and −910 HU for early 
disease processes remain widely accepted.62,63 CT has been used 
to identify the COPD phenotypes which were not identifiable 
by the diagnostic standard PFT. COPD phenotypes identifiable 
by CT are also demonstrated to have similar clinical symptoms 
and prognosis,63,64 and the presence of emphysema-like voxels 
in subjects with normal PFTs has been found to be a predictor 
of future PFT changes. When quantified, the degree of emphy-
sema is associated with poor exercise capacity,63 have poor 
overall health-status,65 and higher mortality.66 Identification of 
COPD phenotypes have also allowed management of individuals 
based on patterns of disease that are only identifiable by CT.67 
While attenuation values of less than −950 HU helps to quantify 
emphysema, quantification of the lung density voxel histogram 
has been demonstrated to characterize fibrotic lung processes68 
and areas with attenuation between −250 and −600 (HAAs) has 
been used to identify fibrotic-like lung.69 Because normal lung 
has some voxels below −950 HU and voxels between −250 and 
−600 HU, large population-based studies have been used to 
establish normative equations taking into account sex, age, race, 
scanner make and model etc. to provide a threshold above which 
one can consider an individual as having the presence of emphy-
sema or fibrosis.21,70 This has been extensively studied in the 
context of interstitial lung diseases, where the HAA corresponds 
to the areas of inflammation and fibrotic lung processes.71–73 
These HAA are also shown to correlate with worse patient health 
status and poor outcomes.71,72,74,75 In the MESA Lung study,73 
subjects with HAA areas on CT were found to have higher serum 
inflammatory markers, poor respiratory function, and increased 
overall mortality. However, due to physiological changes in the 
lungs with inspiration and expiration, adherence to a standard 
imaging protocol is imperative to allow disease quantification 
and prevent errors due to variability in interpretation by the 
radiologists. Studies have shown that submaximal inspiration 
leads to an underestimation of emphysema76 and overestimation 
of HAA.

In patients with COVID-19 pneumonia, bilateral patchy periph-
eral ground glass opacity (GGO) and consolidation are typical 
findings.77 These areas are represented by HAAs,78 which have 
been validated for quantification and utility in various studies 
on lung diseases, especially interstitial pulmonary fibrosis. HAA 
can be quantified using a density- or histogram-based technique 
with a threshold of −250 to −600 HU (Figure 1, middle column). 
As in other lung diseases, disease quantification may allow objec-
tive determination of disease severity, better patient prognostica-
tion, and can also help with patient management. This tool can 
be used for objective quantification of the disease and can also 
help in finding cut-offs for disease severity on imaging that can 
complement clinical assessment to triage patients for care strat-
egies during the current pandemic and in the future. Some early 
studies using density-based disease quantification have shown 
promise. In a single-center study of 262 patients with COVID-19 
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Figure 1. Conventional CT (first row), lung density (second row), and 3D AMFM Texture (third row) quantification in four patients 
with COVID-19 pneumonia. Patient 1: 67-year-old female with conventional CT (a) demonstrating posterior bilateral lower lobe 
mixed GGO and interstitial thickening. Density analysis (b) demonstrating HAAs (orange color) which was quantified as 14%. 
3D AMFM Texture analysis (c) demonstrating abnormal lung (green color = GGO; blue color = GGO with reticular thickening) 
which was quantified as 27% (GGO,16%; GGO with reticular thickening, 11%). Patient 2: 46-year-female with conventional CT (d) 
demonstrating left more than right high-attenuation posterior GGO. Density analysis (e) underestimated the disease (quantified 
as 8%) because of relatively high attenuation in the central portion of the abnormality (black arrow). However, 3D AMFM Texture 
analysis (f) quantified the entire extent of disease, characterized it as predominantly GGO (green, 15%) with intermixed areas of 
interstitial thickening (blue, 3%), and also highlighted certain areas in the right lung (white arrow) that did not have identifiable 
disease on conventional CT. Patient 3: Adult male patient with COVID-19 pneumonia, conventional CT (g) demonstrating exten-
sive bilateral disease with intermixed areas of GGO and interstitial thickening. Density analysis (h) showing HAA (orange color) 
quantified as 46% and 3D AMFM Texture analysis (i) quantifying the amount of GGO (green color, 31%) and mixed GGO and 
interstitial thickening (Blue, 35%). Patient 4: Conventional CT (j) demonstrating bilateral lower lobe GGO intermixed with areas 
of interstitial thickening with disease more in left. No abnormality is appreciated in the anterior lung on conventional CT. Density 
analysis (k) showing HAA (orange, white arrows) quantified as 6% with low attenuation areas in the anterior lung (green color in 
K, black arrows, 5%). 3D AMFM Texture analysis (l) also demonstrated abnormality corresponding to a region of hyperlucency 
(light blue, black arrows, 10%) in the anterior lung with better quantification of disease (GGO 8%, GGO with reticular thickening 
2%) in the posterior lungs as compared to density analysis (white arrows in L). hyperlucent areas, which visually do not appear 
to be emphysematous, (detected as a texture abnormality) are possibly due to microemboli-induced reduction in regional blood 
volume. Despite relatively less lung involvement, this patient had a protracted ICU course and died on Day 25. AMFM, adaptive 
multiplefeature method; GGO, ground glassopacity; HAA, high attenuation area.
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infection,79 the quantification of the compromised lung (defined 
as lung with HU between −500 and +100 HU) showed a signifi-
cant correlation with the need for oxygenation support, intuba-
tion, and in-hospital death. In this study, it was also demonstrated 
that the %compromised lung between 6 and 23% was associated 
with oxygenation therapy, >23% was associated with the need for 
intubation, and the quantification of disease lung had a negative 
correlation with PaO2/FiO2 ratio on arterial blood gas (ABG) 
analysis. In another 79 patient study,80 quantification of lung 
inflammation on CT (cut-off value >14.2%) correlated with 
decreased PaO2/FiO2 ratio based on ABG. In another study with 
236 patients with COVID-19 infection,81 automated density-
based quantification of the well-aerated lung (WAL, defined 
as lung with HU between −950 and −700 HU) was performed. 
A higher percentage of WAL correlated with better clinical 
outcomes, and lower WAL correlated with significantly higher 
odds of ICU admission and death. When quantification of WAL 
from CT was added to the clinical prognostication markers, the 
diagnostic performance of the models significantly improved. 
These early feasibility studies highlight the potential of CT-based 
disease quantification for triage and prognostication of patients 
with COVID-19 pneumonia.

Texture analysis
Computational methods for texture have been developed, and 
their utility has been analyzed in multiple diseases, including 
COPD, ILD, and lung cancer. CT-based texture assessment 
is automated and can help differentiate between normal and 
abnormal lung quantitatively. Furthermore, it can characterize 
and quantify the abnormality into various disease or imaging 
patterns. Texture-based methods make use of dozens of mathe-
matical formulations of grayscale patterns within the CT image, 
and can be used in combination with various forms of supervised 
or unsupervised machine learning to reduce a regional multi-
dimensional set of textures down to several textures serving 
to define a parenchymal classification. Some of the expected 
patterns which AI-based texture software can be trained to 
classify include: normal aerated lung, normal bronchovas-
cular bundles, GGO, mixed ground-glass and reticular disease, 
consolidation, and honeycombing. Quantitative lung CT-based 
texture analysis can be obtained on a two-dimensional (2D) or 
a three-dimensional (3D, isotropic voxels) data set. An earlier 
2D texture-based classification method applied to the lung was 
the adaptive multiple feature method (AMFM), which utilized 
observer assigned classifications to 2D regions of interest 
combined with a Bayesian classifier to convert combinations of 
texture types into a parenchymal descriptor.17,82,83 This form of 
development of automated learning methodology is known as 
‘supervised’ ML. Such a development relies on a standardized 
training set and consistent labeling of the normal and diseased 
lung. The 2D texture analysis was later extended to a more sensi-
tive and specific 3D AMFM method.84,85 CT texture-based anal-
ysis has been shown to identify and differentiate, e.g. normal 
lung, respiratory bronchiolitis, emphysema, and honeycombing. 
There is increasing evidence in support of CT texture-based 
methods for investigating clinical questions. Among studies of 
smoking subjects, 3D AMFM texture-based classification has, 
as an example, been shown to differentiate a non-smoker and 

a smoker lung from a pool of subjects with normal PFT.85 For 
COPD evaluation, various multicenter research studies have 
utilized texture methodologies to objectively characterize paren-
chymal pathologies and correlate them with outcomes.74,86–89 
For interstitial lung diseases, texture-based quantification of 
imaging abnormalities has been shown to be useful to predict 
disease progression among patients with idiopathic pulmonary 
fibrosis.18

In patients with COVID-19 pneumonia, texture analysis can 
differentiate normal from abnormal lung (providing a score 
representing the percentage of the normal lung) by charac-
terizing abnormal lung as various imaging patterns such as 
GGO, mixed GGO/interstitial, and consolidation (Figure  1, 
right column). Of interest, a portion of this patient’s ventral 
lung was labeled by the AMFM as having “emphysema-like” 
features. Visually, the lung did not appear emphysematous, but 
the density measurements fell below −950 HU. It is possible 
that such regions (also observed in other COVID patients) may 
have a reduced regional blood pool related to emerging reports 
of microemboli.90–92 Such examples suggest that CT texture 
analysis in COVID-19 patients may help quantify the imaging 
patterns and potentially explain low arterial oxygenation when 
visual assessments of disease extent fail. These observations may 
help identify distinct disease phenotypes (i.e. lung parenchymal 
disease vs vascular disease). As depicted in Figure 2, both texture 
analysis and density-based methods provide for an objective, 
quantitative assessment of progression or regression of disease. 
As can be seen in both Figure 1 and Figure 2, the density-based 
method misses the inclusion of dense consolidation with attenu-
ations greater than −250 HU. However, if the threshold range is 
expanded to include the consolidation, normal bronchovascular 
bundles are included with the regions of pathology, leading to 
overestimation of the size of diseased regions. This is avoided 
by the use of the texture-based approach. As demonstrated in 
Figure 2, texture can be used to quantify changes in parenchymal 
involvement over time, offering a sensitive quantitative assess-
ment of disease progression, regression, and, thus, response to 
therapy even when such changes are not apparent on subjective 
visual review of images. In this particular example, in addition to 
quantitation of texture types, the change in the non-air volume of 
the lung serves as a measure of changing inflammatory burden.

Summary or topographic multiplanar reformatted 
views
While the review of conventional CT images (axial, sagittal, 
and coronal) is paramount for the diagnosis of lung injury, 
certain advanced image visualization techniques have the 
potential to help with the interpretation and improve the 
turn-around-time in challenging times like this. Topographic 
multiplanar reformatted (tMPR)93 views, (VIDA Diagnostics, 
Coralville, Iowa) provide a comprehensive view of the airway 
tree and associated parenchyma in a single plane. These are 
developed using a tMPR technique that warps and flattens 
non-overlapping airways and their local environment. The 
warped parenchymal display can be further thickened into 
a maximum intensity projection (MIP).94 The tMPR views 
are different from conventional MPR views (commonly 
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generated at imaging workstations) as the tMPR view flat-
tens the airway tree along with associated parenchyma, 
highlighting the association between affected parenchyma 
and the feeding bronchial path. This is not achieved with 
conventional MPR techniques. Unlike the MPR, the tMPR 
view requires a series of automated but complex processing 
steps, including airway segmentation and branching struc-
ture extraction. By capturing mid-coronal as well as left and 
right sagittal views this way, the tMPR views allow the review 
of typical bronchocenteric imaging patterns,77 as well as the 
location of disease in one coronal and two sagittal snapshots 
(Figure 3). Additionally, this technique can be applied to the 
quantification of the disease presence within the individual 
sub lobar segments of the lungs (Figure 4), enabling objective 
metrics related to functional compromise and the means for 

follow-up, with important implications for subphenotyping 
and for the assessment of disease interventions. The tech-
nique thus has the potential to assess the correspondence of 
parenchymal vs airway pathology. Such displays, as has been 
seen with simple MIP or other sliding slab displays,95 may 
also improve the interpretation efficiency, and can be useful 
for rapid evaluation of changes over time using serial scans for 
disease comparison. Unlike other thick or sliding slab views, 
the tMPR view lays out a significant portion of the airway tree 
and its associated parenchyma in a single flattened depiction. 
In Figure 4, note that all of the major segmental airways are 
present within a single coronal view. Similarly, the right or left 
sagittal oriented views demonstrate the full set of right or left 
segmental airways.

Figure 2. 55-year-old male with COVID-19 pneumonia that received imaging at presentation (Day 0), Day 7 of hospitalization, and 
Day 35 of hospitalization. Images generated at initial presentation (Top row, Day 0) along with computed density and texture anal-
ysis demonstrating predominantly posterior bilateral lower lobe disease (HAAs quantified as 13% on density analysis and abnormal 
lung quantified as 24% on texture analysis). The texture analysis characterized the disease as GGO (green, 21%), mixed GGO and 
interstitial (blue, 3.9%), and consolidation (red, 0.1%). Follow-up CT (Middle row, Day 7) obtained due to worsening shortness of 
breath demonstrated minimal disease progression on conventional CT images and density analysis and texture analysis provided 
objective assessments of disease worsening (HAA on density analysis quantified as 18% and abnormal lung quantified as 29% on 
texture analysis). Progression of imaging disease type was also quantified (GGO, green: 22.5%; mixed GGO and interstitial, blue: 
6.3%; and consolidation, red: 0.2%). Another follow-up CT (Bottom row, Day 35) obtained after clinical improvement and prior to 
discharge from the hospital demonstrated complete resolution of disease on conventional images. The density and texture anal-
ysis identified some residual abnormalities (HAA 5% on density analysis and abnormal lung 6% on texture analysis). GGO, ground 
glassopacity; HAA, high attenuation area
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Inspiratory and expiratory imaging for assessment 
of functional small airways disease (fSAD) 
representing regional air trapping
Due to the difficulties of breath-holding at low lung volumes, 
expiratory imaging may not be possible in acutely ill patients. 
However, it offers utility in the post-COVID-19 assessment of 

residual lung damage. Parametric response mapping (PRM)96 
and disease probability map (DPM)97 utilize image registration 
to map inspiratory and expiratory images together. In emphy-
sema, the PRM has been useful to identify the regions of air trap-
ping on full expiration based on density thresholds which, may 
not be identified from an image obtained at full inspiration. The 

Figure 3. tMPR view images of four patients with COVID-19 pneumonia. The tMPR view warps the airway tree such that most 
major subsegmental airway segments reside within a single flattened projection, and associated parenchyma and vasculature are 
similarly warped. Patient 1: Coronal (a) and Sagittal (b, c) images showing multifocal, predominantly peripheral bilateral ground 
glass opacification (white arrows). These images provide comprehensive visualization of airway and overall extent of disease. 
Patient 2: Coronal (d) and sagittal (e, f) images showing bilateral peripheral mixed ground glass opacity and reticular thickening 
(white arrows). The coronal image demonstrates left-sided disease, but the right sagittal image demonstrates posterior lower lobe 
disease as well. Patient 3: Coronal (g) and sagittal (h, i) images demonstrating extensive bilateral upper and lower lobe disease. 
The patient had a protracted course and the imaging was obtained later in the time course. Images show bilateral central bron-
chiectasis (black arrows) and distal bronchiolectasis (white arrow). Patient 4: Coronal (j) and sagittal (k, l) images demonstrate 
multifocal (white arrows) left-side-predominant disease. Review of these three images provide a good appreciation of localization 
and the relationship with the airway paths. tMPR, topographic multiplanar reformatted.
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DPM also uses image matching between full inspiration and full 
expiration to identify hyperinflated regions and regions of fSAD. 
However, the warping function must be used to characterize 
regional volume changes together with the density threshold to 
identify regions of fSAD. In acute respiratory distress syndrome 
(ARDS) and other forms of acute lung injury requiring invasive 

mechanical ventilation, the PRM has been shown to help identify 
regions at increased risk for atelectrauma and ventilator-induced 
lung injury, based on voxels transitioning between high and 
low density during a breath.98 Because of the highly contagious 
nature of COVID-19, and because of the respiratory difficulties 
of acutely ill COVID-19 patients, the use of only an inspiratory 

Figure 4. AI-based delineation of sublobar segments based on regions of influence of the airway branches. Shown here are the 
tMPR views of Patient 1 shown in Figures 1 and 3. Top row coronal (a) and sagittal (c, d) images showing outlines of the sublobar 
segments within the tMPR views. Middle row again shows the coronal (d) and sagittal (e, f) oriented tMPR views highlighting the 
sublobar segments via use of transparent color coding. Bottom row shows tMPR view of a normal subject. The views are thickened 
by use of a maximum intensity projection with regions of the airways protected from overlapping structures. This serves to put the 
airways and vessel branching in context of each other. By labeling the airway segments, we emphasize that the full segmental tree 
has been included within a single, flattened view. AI, artificial intelligence;tMPR, topographic multiplanar reformatted.
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scan is preferred. However, PRM and DPM methodologies, used 
in the early stages of the mild-to-moderate disease or used to 
follow early interventional changes in the more normal lung 
regions, may still provide important quantitative information.

Suggested protocol and imaging guidelines
The development and validation of qCT rely on standardized 
imaging protocols, as various technical factors like voxel size, 
image kernel can affect various parameters. As the CT tech-
nology is evolving, and there are multiple vendors with varying 
nomenclature, having a single universal protocol is not possible. 
However, if there is a similar principle for setting protocols 
which derive similar images between different vendors, quantita-
tive lung imaging, and refined imaging data collection for AI or 
deep learning across vendors becomes possible. The principles 
for low dose qCT include:

1.	 Coaching the patient to full inspiration (total lung 
capacity).

2.	 Non-contrast scanning.
3.	 Use of 3D capable thin slices (to accommodate current 

clinical practices trying to limit the number of slices, 
we recommend 1.25 mm sections with 1 mm slice 
increments).

4.	 A quantitative image reconstruction kernels (avoiding 
sharp kernels which alter the HU at edges of structures 
and accentuate noise). In the case of Siemens, this is a 
Qr 40 or B30f, and for GE and Philips, this is ‘standard 
reconstruction’ algorithm.

5.	 Use of more modern iterative reconstruction algorithms 
(ADMIRE or SAFIRE on Siemens, ASiR-V on GE, iDose 
on Philips).

6.	 Use of the most current dose modulation implementations 
of the various manufacturers.

7.	 A coached full expiration [residual volume (RV) scan, 
if taking advantage of PRM and DPM analysis]. This 
technique has the potential to be relevant for longitudinal 
studies in COVID-19 survivors but may not be possible in 
acutely ill patients.

Table  1 summarize suggested CT imaging protocols for a 
single source and a dual-source Siemens, GE, and Philips 
scanner, respectively, based upon slight modifications to proto-
cols developed for the more recent phases of several ongoing 
NIH-sponsored longitudinal multicenter studies, including 
SPIROMICS,99 MESA Lung,100 and PrecISE.101 Using the 
Siemens SOMATOM Force as the reference scanner, low-dose 
protocols have been established based upon the lowest dose, 
which does not interfere with the targeted airway and paren-
chymal metrics.102,103 The protocol was developed so as to 
achieve a common image noise and spatial resolution across 
scanner types as judged by imaging a modified anthropomorphic 
phantom produced by Kyoto Kagaku104 and inserts for assess-
ment of density and modulation transfer functions produced by 
the Phantom Labs.105 A protocol for a scanner vendor or model 
not mentioned in Table  1 can be made using the above-stated 
principles for qCT lung scanning. Protocols that allow for consis-
tent qCT metrics have been detailed in our previous work,106 but 
a minor difference is suggested in this protocol for COVID-19 to 

ensure integration with the existing clinical workflow. The slice 
thickness suggested is 1 mm (as compared to sub-mm), due to 
the technical challenges associated with a large number of CT 
images for clinical interpretation and storage requirements. 
The qCT metrics detailed in this work have been studied and 
validated on non-contrast images. Hence, if contrast-enhanced 
CT is performed for clinical indications (like rule out pulmo-
nary embolism), the addition of low dose chest CT based on 
the suggested protocols will be useful for post-processing using 
qCT methods. Rapidly increasing literature highlights the clin-
ical potential of qCT applications in COVID-19 pneumonia, and 
reiterates the need for standardization of lung CT imaging, such 
that these efforts can be applied to diverse populations, demo-
graphics, institutions, and scanner models.

Potential of qCT imaging research for COVID-19
Based on extensive data on multiple lung diseases described, early 
feasibility studies on qCT metrics among COVID-19 pneumonia 
patients, and cases shown in this practice and policy document, 
the use of previously validated CT acquisition protocols and qCT 
imaging has great potential for research allowing a better under-
standing of the disease. Quantitative lung CT metrics may have 
a role in identifying individuals that are at a higher risk of lung 
disease progression as compared to individuals that are at lower-
risk and hence can be managed by home care. Other potential 
roles for qCT metrics include better characterization of disease 
phenotype and how treatment may be optimized for individual 
patients. Delineation of bronchocenteric disease patterns and 
their quantification in the sublobar segments using tMPR or 
summary views may enhance diagnosis and disease quantifi-
cation. Due to heterogeneous nature of the COVID-19 disease 
with varied lung affection among patients, there is an ongoing 
debate as to whether distinct clinical phenotypes of COVID-19 
exist based on respiratory compliance107 or CT imaging features, 
or if the lung disease is distributed along a continuum of severity 
similar to ARDS.108,109 Given such wide distributions in the 
severity of the disease, voxel attenuation characteristics on CT 
imaging, ventilatory responsiveness, and time between onset and 
clinical presentation, qCT can play a significant role in assessing 
the response to treatment early and objectively, and help resolve 
such debates. Newly emerging radiomics methods, combined 
with supervised ML, has been considered a next step in line with 
qCT in the field of oncology,110–114 whereby the growing list of 
qCT metrics yield disease insights. Beyond oncology, there are 
a growing number of pulmonary applications that employ ML 
methodologies to qCT-derived metrics to demonstrate patient 
clusters with common clinical characteristics.50,115–123 Use of 
qCT metrics for featurization upstream of ML algorithms has 
the potential to enhance the positive impact of AI on medical 
imaging.

Summary
Imaging in COVID-19 pneumonia is challenging, but auto-
mated qCT can help beyond widely used qualitative subjective 
disease assessment. Quantitative lung imaging applications are 
fast and automated. They can help provide a reproducible objec-
tive assessment. Texture analysis can help to classify and quantify 
the radiological abnormality. Standardized lung CT acquisition 
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is vital to apply qCT algorithms. Based on our experience in the 
role of qCT imaging in multiple other lung diseases, it is very 
likely that objective quantification of COVID-19 pneumonia and 

identification of its imaging phenotypes may have a role in diag-
nosis, patient triage, and predicting outcomes. The clustering of 
patients with common phenotypes and similar clinical outcomes 

Table 1. CT Chest protocols for quantitative lung imaging

 �

Siemens 
Definition 

AS+
Siemens 
FORCE

GE CT750 
HD

GE 
Revolution

Philips 
iCT

Canon 
Genesis

Canon
PrimeSP

Intravenous 
contrast

No No No No No No No

Detector 
configuration 
(number x mm)

128 × 0.6 192 × 0.6 64 × 0.625 128 × 0.625 128 × 0.625 80 × 0.5 80 × 0.5

SOV – – Large body Large body – Large Large

Organ 
characteristic

Thorax
Ensured by 

first selecting a 
Siemens default 

routine adult 
chest protocol

Thorax
Ensured by 

first selecting a 
Siemens default 

routine adult 
chest protocol

– – – – –

Rotation time (s) 0.5 0,025 0.5 0.5 0.5 0.275 0.35

Scanner Pitch 1.0 1.0 0.984 0.992 1.0 Standard Standard

kVp 120 (Automated 
kV control – 

off)

120 
(Automated 
kV control – 

off)

120 120 120 120 120

Tube current 
modulation

Care dose: on Care dose: on AutomA & 
SmartmA: 

On

AutomA & 
SmartmA: On

DoseRight 
On

SureExposure 
On

SureExposure 
On

Quality reference 
mAs – Software v. 
2012B, VA48, and 
VA50

42 36 – – – – –

Quality reference 
mAs – (VB10 & 
VB20)

29 25 – – – – –

Max mA – – 800  �  – 700 700

mA – – – SmartmA 
30–500

– 20–700 20–700

Noise index – – 85 61 – 12.5 12.5

DRI – – – – 8 –  �

Slice thickness x 
interval (mm)

1 × 0.5 1 × 0.5 1 × 0.5 1 × 0.5 1 × 0.5 1 × 0.5 1 × 0.5

Reconstruction 
Kernel

Q30f Qr40 Standard Standard B (Standard) Lung Standard Lung Standard

Iterative 
algorithms

SAFIRE 5 ADMIRE 5 ASiR-V 60% ASiR-V 60% iDose 6 AIDR3De AIDR 3De

Reconstruction 
mode

– – Helical Plus Helical Plus – –  �

Additional filters – – IQ Enhance 
OFF

IQ Enhance OFF – –  �

Approximate 
dose (for a 30 cm 
scan, average-size 
adult)

CTDIvol: 2.46 
mGy

Effective dose: 
1.65 mSv

CTDIvol: 2.21 
mGy

Effective dose: 
1.49 mSv

CTDIvol 
4.87 mGy
Effective 

dose: 3.27 
mSv

CTDIvol: 3.38 
mGy

Effective dose: 
2.27 mSv

CTDIvol: 3.5 
mGy

Effective 
dose: 2.35 

mSv

CTDIvol: 2.4 
mGy

Effective dose: 
1.61 mSv

CTDIvol: 2.4 
mGy

Effective dose: 
1.61 mSv

CTDIvol, volume computed tomography dose index; DRI, dose right index ; SOV, scan field of view.
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may augment treatment decisions and validation of future clin-
ical trials.
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