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Abstract: This study explores the classification potential of a multispectral classification model
for farmland with planting structures of different complexity. Unmanned aerial vehicle (UAV)
remote sensing technology is used to obtain multispectral images of three study areas with low-,
medium-, and high-complexity planting structures, containing three, five, and eight types of crops,
respectively. The feature subsets of three study areas are selected by recursive feature elimination
(RFE). Object-oriented random forest (OB-RF) and object-oriented support vector machine (OB-SVM)
classification models are established for the three study areas. After training the models with the
feature subsets, the classification results are evaluated using a confusion matrix. The OB-RF and
OB-SVM models’ classification accuracies are 97.09% and 99.13%, respectively, for the low-complexity
planting structure. The equivalent values are 92.61% and 99.08% for the medium-complexity planting
structure and 88.99% and 97.21% for the high-complexity planting structure. For farmland with
fragmentary plots and a high-complexity planting structure, as the planting structure complexity
changed from low to high, both models’ overall accuracy levels decreased. The overall accuracy of the
OB-RF model decreased by 8.1%, and that of the OB-SVM model only decreased by 1.92%. OB-SVM
achieves an overall classification accuracy of 97.21%, and a single-crop extraction accuracy of at least
85.65%. Therefore, UAV multispectral remote sensing can be used for classification applications in
highly complex planting structures.

Keywords: UAV; multispectral remote sensing; farmland objects; classification; RF; SVM

1. Introduction

According to statistics published by the United Nations, the world population is
expected to reach about 10 billion in 2050 [1,2]. Population expansion brings new challenges
to the maintenance of food production security. Mastering the area and spatial distribution
of regional crops is the prerequisite for accurately obtaining regional crop yields, and the
rational allocation of regional water resources. However, smallholders or family farms,
which are still prevailing in some developing countries, are responsible for a large share
of the world food production. The scattered farmland and discrete crops of smallholders
make cropland mapping and monitoring more difficult, affecting the accurate estimation
of regional crop yields and the rational allocation of water resources. The emergence
of remote sensing technology has promoted agricultural production and research, from
the traditional stage to the stage of refinement, quantification, and mechanism. High-
quality remote sensing images, especially those of high resolution, can extract feature
information from the ground, making the fine classification and monitoring of ground
details possible [3,4]. Agricultural information at the farmland scale can be directly applied
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to the optimization of cultivation management and the analysis of breeding decisions. It has
further applications compared with the large-scale agricultural monitoring technology used
for macro decision-making [5]. Moreover, the acquisition of farmland-scale agricultural
information places more stringent requirements on image data timeliness and spatial
resolution. At present, the monitoring platform for acquiring crop planting information
on the farmland scale is mainly based on high-resolution satellite remote sensing and
unmanned aerial vehicle (UAV) remote sensing.

Compared with satellite remote sensing, UAV remote sensing is less expensive, offers
more flexible mobility, and has a short operating cycle, thus providing several advantages
in precision agriculture [6–9]. Researchers have focused on the extraction and classification
of single and multiple farmland features, based on UAV remote sensing technology and
remote sensing recognition algorithms, in recent years. Supervised classification is widely
used to achieve high-precision classification results. There are many supervised classifica-
tion algorithms, such as the maximum likelihood, single linkage, Mahalanobis distance,
support vector machines and random forests. Among them, support vector machines
(SVMs) and random forests (RFs) have been widely used in recent years, as they typically
offer superior classification [10–13]. Compared with traditional statistical theory, SVMs
with simple structures and strong generalization ability can solve a large number of small-
sample learning problems [14]. RF uses sample disturbance and attributes disturbance
to achieve good robustness in classification convergence and generalization error [15].
Besides this, deep learning, as an extension of the artificial neural network method, is a
new exciting and effective classification method. However, its high requirement of samples
increases its cost and limits its application in areas lacking samples [16,17].

The extraction of single-crop planting information is mainly realized by appropriate
remote sensing recognition algorithms based on the unique phenological characteristics
of a crop. At present, the extraction of large-scale crops, such as corn, wheat, rice, to-
bacco, and fruit trees, is based on pixel- and object-oriented classification algorithms, and
the classification accuracy can reach more than 90% [18–21]. Liu et al. [22] reported a
classification accuracy of winter wheat planting information that exceeded 93.0%, using
a deep learning algorithm for pixels combined with UAV visible light remote sensing
data. Hall et al. [23] constructed spectral and texture features for maize information from
UAV multispectral remote sensing data, and applied an object-oriented SVM to realize the
extraction of corn planting information with an extraction accuracy of 94.0%. However,
in the case of mixed crops or the intercropping of multiple crops, the fine extraction of
multi-crop information suffers significant interference. It requires more robust recognition
algorithms than single-crop information extraction. Object-oriented image analysis (OBIA)
takes the speckle as the primary processing unit. It considers the spectrum, texture, and
context as input features, effectively solving the “salt and pepper” phenomenon in pixel
classification [24,25]. Scholars have used OBIA to achieve good classification results for
complex planting structures containing between three and five different crops [26–29]. For
example, based on UAV images, OBIA was used to classify five types of crops with an
overall accuracy of 84.7% [30]. Nevertheless, the extraction accuracy of multiple crops is
still insufficient because the similarity of two or more crops is high. Wu et al. [31] used a
portable UAV to obtain light images, and used an object-oriented classification method to
classify rice, lotus root, and vegetables. Their results showed that the mixed classification
of lotus root and vegetable land presented a severe challenge, with a relative error as high
as 193%. Liu et al. [32] used SVM to distinguish corn, wheat, trees, greenhouses, and other
ground features, based on UAV visible images data and digital surface model (DSM) data.
Their results indicated that using only spectral features for classification would lead to
confusion between trees and corn.

In general, the information extraction of single farmland features based on UAV
remote sensing data is relatively mature, and the extraction accuracy is high. However,
there is still some confusion in the classification of many kinds of crops. In addition,
multiple crop classification mainly focuses on three to five different crops, and there have
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been few comparative studies in which the cropping structures have different levels of
complexity. Therefore, this paper describes the use of UAV remote sensing technology
to classify farmland features in study areas with different levels of planting structure
complexity. The aims of this study are as follows: (1) explore the applicability of UAV
multispectral remote sensing recognition algorithms for farmland feature classification
with planting structures that have different degrees of complexity; and (2) analyze the
potential for UAV multispectral remote sensing technology to be used for complex planting
structure extraction.

2. Study Area and Data Preparation
2.1. Overview of the Study Area

The study areas are located in Wuyuan County, part of the Inner Mongolia Au-
tonomous Region of China, which have a typical mid-temperate continental monsoon
climate. The geographic location map of the study areas is shown in Figure 1. The study
areas are arid and receives plenty of sunshine. The annual rainfall is only 130–285 mm, and
the annual total amount of solar radiation is as high as 6424.23 MJ·m−2. The rich water
resources in these area benefit from the Yellow River diversion irrigation system, and can
completely satisfy the needs of local crops. This study considers three areas in Wuyuan
County. Study area 1 (SA1) is in Taerhu (49.99◦N, 107.83◦E), study area 2 (SA2) is in Fuxing
(41.12◦N, 107.96◦E), and study area 3 (SA3) is located in Yindingtu (41.18◦N, 107.84◦E). SA1
contains three types of crops (corn, sunflower, and zucchini), and is selected as a district
with low planting structure complexity. SA2 contains five types of crops (corn, sunflower,
zucchini, hami melon, and pepper), and is selected as a district with medium planting
structure complexity. SA3 contains eight types of crops (sunflower, zucchini, hami melon,
pepper, sapling, watermelon, cherry tomato, and tomato), and is selected as a district with
high planting structure complexity. During the experimental period, the corn was in the
jointing stage, the sunflower was in the budding stage, and the zucchini, hami melon,
pepper, watermelon, cherry tomato, and tomato were all in the fruiting stage.
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2.2. The Collection of UAV Remote Sensing Data

An information collection system based on a UAV (S900, DJI Technology Co., Shen-
zhen, China) was adopted to collect the multispectral remote sensing images. The system
integrated UAV flight control and the corresponding position and orientation system (POS)
data acquisition. It could stably obtain UAV multispectral images without distortion. The
multispectral camera (MicaSense RedEdge-M, MicaSense, Seattle, WA, USA) could obtain
red, green, blue, near-infrared, and red edge band data. Detailed information of the UAV
and multispectral camera is presented in Table 1.



Sensors 2021, 21, 1994 4 of 22

Table 1. Main parameters of the unmanned aerial vehicle (UAV) and camera.

Unmanned Aerial Vehicle (UAV) Camera

Parameters Values Parameters Values

Wheelbase/mm 900 Camera model MicaSense RedEdge-M
Takeoff mass/kg 4.7–8.2 Pixels 1280 × 960

Payload/g 820 Band 5
Endurance time/min 20 Wavelength/nm 400–900

Digital communication distance/km 3 Focal length/mm 5.5
Battery power/(mAh) 16,000 Field of view/(◦) 47.2

Cruising speed/(m·s−1) 5

The spectral characteristics of crops vary significantly under different phenological
periods and light conditions. The UAV remote sensing tests were conducted on 26, 29 July
and 1 August 2020, which had similar meteorological conditions. The meteorological data
obtained from the local weather bureau were the average values from 11 a.m. to 2 p.m.
during the test period (shown in Table 2). The three experimental days were sunny days
with lower wind speed, fewer air pollutants, and higher illuminance, all suitable for UAV
flight operations.

Table 2. Meteorological data of the study areas during the test.

Air
Temperature

(◦C)

Air Humidity
(%)

Illuminance
(1 × 104 lux)

Wind Speed
(m/s)

PM2.5
(µg/m3)

PM10
(µg/m3)

26 July 2020 25.43 67.08 23.28 2.20 15.00 16.50
29 July 2020 28.63 51.98 21.53 1.60 5.00 5.25

1 August 2020 28.65 58.13 23.48 1.50 13.00 14.00

The flight altitude was set to 100 m above the ground, the course overlap was 70%, and
the horizontal overlap was 65%. The RAW format images were exported and converted
to TIFF format using the PixelWrench2 software installed in the camera. The spectral
reflectivity was calculated using ENVI (v. 5.1, Exelis Visual Information Solutions, Boulder,
CO, USA) combined with the standard whiteboard data. The ground control points
(GCPs) are vital in verifying the accuracy of terrain information obtained by UAV. The 3D
coordinates of the GCPs in this study were accurately measured by a real-time kinematic
(RTK) product (Zhonghui i50, CHCNAV, Shanghai, China), which has a high precision of
2 mm. According to the actual terrain conditions and the control point layout principle, six
GCPs were selected in each study area. Among them, three base numbers were used as
calibration points and three even numbers were used as check points. The control points
were set at the intersections of hardened roads. They were easy to distinguish and had
good stability. Images were stitched using Pix4DMapper (v. 3.2, Pix4D, Prilly, Switzerland)
based on the TIFF multispectral images and POS data collected by the UAV remote sensing
system. In this study, 1540 multispectral remote sensing images were obtained from the
three study areas. The data contained grayscale information such as red, blue, green,
near-infrared, and red edge bands, and the spatial resolution was 7 mm. The UAV images’
mosaic results of the study areas are shown in Figure 2.
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2.3. The Collection of Ground Data

During the experiment, we collected the ground distribution data and ground spectral
data of crops. The ground distribution data of crops is the basis for selecting training
samples and verification samples. This can help to evaluate the classification results
visually. Ground spectral data of crops can help us explore the differences in crop spectral
characteristics better, provide a theoretical basis for the classification results, and analyze
the error sources in the classification results effectively.

2.3.1. The Ground Distribution Data of Crops

The types of crops were determined based on field surveys, and the location of each
crop was recorded using portable RTK in units of plots. Combining ground data and UAV
images, the ground crops distribution maps (Figure 3) were drawn.
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Figure 3. The ground crop distribution maps. ((A) the standard ground crop distribution map of
study area 1; (B) the ground crop distribution map of study area 2; (C) the ground crop distribution
map of study area 3).

2.3.2. Crop–Ground Spectral Curves

The crop–ground spectral curves in this study were obtained by FieldSpec Hand
Held (ASD, Westborough, CO, USA) on a sunny day (1 August, 11.00–14.00). The specific
parameters of the FieldSpec Hand Held are shown in Table 3. As shown in Figure 4, the
field experimenters had to wear dark clothes and face the sun when collecting ground
spectral data. First, the optical fiber probe was aligned at the whiteboard for correction,
and then aligned at the vegetation canopy to collect reflectance spectra. Six samples were
randomly selected from each type of crop, and ten spectral curves were measured for each
plant sample, which was arithmetically averaged to obtain the final reflectance spectral
data of the sample.

Table 3. The specific parameters of FieldSpec Hand Held.

Parameters Values

Spectral range 325–1075 nm
Spectral resolution 3.5 nm at 700 nm
Sampling interval 1.6 nm
Integration time 2n × 17 ms for n = 0, 1, . . . , 15

Wavelength accuracy ±1 nm
Noise equivalent radiance 5.0 E–9 W/cm2/nm/sr at 700 nm
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3. Research Procedure and Method

The workflow of planting structure extraction is shown in Figure 5. There are seven
main stages: (1) the acquisition and preprocessing of UAV remote sensing images, including
the construction of the UAV multispectral system, the selection of an aerial photography
path, and the stitching and geometric correction of orthophoto images; (2) the collection of
ground data, including the investigation of the true distribution of crops on the ground and
the collection of crop–ground spectral curves; (3) the selection of training and verification
samples of UAV multispectral images; (4) multiscale segmentation of UAV images; (5) the
extraction of features and the determination of feature subsets, including the extraction of
spectral features and texture features, and the selection of the best feature band based on
recursive feature elimination (RFE); (6) the use of object-oriented RF (OB-RF) and object-
oriented SVM (OB-SVM) classification models to classify farmland crops; (7) the use of
confusion matrices to evaluate and compare the classification accuracy of each model.
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3.1. Sample Selection

The types of crops in the three study areas were determined through field research,
and RTK was used to calibrate each crop’s geographic location. We randomly generated
samples based on the ground standard crop distribution maps (Figure 3). In three study
areas, the reference samples were randomly split into two sets of disjointed training samples
(TS) and validation samples (VS), via the sample-function in R (v. 4.0.3). The selection
results of the samples are shown in Table 4.

Table 4. Number of training and validation samples for each study area.

Study Area 1 Study Area 2 Study Area 3

Crops TS VS Crops TS VS Crops TS VS
Corn 35 15 Corn 33 11 Sunflower 48 17

Sunflower 38 12 Sunflower 40 15 Zucchini 32 12
Zucchini 40 17 Zucchini 42 15 Hami melon 12 5
Bare land 20 8 Hami melon 25 8 Pepper 21 9

Pepper 27 9 Sapling 12 6
Bare land 18 6 Watermelon 14 6

Cherry tomato 23 8
Tomato 30 11

Bare land 25 9

3.2. Construction and Screening of Feature Parameters
3.2.1. Construction of Spectral Features and Texture Features

Vegetation indices can magnify the spectral information between ground objects, and
are one of the simplest and most effective methods of studying vegetation characteristics. In
this study, eight common vegetation indices were obtained from band calculations (shown
in Table 5): the normalized difference vegetation index (NDVI) [33], the ratio vegetation
index (RVI) [34], the difference vegetation index (DVI) [35], excess green (EXG) [36], the
visible-band difference vegetation index (VDVI) [37], the normalized green–blue difference
index (NGBDI) [38], the normalized green–red difference index (NGRDI) [39], and the
Woebbecke index (WI) [40]. Texture features can reflect the characteristics of homogeneity
in the images, and are unaffected by image color and image brightness The common texture
features include the mean, variance, synergy, contrast, dissimilarity, information entropy,
second moment, and correlation. This study obtained 40 texture features of crops in five
bands (red, green, blue, near-infrared, red edge) by applying co-occurrence measures,
which calculated texture values using the grey tone spatial dependence matrix. This
process was implemented in ENVI 5.1 (Exelis Visual Information Solutions, Boulder, CO,
USA). In addition, the size of the filtering window was 3×3, which was the default value
in ENVI.

Table 5. Common vegetation indices.

Vegetation Indices Full Name Formula

NDVI Normalized difference
vegetation index (ρNIR − ρR)/(ρNIR + ρR)

RVI Ratio vegetation index ρNIR/ρR
DVI Difference vegetation index ρNIR − ρR
ExG Excess green 2ρNIR − ρR − ρB

VDVI Visible-band difference
vegetation index (2ρG − ρR − ρB)/(2ρG + ρR + ρB)

NGBDI Normalized green-blue
difference index (ρG − ρB)/(ρG + ρB)

NGRDI Normalized green-red
difference index (ρG − ρR)/(ρG + ρR)

WI Woebbecke index (ρG − ρB)/(ρR − ρG)
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3.2.2. Screening of Characteristic Parameters

To improve the operation speed and prediction accuracy of the model and avoid
overfitting, the feature parameters of the images were screened to eliminate features that
had a low correlation with the model prediction. Recursive feature elimination (RFE) is an
efficient algorithm that combines classifiers to find the optimal feature subset [41]. It creates
the model repeatedly, and retains the best features or removes the worst features in each
iteration. In subsequent iterations, it uses features that were not selected in the previous
model to create the next model until all features are exhausted. Finally, RFE ranks the
features according to the order in which they were retained or removed, and selects the best
subset. This study performed feature optimization based on the RFE module in scikit-learn,
a free software machine learning library basing the Python programming language. The RF
classifier was used to evaluate the RFE model, and ten-fold cross-validation was adopted
to evaluate the model parameters’ accuracy.

RFE was used to screen features in five spectral bands, seven vegetation indices, and
40 texture features. The importance rankings of the features are shown in Tables A1–A3.
The characteristics ranked first, second, third (and so on) in their corresponding feature
sets were denoted as B1, B2, B3 (and so on). The feature parameters were accumulated
one by one as per the importance rankings of the feature parameters, and the images
were pre-classified based on the accumulated feature subset. The classification accuracy
is shown in Figures A1–A3. According to the importance rankings of all features and the
pre-classification results in Figures A1–A3, the feature subset was then constructed by
retaining the features that contributed significantly to the classification, and eliminating
the features that contributed little or were useless. The final filtering results are presented
in Table 6.

Table 6. List of screening results of feature subsets.

Feature Types Feature Subset

SA1
Multispectral bands Red-band; Blue-band
Vegetation indices VDVI; ExG

Texture features Red-mean; Green-mean; Blue-mean; Red-correlation;
Green-homogeneity; Blue-correlation; NIR-correlation

SA2
Multispectral bands Red-band; Green-band; Blue-band; NIR; Red-edge
Vegetation indices NGBDI; ExG; RVI;

Texture features
Blue-contrast; Blue-entropy; Blue-homogeneity;

Green-dissimilarity; Red-second-moment;
NIR-dissimilarity

SA3
Multispectral bands Red-band; Green-band; Blue-band; NIR; Red-edge
Vegetation indices NGBDI; RVI; DVI; NGRDI

Texture features Red-homogeneity; Green-homogeneity; Blue-dissimilarity;
Red- correlation

3.3. Multiresolution Segmentation

OBIA makes full use of the spatial, textural, contextual, and other geometric features
and structure information of remote sensing images. It is superior to pixel-oriented analysis
for crop extraction because it efficiently solves the problems of “same substance with a
different spectrum”, “same spectrum with a foreign substance” and the “salt and pepper
effect” [24]. OBIA uses an iterative algorithm to segment remote sensing images into
uniform and continuous image objects. OBIA mainly has two independent modules:
object generation and image information extraction. A good segmentation effect is the
prerequisite to achieving excellent classification results [25]. Generally, the ground feature
information is complex and mixed, making it challenging to obtain an ideal segmentation
effect using a single-scale segmentation method. Therefore, multiresolution segmentation is
commonly adopted for land use information extraction. This method creates image polygon
objects with arbitrary scales and similar attribute information. Through multiresolution
segmentation, adjacent similar pixels gather to form objects, and the classifier uses these
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homogeneous objects as the basic processing units to extract information from images. In
this study, remote sensing images were first segmented into image objects with different
scales, based on the multiscale segmentation method. Then, target crop extraction was
accomplished using spectral and textural features of the objects. The data processing was
carried out by eCognition Developer (v. 9.2.1, Trimble Geospatial). The segmentation
parameters were adjusted through multiple segmentation experiments based on expert
knowledge. The principle of hyper-parameter selection was that the segmentation effect
best fits the ridge line. The segmentation parameters were adjusted many times to ensure
optimal values during the multiscale segmentation. The optimal segmentation parameters
for remote sensing images were determined to be as follows: the segmentation scale was
set to 200, the shape weight was set to 0.2, and the compactness weight was set to 0.5
through segmentation experiments. The final segmentation results are shown in Figure 6.
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3.4. Classification Methods
3.4.1. RF

RF is a nonparametric machine learning algorithm composed of multiple decision
trees. This algorithm has high prediction accuracy, good tolerance to outliers and noise, a
wide range of applications, and cannot easily be overfitted [42]. According to statistical
learning theory, RF uses the bootstrap resampling method to extract multiple samples
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from the original data, and then performs decision tree modeling for each sample. The
prediction results from various decision trees are synthesized, and finally, a random forest
with a mass of classification trees is constructed [43]. Two parameters need to be defined
to generate prediction models: the number of expected classification trees (ntree) and the
number of features extracted when nodes are split (mtry). The implementation of the RF
model in this study was based on the Random Forest module in scikit-learn, based on the
Python programming language. It was found that setting the ntree to 50 produced an error
that gradually converged and tended to be stable, while mtry was set to the square root of
the total number of features.

3.4.2. SVM

SVM is based on the Vapnik–Chervonenkis dimension theory of statistical learning and
the principle of minimum structural risk. It is often used to solve small-sample, nonlinear,
and high-dimensional pattern recognition problems [44]. Under the condition of limited
sample information, SVM provides a good balance between the complexity and learning
of the model, and has a good generalization ability. The common kernel functions in the
SVM algorithm are linear, polynomial, radial basis, and sigmoid kernel functions. The
radial basis kernel function is the most widely used as it has fewer parameters and better
performance than the others, regardless of the number of samples [45]. The implementation
of the SVM model in this study was based on the support vector machines module in
scikit-learn based on the Python programming language.

3.5. Classification Accuracy Assessment

Based on the verification sample data, a confusion matrix was used to calculate the
user accuracy (UA), production accuracy (PA), extraction accuracy (F), overall accuracy
(OA), and Kappa coefficient. UA and PA can be used to evaluate misclassification and
omission errors quantitatively, and the overall accuracy and the Kappa coefficient (K)
are commonly used to evaluate the overall classification effect. Besides this, F is used to
evaluate the extraction accuracy of all kinds of ground objects under various methods.

P0 = Tc/Ac

where P0 represents the overall classification accuracy, Tc represents the number of pixels
correctly classified by method c, and Ac represents the total number of pixels classified by
method c.

K =
Po − Pe

1 − Pe
, Pe =

a1 × b1 + a2 × b2 + · · ·+ ac × bc

n × n

where P0 represents the overall classification accuracy, assuming that the true number of
samples of each category is a1, a2, · · · , ac, the predicted number of samples of each category
is b1, b2, · · · , bc, and the total number of samples is n.

F =
2PAmUAm

PAm + UAm
× 100%

where F represents the extraction precision, PAm represents the production accuracy of
category m, and UAm represents the user precision of category m.

4. Results

The crop planting information in three study areas with different planting complexities
was extracted using OB-RF and OB-SVM (Figures 7 and 8), based on the multispectral
remote sensing images obtained by the UAV in the three study areas. The confusion matrix
was used to evaluate the accuracy of the classification results. It assumed that pixels at
the reference locations could be assigned to single classes, and accuracy measures based
on the proportion of area correctly classified were then calculated from the number of
correctly classified pixels [46]. The accuracy evaluation results are presented in Tables 7–9.



Sensors 2021, 21, 1994 12 of 22

In SA1, both OB-RF and OB-SVM achieved good classification results, with an overall
accuracy greater than 97% and an extraction accuracy for every crop greater than 92%.
The accuracy of SA2 was slightly lower, but the overall accuracy was still above 92%. The
extraction accuracy of the OB-RF model for pepper and hami melon was low (84.86% for
pepper, 75.65% for Hami melon), while the extraction accuracy of the OB-SVM model
for all crops remained at a high level (extraction accuracy greater than 94%). In SA3,
the overall accuracy and extraction accuracy based on the OB-SVM model remained
high (overall accuracy of 97.21%, extraction accuracy greater than 85.65%). However, the
overall accuracy and extraction accuracy given by the OB-RF model decreased significantly.
Among all study areas, corn had the highest extraction accuracy, and saplings had the
lowest extraction accuracy.
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Figure 7. Classification results of OB-RF model. ((A) classification result of OB-RF model in study
area 1; (B) classificaTable 2. (C) classification result of OB-RF model in study area 3). Note: OB-RF
stands for Object-oriented random forest classification model.
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Figure 8. Classification results of OB-SVM model. ((A) classification result of OB-SVM model in study
area 1; (B), classification result of OB-SVM model in study area 2; (C) classification result of OB-SVM
model in study area 3). Note: OB-SVM stands for support vector machine classification model.

Table 7. Accuracy evaluation of classification results for SA1.

Methods
Accuracy (%)

Objects
Zucchini Corn Sunflower

Bare
Land

OB-RF

PA 98.31 100.00 95.19 98.01
UA 90.90 99.83 99.30 93.98
F 94.46 99.91 97.20 95.95

Overall accuracy = 97.09%, Kappa = 0.95

OB-SVM

PA 99.41 99.87 99.87 87.50
UA 99.37 98.99 99.10 98.32
F 99.39 99.43 99.48 92.59

Overall accuracy = 99.13%, Kappa = 0.99

Note: OB-RF stands for Object-oriented random forest classification model. OB-SVM stands for support vector machine classification model.
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Table 8. Accuracy evaluation of classification results for SA2.

Methods
Accuracy (%)

Objects
Zucchini Corn Sunflower Bare Land Pepper Hami Melon

OB-RF

PA 84.37 99.62 99.53 92.63 99.12 86.11
UA 99.68 98.93 99.94 98.43 73.85 67.45

F 91.39 99.27 99.73 95.44 84.86 75.65
Overall accuracy = 92.61%, Kappa = 0.90

OB-SVM

PA 99.74 99.69 99.57 91.07 96.48 99.51
UA 99.40 97.61 99.41 98.87 98.53 99.29

F 99.57 98.64 99.49 94.81 97.49 99.40
Overall accuracy = 99.08%, Kappa = 0.99

Table 9. Accuracy evaluation of classification results for SA3.

Methods

Accuracy (%)

Objects
Zucchini Sunflower

Bare
Land Pepper

Hami
Melon Watermelon Tomato

Cherry
Tomato Sapling

OB-
RF

PA 93.33 90.55 91.77 89.01 98.35 100.00 99.94 72.04 26.67
UA 88.12 95.39 89.32 79.41 80.32 88.24 85.69 98.85 72.73

F 90.65 92.91 90.53 83.94 88.43 93.75 92.27 83.34 39.03
overall accuracy = 88.99%, Kappa = 0.86

OB-
SVM

PA 98.87 99.15 92.07 93.59 98.35 100.00 99.94 91.84 84.22
UA 99.98 99.68 94.08 94.19 80.32 98.47 91.51 98.82 87.13

F 99.42 99.41 93.06 93.89 88.43 99.23 95.54 95.20 85.65
Overall accuracy = 97.21%, Kappa = 0.97

5. Discussion
5.1. Classification Error Analysis

By comparing the classification results obtained by OB-SVM and OB-RF (Figures 7 and 8)
with the standard crops distribution map obtained through field investigation (Figure 3),
classification error detail maps (Figure 9) were made. In SA1, the primary source of error
was the mixed classification of zucchini and sunflower. In SA2, the primary source of error
was the mixed fraction of cantaloupe and zucchini, and the mixed fraction of pepper and
cantaloupe. In SA3, the primary source of error was the mixed fraction of hami melon and
cherry tomato, the mixed fraction of pepper and cherry tomato, and the mixed fraction of
zucchini and sunflower. In general, there are mainly five crops that are easy to mix: hami
melon, pepper, zucchini, cherry tomato, and sunflower. In order to explore the reasons
for crop mixing, we analyzed the spectral curves of five easily mixed crops. The spectral
curves of five crops with a high mixing frequency (sunflower, cherry tomato, pepper, hami
melon, and zucchini) are shown in Figure 9. In the spectral range 400–900 nm, the spectral
reflectance of five easily confused crops is stable in the near-infrared band range from
770 to 800 nm, where the difference is most apparent. Additionally, there are apparent
reflection peaks in the green band from 540 to 560 nm, and some differences in the height
of reflection peaks of different crops. However, for both 770–800 nm and 540–560 nm,
the six spectral curves of Hami melon overlap with pepper and zucchini, which is one of
the reasons why Hami melon is easily confused with pepper and zucchini. In addition,
Hami melon, pepper, and zucchini are all grown by strip cultivation in the study areas,
and were in the same phenological period (fruit setting) when the experimental images
were obtained, which weakens the differences in their texture features.
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Figure 9. Classification error map of OB-RF and OB-SVM in study areas. ((A) classification error map
of OB-RF in study area 1; (B) classification error map of OB-SVM in study area 1; (C) classification
error map of OB-RF in study area 2; (D) classification error map of OB-SVM in study area 2; (E),
classification error map of OB-RF in study area 3; (F) classification error map of OB-SVM in study
area 3).
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Interestingly, although the reflectance of cherry tomato is obviously higher than that
of Hami melon, and the reflectance of sunflower is obviously higher than that of zucchini in
the near-infrared band of 770–800 nm, there are mixed fractions of Hami melon and cherry
tomato, and mixed fractions of sunflower and zucchini, in SA3. One possible explanation
is that the cherry tomato and sunflower are densely planted in the study area, with many
overlapping leaves. Compared with single-leaf plants, multiple leaves can produce higher
reflectivity in the near-infrared band due to additional reflectivity [47]. Therefore, cherry
tomato and sunflower have a higher reflectivity than other crops in the near-infrared band.
However, in Figure 10, the cherry tomato blossom in area m and the sunflower in area n
grow poorly and are sparsely planted, decreasing their reflectivity in the green band of
540–560 nm and the near-infrared band of 770–800 nm. Thus, the difference between them
is decreased. Moreover, Hami melon and cherry tomato are vine plants, which have similar
textural features. The big leaves of sunflower and zucchini also weaken the differences in
their respective textural features.
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5.2. Model Performance under Different Planting Structure Complexity

The classification results for the three study areas were produced using the OB-RF and
OB-SVM models. The overall accuracy values of SA1 given by OB-RF and OB-SVM are
97.085% and 99.126%, respectively. For SA2, the overall accuracy values are 92.610% and
99.078%, respectively, and for SA3 they are 88.994% and 97.207%, respectively. These results
indicate that the OB-RF and OB-SVM classification accuracies decrease as the complexity
of the planting structure increases. In particular, OB-RF’s overall accuracy decreased by
8.1%, while that of OB-SVM only decreased by 1.9%. In general, the advantage of OB-
SVM’s classification accuracy becomes more prominent as the number of ground features
increases. From the differences in the extraction accuracies of the different methods, OB-
SVM’s extraction accuracy was obviously better than that of OB-RF in SA3.

The occurrence of classification errors in this study is related to the sample size
limitation, such as for the saplings and Hami melon in SA3. Comparing area j with area o,
and area m with area q, in Figure 10, it is clear that the classification error of OB-SVM is
smaller than that of OB-RF in small sample areas. As a representative ensemble learning
algorithm, the RF classifier achieved good results in the automatic extraction of remote
sensing information [42,43]. However, the RF classifier is better suited to large samples
and high-dimensional data, and thus requires a sufficient number of samples [44]. The
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SVM classifier specializes in analyzing small numbers of samples [39,45]. In this study, the
number of features in the three test areas gradually increased, and the number of available
training samples was minimal as the plots became more fragmented. The learning ability
of the classifier from the training samples under this situation directly determined the
accuracy of the classification results. Therefore, the classification accuracy of the OB-SVM
method was superior to that of OB-RF in this study, because of the high sensitivity of
the SVM classifier to the samples. These results indicate that the OB-SVM method is
more suitable for the classification of crops in fragmented areas with highly complex
planting structures.

5.3. Classification Potential of UAV Multispectral Remote Sensing Technology under Complex
Planting Structures

The OB-SVM model achieved superior classification performance in extracting crop
information in areas with low-, medium-, and high-complexity planting structures, based
on UAV multispectral remote sensing. The overall accuracies of the three study areas were
99.13%, 99.08%, and 97.21%, and the extraction accuracy values were better than 92.59%,
94.81%, and 85.65%. As the planting structure complexity increased, the classification
accuracy and extraction accuracy decreased, but the overall accuracy was only reduced by
1.92%. Using UAV visible light images, Park et al. [30] applied an object-oriented method
to classify cabbage and radish, and obtained an accuracy of 84.7%. The overall accuracy
reached 97.21%, even under a complex classification environment with eight different crops
in this study. Chen et al. [48] pointed out that UAV visible light images led to lower inter-
pretation accuracy than multispectral images in agricultural land classification. In addition,
Ishida et al. [49] used UAV hyperspectral remote sensing technology to classify 14 ground
objects with an overall accuracy of 94.00%, and compared with this, the classification results
in this paper were not inferior.

It can be seen from the spectral curve of ground objects (Figure 9) that the most
remarkable difference in the reflectivity of each crop was in the near-infrared band, which
made a significant contribution to the classification. Additionally, the importance ranking of
the multispectral bands (Table A1) suggests that the near-infrared band played an essential
role in the classification results of each study area (importance ranked third, first and
second for SA1, SA2, and SA3, respectively). The vegetation indices (DVI and RVI) obtained
using the near-infrared band as the input variable, and the texture features obtained from
the second-order matrix probability operation (near-infrared coordination, near-infrared
information entropy, near-infrared correlation, near-infrared contrast, and near-infrared
heterogeneity), also played essential roles in the classification results (Tables A2 and A3).
Thus, it can be concluded that the near-infrared band provides essential features that
improve the extraction accuracy of the planting structure, and enable the fine classification
of crops. This is the main advantage of multispectral remote sensing compared with
visible light remote sensing. Besides this, multispectral remote sensing’s high price limits
its applicability to agricultural production, although UAV hyperspectral remote sensing
offers a higher spectral resolution than multispectral remote sensing. Indeed, multispectral
remote sensing satisfies the requirements as far as crop classification is concerned. In
general, multispectral remote sensing technology has a higher spectral resolution than
visible light, and has higher cost performance than hyperspectral remote sensing. Thus, it
offers a wider range of applications for the fine classification of farmland features under
highly complex planting structures.

Based on UAV multispectral remote sensing images as data, we used the OB-SVM
and OB-RF models to extract crops in areas with highly complex planting structures. We
verified the application potential of this method in the extraction of complex planting
structures. The conclusions can provide new ideas for obtaining accurate crop distribution
maps in areas with complex planting structures, and technical support for stabilizing food
security and protecting water resources.
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6. Conclusions

This study has described the analysis and classification of multispectral images using
UAV remote sensing technology. RFE was used to screen the spectral features and texture
features of crops in the images, allowing the feature subsets of three study areas to be suc-
cessfully constructed. The OB-RF and OB-SVM models were used for the fine classification
of crops based on the above procedures. Field observations and visual interpretation were
used to evaluate the accuracy of the classification results through the confusion matrix
method. The main conclusions of this study are as follows:

(1) The OB-SVM model’s classification accuracy in areas with low-, medium-, and high-
complexity planting structures was respectively 1.99%, 4.60%, and 8.22% higher
than that of the OB-RF model. As the planting structure complexity increased, the
classification advantages of the OB-SVM model became more evident. This indicates
that the OB-SVM model offers higher classification accuracy under land fragmentation
and highly complex planting structures, and is more suitable for the fine classification
of farmland features with highly complex agricultural planting patterns;

(2) Based on UAV multispectral remote sensing technology and the OB-SVM classifi-
cation model, the overall accuracy of the study areas with low, medium, and high
complexity were as high as 99.13%, 99.08%, and 97.21%, respectively. The extraction
accuracy of each crop was at least 92.59%, 94.81% and 85.65% in the three study areas,
respectively. As the planting structure complexity increased from low to high, the clas-
sification accuracy and extraction accuracy decreased, but the overall accuracy only
decreased by 1.92%. Therefore, UAV multispectral remote sensing technology has
vast application potential for the fine classification of farmland features under highly
complex planting structures. The conclusions can provide new ideas for accurately
obtaining crop distribution maps in areas with complex planting structures, and then
provide technical support for protecting food security and the rational allocation of
water resources.
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Appendix A

Table A1. The importance ranking of the multispectral bands.

Multispectral Bands B1 B2 B3 B4 B5

SA1 Red band Blue band NIR Green band Red edge
SA2 NIR Red edge Green band Red band Blue band
SA3 Blue band NIR Red band Red edge Green band
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Table A2. The importance ranking of the vegetation indices.

Vegetation Indices B1 B2 B3 B4 B5 B6 B7

SA1 VDVI ExG DVI RVI NGBDI NDVI NGRDI
SA2 NGBDI ExG DVI RVI NGRDI NDVI VDVI
SA3 NGBDI RVI NDVI ExG DVI VDVI NGRDI

Table A3. The importance ranking of the texture features.

Texture Features SA1 SA2 SA3

B1 Red mean Red contrast Red homogeneity
B2 Green mean Blue entropy Green homogeneity
B3 Blue mean Blue homogeneity Blue dissimilarity
B4 Red correlation Green dissimilarity Red correlation
B5 Green homogeneity Red second moment Red contrast
B6 Blue correlation Near-infrared dissimilarity Near-infrared contrast
B7 Near-infrared homogeneity Near-infrared correlation Near-infrared homogeneity
B8 Near-infrared entropy Blue correlation Blue correlation
B9 Red variance Red dissimilarity Red variance

B10 Green dissimilarity Red entropy Green correlation
B11 Blue entropy Red-edge second moment Near-infrared second moment
B12 Green entropy Green homogeneity Red-edge second moment
B13 Green second moment Green correlation Green dissimilarity
B14 Red-edge mean Red-edge dissimilarity Near-infrared contrast
B15 Red-edge homogeneity Red-edge homogeneity Red-edge homogeneity
B16 Near-infrared variance Blue dissimilarity Near-infrared dissimilarity
B17 Red contrast Red variance Red mean
B18 Blue variance Green entropy Green second moment
B19 Near-infrared contrast Near-infrared variance Near-infrared mean
B20 Green correlation Red correlation Green contrast
B21 Green contrast Blue mean Green mean
B22 Red dissimilarity Blue second moment Near-infrared entropy
B23 Red-edge variance Near-infrared mean Near-infrared correlation
B24 Near-infrared second moment Near-infrared homogeneity Blue mean
B25 Red homogeneity Red mean Red entropy
B26 Red entropy Green contrast Blue entropy
B27 Near-infrared dissimilarity Red variance Near-infrared variance
B28 Red second moment Green mean Green variance
B29 Green variance Blue variance Blue homogeneity
B30 Red-edge contrast Red-edge contrast Red-edge second moment
B31 Red entropy Red-edge second moment Red-edge correlation
B32 Near-infrared mean Near-infrared entropy Blue variance
B33 Red dissimilarity Red homogeneity Red dissimilarity
B34 Red contrast Blue contrast Near-infrared variance
B35 Near-infrared correlation Near-infrared contrast Red-edge homogeneity
B36 Blue homogeneity Green second moment Green entropy
B37 Blue dissimilarity Green mean Blue contrast
B38 Red-edge second moment Red-edge correlation Red-edge dissimilarity
B39 Red-edge correlation Red-edge entropy Red-edge entropy
B40 Blue second moment Red-edge mean Blue entropy
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