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Abstract

The insular cortex and anterior cingulate cortex together comprise the salience or

midcingulo-insular network, involved in detecting salient events and initiating control

signals to mediate brain network dynamics. The extent to which functional coupling

between the salience network and the rest of the brain undergoes changes due to

development and aging is at present largely unexplored. Here, we examine dynamic

functional connectivity (dFC) of the salience network in a large life span sample

(n = 601; 6–85 years old). A sliding-window analysis and k-means clustering revealed

five states of dFC formed with the salience network, characterized by either wide-

spread asynchrony or different patterns of synchrony between the salience network

and other brain regions. We determined the frequency, dwell time, total transitions,

and specific state-to-state transitions for each state and subject, regressing the met-

rics with subjects' age to identify life span trends. A dynamic state characterized by

low connectivity between the salience network and the rest of the brain had a strong

positive quadratic relationship between age and both frequency and dwell time.

Additional frequency, dwell time, total transitions, and state-to-state transition trends

were observed with other salience network states. Our results highlight the metasta-

ble dynamics of the salience network and its role in the maturation of brain regions

critical for cognition.
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1 | INTRODUCTION

The salience or midcingulo-insular network, with key nodes in the

anterior insula (AI) and anterior cingulate cortex (ACC), is known for

its role in directing attention to relevant or “salient” stimuli and is

widely implicated in cognitive and affective processing (Uddin, 2015).

The connections between the insula and other brain regions enable

salience network functions, such as connections with frontal brain

regions facilitating higher-order cognition (Deen, Pitskel, &

Pelphrey, 2011; Uddin, Nomi, Hébert-Seropian, Ghaziri, & Boucher,

2017). Meta-analyses have demonstrated that the dorsal AI (dAI) in

particular is active during a variety of high-level cognitive tasks (Kurth,

Zilles, Fox, Laird, & Eickhoff, 2010; Uddin et al., 2017; Uddin,

Kinnison, Pessoa, & Anderson, 2014; Yeo et al., 2015). The dAI and

ACC will therefore be useful candidate regions to investigate the neu-

ral correlates of cognitive maturation. Although previous neuroimag-

ing studies have identified the static (e.g., Fair et al., 2007; Uddin,

Supekar, Ryali, & Menon, 2011) and dynamic (Nomi et al., 2016)
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functional connections of the dAI and ACC in child and adult

populations, the life span trajectories of dynamic properties for these

functional connections are still unclear.

Functional magnetic resonance imaging (fMRI) can characterize

life span trajectories of large-scale brain function using metrics like

static and dynamic functional connectivity (dFC). In general, functional

connectivity indexes the synchrony, coherence, or correlation of the

blood-oxygen level-dependent (BOLD) signal between brain regions

(Friston, 1994). Observable in resting-state fMRI data, the functional

connections present in the brain reflect the intrinsic organization of

brain networks that are also employed during active cognitive and

behavioral states (Smith et al., 2009). Static functional connectivity

can describe the average synchrony between brain regions by corre-

lating their respective BOLD signals over the duration of a full fMRI

scan. dFC can identify more transient fluctuations of functional con-

nectivity that are often masked by static connectivity methods. For

example, by splitting the fMRI scan into subsets, or “sliding windows”
(Allen et al., 2014), changes in the strength of functional connections

over time can be tracked. Multiple changes in functional connectivity

strength often coincide, forming separable patterns or dynamic states

present for short periods of time (Hutchison et al., 2013; Zhou, Zhang,

Feng, & Lo, 2019). Therefore, dynamic approaches can supplement

our understanding of how static functional connections change

throughout life by also characterizing moment-to-moment changes in

the brain.

The static and dFC between brain regions evolve throughout the

life span. In contrast to white matter tracts (Hermoye et al., 2006;

Mukherjee et al., 2002) and sulcal shapes (Dubois et al., 2008;

Nishikuni & Ribas, 2013) that are largely laid down early in life, large-

scale functional brain networks markedly remodel throughout all

stages of life (Bagarinao et al., 2019; Faghiri, Stephen, Wang, Wilson, &

Calhoun, 2019; Grayson & Fair, 2017; Gu et al., 2015; Supekar,

Musen, & Menon, 2009; Váša et al., 2020; Vij, Nomi, Dajani, &

Uddin, 2018; Xia et al., 2019). Overall trends in static functional con-

nectivity demonstrate a U-shaped curve relating between-network

connectivity and age, while within-network connectivity follows an

inverse U-shaped curve (Betzel et al., 2014). Different graph theoretic

approaches to static connectivity reveal different topological changes

across the life span (Bullmore & Sporns, 2009; Cao et al., 2014; Luo

et al., 2020; Zuo et al., 2010) and have demonstrated region-specific

developmental trajectories. In contrast, whole-brain dynamics are

emphasized in life span analyses utilizing dFC. Parsing region-specific

dynamics, however, can sometimes better capture behaviorally rele-

vant network changes (Battaglia et al., 2020; Lombardo et al., 2020).

A focused analysis of the salience network/midcingulo-insular net-

work would promote an understanding of how networks important

for cognitive and executive control change throughout the life span.

A dFC analysis will be useful to capture the functional diversity

and network-switching properties of the salience network. Meta-

analysis of the dAI demonstrates its coactivation partners are involved

in a variety of behaviors (Uddin et al., 2014). This functional diversity

was also revealed in a dFC analysis demonstrating the dAI engage in

highly variable brain states (Nomi et al., 2016). Notably, connections

between the dAI and frontal, medial-frontoparietal, and temporal

regions were differentiated in the dynamic states. The separable

states of connectivity are thought to subserve flexible network

switching. The dAI and ACC are posited to mediate the engagement

of the lateral-frontoparietal executive control and medial-frontoparietal

default mode networks (Uddin, 2015; Uddin et al., 2017). Cognitively

demanding tasks lead to increased activity in the salience/midcingulo-

insular and lateral-frontoparietal executive control networks and

decreased activity in the medial-frontoparietal default mode network

(Menon & Uddin, 2010). dFC analyses of resting-state fMRI can offer

insight into how intrinsic properties of the brain support these dynamics

throughout the life span.

Here, we perform a dFC analysis of salience network maturation

in a cross-sectional life span data set. We leveraged the large sample

of resting-state fMRI in the Nathan Kline's Institute database to inves-

tigate trends in neurotypical individuals. In a cohort of 601 subjects

aged 6–85, we identified states of dFC associated with the dAI and

ACC using a sliding-window approach. By relating properties of these

dynamic states with age, we present a thorough characterization of

salience network dFC maturation. This work will provide a useful

benchmark against which to evaluate deviant maturational trajectories

of this critical brain network.

2 | MATERIALS AND METHODS

2.1 | Life span cohort

Resting-state scans were obtained from the Enhanced Nathan Kline

Institute Rockland Sample (http://fcon_1000.projects.nitrc.org/indi/

enhanced/). Subjects with a current Axis-I DSM diagnosis or with

head motion greater than 0.5 mm framewise displacement (FD) in

subsequent processing were excluded from the study. Additionally,

one subject was excluded for absent information regarding sex desig-

nation. The remaining cohort of 601 subjects (Figure 1) was used in

the final analysis. A linear regression with age and sex as independent

variables and FD as the dependent variable showed a significant

effect of age (p = 2 * 10�16), thus FD was controlled for in subse-

quent analyses.

2.2 | fMRI data preprocessing

Each subject had one 10-min resting-state fMRI scan collected using a

Siemens Trio 3.0T scanner (multiband factor of 4, 23 mm, 40 inter-

leaved slices, TR = 1.40 s, TE = 30 ms, flip angle = 65�,

FOV = 224 mm, 404 volumes). The first five volumes were removed

to ensure magnetic stability was reached for each scan. The data were

despiked (AFNI's 3dDespike “new” algorithm), realigned, normalized

(directly to 3 mm MNI space using a SPM template), and smoothed

(AFNI's 3dBlurToFWHM 6 mm) using the Data Processing Assistant

for Resting-State fMRI (DPARSF-A). Slice-timing correction was not

performed as it has minimal impact on BOLD functional connectivity
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and variability (Wu et al., 2011), and is generally not employed in data

acquired with multi-band sequences (e.g., Zachary et al., 2021; Roye

et al., 2020; Vieira, Rondinoni, & Garrido Salmon, 2020). FMRIB's

independent component analysis (ICA) based Xnoiseifier (FIX) was

then used to automatically classify noise and non-noise components

in each single subject ICA and subsequently regress out noise compo-

nents. The FIX classifier was trained using hand-classification of

24 subjects randomly selected across 10-year age brackets. Addition-

ally, the 24 subjects consisted of subjects with high and low average

FD in each age bracket in order to ensure all age ranges and head

motion possibilities were equally represented in the automatic

classification.

2.3 | High-model order ICA

Following previous work (Allen et al., 2014; Nomi et al., 2016; Nomi

et al., 2017), we performed a spatial group ICA on the preprocessed

data using the Group ICA of FMRI Toolbox (GIFT) infomax algorithm.

Spatial ICA maximizes the statistical independence of spatial image

components, allowing for extraction of component time courses from

spatially distinct brain regions. High-model order ICA with a set

100 components decomposes images into brain regions that comprise

larger brain networks spanning cortical, subcortical, and cerebellar

brain regions (Allen et al., 2014; Nomi et al., 2016). The ICA was

repeated 20 times with the Icasso algorithm to identify stable, repro-

ducible components. The group ICA (GICA1) back-reconstruction

(Calhoun et al., 2001) algorithm generated subject specific spatial

maps and time courses from each independent component from the

group ICA.

After removal of noise-related components (head motion arti-

facts, white matter, cerebral spinal fluid, etc.) by visual inspection, we

retained 65 non-noise components. The noise-related components

were characterized by peak activations in white matter or ventricles,

resembling head motion, or by excessive high frequency information

in time courses. The component of interest included both the dAI and

the ACC indicating that the time courses in these areas were tightly

coupled. The high synchrony of these two regions resulted in a single

component representing the key nodes of the salience network

(Uddin, Yeo, & Spreng, 2019).

2.4 | Post-processing

The time courses for each non-noise component output by GIFT were

triple detrended, despiked, regressed against the global average signal

of non-noise ICs and the Friston 24 head motion parameters esti-

mated by DPARSF-A preprocessing, and finally band-pass filtered

(0.023–0.1 Hz). Despiking was conducted using MATLAB code from

the GIFT toolbox based on AFNI's 3dDespike algorithm that replaces

outliers within each time series greater than 3 SD with data based on

the mean SD of the time-series. The high frequency cutoff was chosen

to include only BOLD-related signal fluctuations (Cordes et al., 2001)

and is consistent with previous dynamic fMRI analyses. The low fre-

quency cutoff was chosen as the lowest frequency signal possibly pre-

sent in a sliding window analysis with 44.8 s windows (Leonardi &

Van de Ville, 2015).

2.5 | Salience network dFC and cluster analysis

dFC between all ICs was computed in the GIFT dynamic-functional

network connectivity (d-FNC) toolbox for subsequent analyses. The

d-FNC toolbox computes dynamic connectivity through a sliding-

window analysis, calculating correlations between ICs within windows

of the rs-fMRI scan. The choice of window size influences the esti-

mates of dFC. Previous research has demonstrated that window sizes

between 30 and 60 s (Allen et al., 2014; Hutchison et al., 2013), and

notably those at 44 (Yang, Craddock, Margulies, Yan, & Milham, 2014)

or 45 s (Allen et al., 2014; Damaraju et al., 2014; Rashid, Damaraju,

Pearlson, & Calhoun, 2014) are effective at capturing fluctuations in

functional connectivity strength over time. Since our data set had a

F IGURE 1 Sample age distribution and head motion. The 601 subjects retained from the NKI database sufficiently spanned ages 6–85 (left),
allowing for a life span analysis. Subjects' head motion (right) during fMRI sessions had a positive, linear relationship with age, so head motion was
controlled for in subsequent analyses. fMRI, Functional magnetic resonance imaging
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TR of 1.4 s, we, therefore, chose to use sliding windows spanning

32 volumes, or 44.8 s. We additionally tested window sizes of 1.5�
and 2� this window size (67.2 and 89.6 s) to evaluate the robustness

of the results across different window sizes (see Data S1). The d-FNC

toolbox additionally convolves the windows with a 3-sigma Gaussian

curve to smooth transitions in connectivity strengths locally between

windows. Windowed correlation matrices were regularized with the

graphical LASSO method (Varoquaux, Gramfort, Poline, &

Thirion, 2010) to minimize within-window noise. The graphical LASSO

method estimates functional connectivity by applying L1 regulariza-

tion to the inverse covariance matrix, optimizing the lambda parameter

separately for each subject (Allen et al., 2014; Damaraju et al., 2014;

Nomi et al., 2016; Yang et al., 2014). For each subject, 367 windowed

correlation matrices were produced, representing pairwise correlations

between 65 brain regions. The connections of interest were the correla-

tions between the salience network (dAI and ACC) and the 64 other ICs

that were extracted and Fisher-z transformed prior to clustering.

Clustering with the k-means method has been successful in iden-

tifying separable, functionally differentiated states of dFC. For each

subject and for each window, the dFCs between the salience network

and 64 other brain regions were represented as a 64-dimensional

vector. K-means clustering would then identify clusters of points in a

64-dimensional functional connectivity space, with clusters grouping

together points with similar patterns of functional connectivity with

the salience network. Our sample included 601 subjects and 367 win-

dows per subjects, so 220,567 points in 64-dimensional space were

clustered to identify stereotyped states of connectivity formed with

the salience network. Distances between points were computed

with the “city-block” method, which performs well when identifying

clusters in a high-dimensional space (Aggarwal, Hinneburg, &

Keim, 2001). The optimal number of clusters (“k”) was chosen after

running clustering with k values between 2 and 20 and applying the

elbow criterion (Allen et al., 2014; Denkova et al., 2019; Nomi

et al., 2016; Nomi et al., 2017). The ratio of within-cluster sum of

squared distances to between-cluster sum of squared distances eval-

uates the degree to which clusters contain tightly packed points

within clusters and distantly separated clusters. The “elbow” in the

plot of this metric for each value of k identifies the k for which robust

clusters are found without over- or under-fitting (see Data S1). After

determining the optimal k, we ran k-means clustering to assign each

point (or, window of connectivity with the salience network) a state

label.

K-means clustering does not ensure that each resulting brain state

represents biologically plausible neural networks that differ from ran-

dom brain activity. Several methodologies for constructing null models

for brain dynamics exist (Miller et al., 2018), with surrogate data sets

maintaining first order properties of the BOLD data such as variability

(Damaraju et al., 2014; Marshall et al., 2020). These surrogate data

sets use the original fMRI time series and phase randomize the signals

so that the mean, variability, and autocorrelation are unchanged but

the temporal order of the signal is scrambled. By phase-randomizing

our time series according to the procedure in Lancaster et al. (2018)

prior to 44.8 s sliding window d-FNC analysis, we tested such a null

model to compare to the original data set's cluster solutions (see

Data S1).

2.6 | Subject state metrics and regression with age

The assignment of dFC states to each window allows for analysis of

how these states present within each subject's rs-fMRI scan. We com-

puted the frequency, dwell time, number of total transitions, and num-

ber of transitions between specific states for each subject. Frequency

is computed as the proportion that a state occurs in relation to all pos-

sible TRs in each subject's rs-fMRI scan. Dwell time is the average

number of consecutive windows a state is instantiated. The total num-

ber of transitions is the total number of state switches between con-

secutive windows. The number of specific state-to-state transitions is

computed pairwise for each set of possible state transitions

(e.g., State 2 to 3, or, State 3 to 2).

Each metric was subjected to multiple linear regression with age,

including sex and head motion (FD) as covariates. Quadratic effects were

tested by multiple linear regression with each metric and a linear age

term, a mean-centered and squared age term, sex, and head motion.

Since some subjects did not enter a given state, a dwell time of zero for

that subject and state would inaccurately suggest a low dwell period

occurred, when in fact no dwell period can be estimated. To correct for

this, regressions with dwell time included only subjects that engaged in a

given state, yielding a different subset of subjects for each dwell time

regression. A frequency of zero when a subject does not enter a state,

however, is still informative to the overall occurrence of that state in a

subject, and so all frequency regressions drew upon the whole sample.

When assessing significance, Bonferroni correction was applied to cor-

rect for multiple comparisons for each state metric.

3 | RESULTS

3.1 | ICA

The 65 non-noise ICs retained from the 100 component ICA repre-

sented distinct brain regions in cortical, subcortical, and cerebellar

networks. The ICs were grouped into sensorimotor, visual, default

mode, salience, temporal, central executive, frontal, cerebellar, parie-

tal, and subcortical networks for visualization (Figure 2). The

parcellation resembled previous works using a high-model order ICA

(Allen et al., 2014; Nomi et al., 2016).

3.2 | States of salience network dFC

We present results for dFC analyses using 44.8 s sliding windows.

Highly similar results for analyses with 67.2 s and 89.6 s windows can

be found in the Data S1. An optimal k = 5 from the elbow criterion

led to the identification of five states of salience network dFC

(Figure 3). State 1 was characterized by near-zero correlations

SNYDER ET AL. 4743



F IGURE 2 High-model order
ICA parcellation. Sixty-five non-
noise ICs across eight networks
are depicted. Different colors
within each network pertain to
each IC used in the dFC analysis.
The IC for the salience network is
highlighted (top left) since dFC
was evaluated between this

region and each of the 64 other
ICs. CB, cerebellum; dFC,
dynamic functional connectivity;
D-FPN, dorsal-frontoparietal
network; L-FPN, lateral-
frontoparietal network; M-CIN,
midcingulo-insular network; M-
FPN, medial-frontoparietal
network; ON, Occipital Network;
PN, pericentral network; SC,
subcortical

F IGURE 3 States of salience network dynamic functional connectivity (dFC). Cluster analysis revealed five states of salience network
functional connectivity. The percentage of total states and the number of subjects that entered into each state are shown above each state brain
projection. Profiles of the transient connectivity states are shown in both the polar plots and brain projections. The magnitude of points on the
polar plot indicates the strength of dFCs between the salience network and brain regions across eight networks. Positive values on the polar plots
extend past the black ring. ICs were scaled by their corresponding magnitudes in the polar plot and summed together to depict the functional
connectivity state projected back on the brain. The color scale (arbitrary units) maps the strength of salience network functional connectivity
across the brain. States exhibited different patterns of synchrony or lack of synchrony with the salience network
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between the salience network and most other brain regions, with low

synchrony observed with M-FPN and additional frontal regions. State

2 was characterized by salience network functional connectivity with

sensorimotor, insular, and medial frontal brain regions. State 3 was

characterized by salience network functional connectivity with lateral-

frontoparietal, medial-frontoparietal, and subcortical brain regions.

State 4, similar to State 1, was characterized by predominantly near-

zero correlations between the salience network and most other brain

regions. State 5 was characterized by sensorimotor, parietal, insular,

and medial visual brain regions.

The same set of states was found in both the 67.2 s (Figure S3)

and 89.6 s (Figure S8) sliding window analyses. The proportion of

these states observed in the data set varied by the length of the slid-

ing window, with longer window sizes leading to more balanced pro-

portions of states being observed. When testing a null model

constructed from phase-randomized time series with a five-state clus-

ter solution, all states consisted of near-zero correlations with the

salience network and all other brain regions (Figure S11). This lack of

any discernible patterns in a surrogate phase-randomized data set

suggests the validity of salience network dFC patterns observed in

our original data set.

3.3 | Associations between dynamic metrics
and age

Linear regressions revealed linear and quadratic effects of age on

dynamic metrics. Significant (Bonferroni corrected, p < .01) relation-

ships between age and frequency or dwell time are depicted in Fig-

ures 4 and 5, respectively. The significant relationships between age

and total state transitions (p < .05) as well as between age and state-

to-state transitions (Bonferroni corrected, p < .0025) are depicted in

Figure 6. All p-values presented are uncorrected and survive these

adjusted thresholds. State 1 frequency was negatively correlated with

age (p = 0.000102). State 3 frequency was negatively correlated with

squared age (p = .00519). State 4 frequency and dwell time were both

positively correlated with squared age (p = 9.63 * 10�10, p = 7.39 *

10�7, respectively). State 5 frequency was positively correlated with

age (p = 7.36 * 10�9). No association was found between total transi-

tions between any states for each subject and age. The frequency of

F IGURE 4 Associations between state frequency and age. Positive (blue) and negative (red) linear and quadratic trends between subject age
and state frequency were observed. Each relationship was significant after Bonferroni correction (p < .01)

F IGURE 5 Association between state dwell time and age. A
positive quadratic relationship between state dwell time and age was
observed, significant after Bonferroni correction (p < .01)
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transitions specifically from State 4 to State 5 was positively corre-

lated with age (p = 6.97 * 10). Qualitatively similar results were found

with the analogous states in the 67.2 s and 89.6 s sliding window

analysis. However, one frequency trend and the transition trend did

not reach significance in the 89.6 s sliding window analysis.

4 | DISCUSSION

We assessed the maturation of dFCs between the salience network

and the whole brain using a sliding window approach (Allen

et al., 2014). In a cohort of 601 neurotypical subjects aged 6–85, we

found that individuals transitioned amongst five states of salience net-

work functional connectivity during the course of a 10-min resting

state fMRI. The states were differentiated by the brain regions whose

BOLD signal was transiently synchronized with the salience network.

We evaluated the frequency of each state, the dwell time of each

state, total transitions, and state-to-state transitions as a function of

participant age. Significant relationships between state frequency and

age were observed for all states, in addition to relationships between

certain states' dwell times and transitions.

State 4, characterized by asynchrony between the salience net-

work and all other brain regions, demonstrated the greatest age-

related associations. State 4 demonstrated a U-shaped association

with frequency and dwell time in addition to a linear positive associa-

tion with state transitions. The four other states exhibited synchrony

between the salience network and multiple other brain regions. Addi-

tional trends between the frequency of these states and age were

observed. The states of salience network dFC and their relationships

with age were also found to be robust to choice of sliding

window size.

One way to interpret the results is to consider multiple dFC

states' trends simultaneously. For example, the strong U-shaped fre-

quency trends with State 4 could have driven the weaker, mirrored

inverse U-shaped trends with State 3 frequency. Since State 1 gener-

ally decreases in frequency with age while State 5 generally increases

in frequency with age, these concurrent changes could reflect a shift

toward increasing salience network connectivity with visual and

somatosensory regions and decreasing connectivity with medial fron-

tal regions over the life span. This appears to contrast static functional

connectivity evidence of increased M-FPN and salience network con-

nectivity later in life (Ferreira et al., 2016; Malagurski, Liem, Oschwald,

Mérillat, & Jäncke, 2020). However, it is difficult to compare trends of

individual states of dFC to static functional connectivity results as all

dFC trends contribute to overall static functional connectivity trends.

Reconciling a variety of trends is often a challenge for studies

piecing together the multi-factorial process of brain development. A

review of these topological changes during senescence (Naik, Ban-

erjee, Bapi, Deco, & Roy, 2017) suggested metastability will best

account for multiple life span trends in brain dynamics. Metastability

is a network's ability to alternate between states of phase synchrony

and asynchrony. In our analysis, the asynchrony in State 4 and pat-

terns of synchrony in the other four states reflect the metastable

dynamics of the salience network. We will focus our discussion on this

metastability and its implications for cognitive maturation.

4.1 | Maturation of metastable salience network
dynamics

Tognoli and Kelso (2014) describe metastability as the balance

between phase-synchronized and phase-scattered brain states. Noise

can drive the brain out of locked states of phase-synchronization, pro-

moting switching to other phase-synchronized states by first entering

a state of temporary asynchrony. Neuroscience literature has largely

emphasized the investigation of phase-synchronized states for their

ability to predict distinct behaviors. However, there is increasing reali-

zation that phase-scattered states and meta-stability need to be incor-

porated in models of complex behaviors, especially those that demand

dynamic network interactions. The salience/midcingulo-insular net-

work is known for its role in network switching, particularly between

the medial-frontoparietal and lateral-frontoparietal network

(Uddin, 2015; Uddin et al., 2019). Metastability may therefore be a

useful framework to interpret the maturation of the dynamics under-

lying network switching.

Our results are consistent with some of the predictions from Naik

et al.'s (2017) model of life span metastability trends.

F IGURE 6 Association between state transitions and age. No

significant total state transition relationships were observed, but a
specific state-to-state transition association was revealed. The
proportion of State 4 to State 5 transitions had a positive linear
relationship with age. Significance survived Bonferroni correction for
the 20 possible state transitions possible amongst five states
(p < .0025)
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Naik et al. (2017) predicted high-functioning adults would exhibit

increased metastability to compensate with structural degradation of

brain networks during senescence. In this model, the increased

between-network functional connectivity and decreased within-

network functional connectivity observed in old age can then be

reframed as increased meta-stability decoupling within-network sig-

nals in favor of network switching. Given the life span trends of

between and within-network connectivity (Betzel et al., 2014), meta-

stability would be expected to follow a U-shaped curve with respect

to age. Specifically, a U-shaped curve relating the frequency or dwell

time of an asynchronous state would be expected to be observed

alongside a U-shaped curve for the frequency of state transitions,

likely driven by the presence of the asynchronous state. We observed

this U-shaped curve with respect to metastability of the salience net-

work through the frequency and dwell time of State 4, with some evi-

dence suggesting its role in state switching.

Multiple approaches to extract dynamic brain states have led to

similar conclusions. Preliminary work using a Hidden Markov Model

demonstrated that a mean-activation state, analogous to an asynchro-

nous state that promotes metastability, followed a U-shaped curve

relating the state's frequency with age (Chen, Wang, & Liu, 2020).

Two other studies using a sliding-window dFC approach found posi-

tive, linear correlations between metastability promoting brain states

and age. One of the studies analyzed the NKI database, finding a state

with weak functional connectivity positively, linearly correlated with

age (Chen et al., 2019). Another study found the same result with a

state characterized by widespread negative functional connectivity

(Xia et al., 2019). The aforementioned studies extracted whole-brain

functional connectivity states, whereas we focused on the states

formed with the salience network. Smaller sample sizes and more

adult-focused subject age ranges could have also obscured quadratic

trends in other works. Previous works observed linearly increasing

network switching with age (Chen et al., 2019; Xia et al., 2019), similar

to that seen in State 4 to State 5 transitions. Notably, this modest lin-

ear increase does not mirror the expected U-shaped aging trends

expected to be paralleled by that of the U-shaped frequency and

dwell time trends for the asynchronous State 4. Further research may

wish to explore how asynchronous states identified in these analyses

of intrinsic network dynamics shape network shifting and behavior.

Task-based fMRI studies and behavioral evidence highlight the

cognitive importance of metastability. For example, older subjects

switch between networks more often than younger subjects during a

memory task, although both groups performed equally well on the

task (Schlesinger et al., 2017). The study supports Naik et al.'s (2017)

hypothesis that metastability can help older adults maintain cognitive

performance despite decline in brain structure. Nomi et al. (2017)

found that the frequency of an asynchronous brain state during rest-

ing state fMRI predicted performance on executive function, specifi-

cally for tasks that require flexible cognition. This work underscores

the connection between neural flexibility and cognitive flexibility,

lending metastability a potential role in the meta-control of behavior.

Meta-control is the ability to switch between heuristic approaches

to problem solving, and efficient problem solving involves the balance

between persistent strategies and strategy switching. Behavioral differ-

ences in meta-control between groups (Nassar & Troiani, 2020) could

stem from differences in neural flexibility or variability (Dajani &

Uddin, 2015; Grady & Garrett, 2014; Nomi et al., 2017) mediated by

metastable brain dynamics. The normative developmental trajectories of

salience network brain dynamics presented in our analysis can provide a

basis to understand deviations from it that relate to atypical cognitive

flexibility in psychiatric and neurological conditions (Uddin, 2021).

4.2 | Limitations

State based analyses of dFC using high-model order ICA are well

precedented in the literature but are not without limitations. High-

model order ICA tends to only separate components by hemisphere in

lateral-frontoparietal regions. Higher order ICA is unlikely to meaning-

fully divide the salience network either by hemisphere or by dividing

between the dAI and ACC. Thus, we could not examine the dAI or

ACC in isolation using an ICA seed methodology. Given our life span

cohort with likely variable brain morphology and functional topogra-

phy, we chose the ICA approach in order to estimate brain activity

while also accounting for individual differences in network topogra-

phy with ICA back-reconstruction methods. Future work may choose

to use a priori region-of-interest approach if the constituent regions

of the salience network are of particular interest.

Biases in sample characteristics should also be considered. The NKI

database does not have a uniform distribution for subject age, with

slightly greater representation of younger (<30 years) subjects. While the

large sample size effectively captures brain dynamics across the life span,

regressions could better predict data in these age ranges.

4.3 | Conclusions

In sum, we find that dynamic states of functional connectivity formed

with the salience network substantially evolve throughout the human

life span. The most pronounced changes in the frequency and dwell

time of an asynchronous state point to metastable dynamics as an

end of maturational processes within cognitively important brain

regions, such as the dAI and ACC. These trajectories may help contex-

tualize cognitive development in terms of the dynamic phenomena

underlying complex cognitive processes.

CONFLICT OF INTEREST

The authors declare no potential conflict of interest.

DATA AVAILABILITY STATEMENT

Data were retrieved from the open access Enhanced Nathan Kline

Institute Rockland Sample (http://fcon_1000.projects.nitrc.org/indi/

enhanced/).

ORCID

William Snyder https://orcid.org/0000-0001-8629-4633

SNYDER ET AL. 4747

https://orcid.org/0000-0001-8629-4633
https://orcid.org/0000-0001-8629-4633


REFERENCES

Aggarwal, C. C., Hinneburg, A., & Keim, D. A. (2001). On the surprising

behavior of distance metrics in high dimensional space. In J. Van den

Bussche & V. Vianu (Eds.), Database theory—ICDT 2001. Lecture Notes

in Computer Science. (Vol. 1973, pp. 420–434). Berlin, Heidelberg:

Springer. https://doi.org/10.1007/3-540-44503-X_27

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., &

Calhoun, V. D. (2014). Tracking whole-brain connectivity dynamics in

the resting state. Cerebral Cortex, 24, 663–676.
Bagarinao, E., Watanabe, H., Maesawa, S., Mori, D., Hara, K., Kawabata, K.,

… Sobue, G. (2019). Reorganization of brain networks and its associa-

tion with general cognitive performance over the adult lifespan. Scien-

tific Reports, 9, 11352. http://www.nature.com/articles/s41598-019-

47922-x

Battaglia, D., Boudou, T., Hansen, E. C. A., Lombardo, D., Chettouf, S.,

Daffertshofer, A., … Jirsa, V. (2020). Dynamic functional connectivity

between order and randomness and its evolution across the human

adult lifespan. NeuroImage, 222, 117156.

Betzel, R. F., Byrge, L., He, Y., Goñi, J., Zuo, X.-N., & Sporns, O. (2014).

Changes in structural and functional connectivity among resting-state

networks across the human lifespan. NeuroImage, 102, 345–357.
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoret-

ical analysis of structural and functional systems. Nature Reviews Neu-

roscience, 10, 186–198.
Calhoun, V. D., Adali, T., Pearslon, G. D., & Pekar, J. J. (2001). A method

for making group inferences from functional MRI data using indepen-

dent component analysis. Human Brain Mapping, 14, 140–151.
Cao, M., Wang, J.-H., Dai, Z.-J., Cao, X.-Y., Jiang, L.-L., Fan, F.-M., … He, Y.

(2014). Topological organization of the human brain functional

connectome across the lifespan. Developmental Cognitive Neuroscience,

7, 76–93.
Chen, K., Wang, R., & Liu, D.-Q. (2020). Hidden state dynamics reveal the

prolonged inactive state across the adult lifespan. Preprint. Neurosci-

ence, 1–40. https://doi.org/10.1101/2020.01.27.920652
Chen, Y., Liu, Y., Zhou, P., Zhang, X., Wu, Q., Zhao, X., & Ming, D. (2019).

The transitions between dynamic micro-states reveal age-related func-

tional network reorganization. Frontiers in Physiology, 9, 1852. https://

doi.org/10.3389/fphys.2018.01852/full

Cordes, D., Haughton, V. M., Arfanakis, K., Carew, J. D., Turski, P. A.,

Moritz, C. H., … Meyerand, M. E. (2001). Frequencies contributing to

functional connectivity in the cerebral cortex in “resting-state” data.

AJNR. American Journal of Neuroradiology, 22, 1326–1333.
Dajani, D. R., & Uddin, L. Q. (2015). Demystifying cognitive flexibility:

Implications for clinical and developmental neuroscience. Trends in

Neurosciences, 38, 571–578.
Damaraju, E., Allen, E. A., Belger, A., Ford, J. M., McEwen, S.,

Mathalon, D. H., … Calhoun, V. D. (2014). Dynamic functional connec-

tivity analysis reveals transient states of dysconnectivity in schizophre-

nia. NeuroImage: Clinical, 5, 298–308.
Deen, B., Pitskel, N. B., & Pelphrey, K. A. (2011). Three Systems of Insular

Functional Connectivity Identified with cluster analysis. Cerebral Cor-

tex, 21, 1498–1506.
Denkova, E., Nomi, J. S., Uddin, L. Q., & Jha, A. P. (2019). Dynamic brain

network configurations during rest and an attention task with frequent

occurrence of mind wandering. Human Brain Mapping, 40, 4564–4576.
Dubois, J., Benders, M., Cachia, A., Lazeyras, F., Ha-Vinh Leuchter, R.,

Sizonenko, S. V., … Huppi, P. S. (2008). Mapping the early cortical folding

process in the preterm newborn brain. Cerebral Cortex, 18, 1444–1454.
Faghiri, A., Stephen, J. M., Wang, Y.-P., Wilson, T. W., & Calhoun, V. D.

(2019). Brain development includes linear and multiple nonlinear tra-

jectories: A cross-sectional resting-state functional magnetic reso-

nance imaging study. Brain Connectivity, 9, 777–788.
Fair, D. A., Dosenbach, N. U. F., Church, J. A., Cohen, A. L., Brahmbhatt, S.,

Miezin, F. M., … Schlaggar, B. L. (2007). Development of distinct

control networks through segregation and integration. Proceedings of

the National Academy of Sciences, 104, 13507–13512.

Ferreira, L. K., Regina, A. C. B., Kovacevic, N., Martin, M. d. G. M.,

Santos, P. P., Carneiro, C. d. G., … Busatto, G. F. (2016). Aging effects

on whole-brain functional connectivity in adults free of cognitive and

psychiatric disorders. Cerebral Cortex, 26, 3851–3865.

Friston, K. J. (1994). Functional and effective connectivity in neuroimag-

ing: A synthesis. Human Brain Mapping, 2, 56–78.
Grady, C. L., & Garrett, D. D. (2014). Understanding variability in the BOLD

signal and why it matters for aging. Brain Imaging and Behavior, 8,

274–283.
Grayson, D. S., & Fair, D. A. (2017). Development of large-scale functional

networks from birth to adulthood: A guide to the neuroimaging litera-

ture. NeuroImage, 160, 15–31.
Gu, S., Satterthwaite, T. D., Medaglia, J. D., Yang, M., Gur, R. E.,

Gur, R. C., & Bassett, D. S. (2015). Emergence of system roles in nor-

mative neurodevelopment. Proceedings of the National Academy of Sci-

ences, 112, 13681–13686.
Hermoye, L., Saint-Martin, C., Cosnard, G., Lee, S.-K., Kim, J.,

Nassogne, M.-C., … Mori, S. (2006). Pediatric diffusion tensor imaging:

Normal database and observation of the white matter maturation in

early childhood. NeuroImage, 29, 493–504.
Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A.,

Calhoun, V. D., Corbetta, M., … Chang, C. (2013). Dynamic functional

connectivity: Promise, issues, and interpretations. NeuroImage, 80,

360–378.
Kurth, F., Zilles, K., Fox, P. T., Laird, A. R., & Eickhoff, S. B. (2010). A link

between the systems: Functional differentiation and integration within

the human insula revealed by meta-analysis. Brain Structure and Func-

tion, 214, 519–534.
Lancaster, G., Iatsenko, D., Pidde, A., Ticcinelli, V., & Stefanovska, A.

(2018). Surrogate data for hypothesis testing of physical systems.

Physics Reports, 748, 1–60.
Leonardi, N., & Van De Ville, D. (2015). On spurious and real fluctuations

of dynamic functional connectivity during rest. NeuroImage, 104,

430–436.
Lombardo, D., Cassé-Perrot, C., Ranjeva, J.-P., Le Troter, A., Guye, M.,

Wirsich, J., … Battaglia, D. (2020). Modular slowing of resting-state

dynamic functional connectivity as a marker of cognitive dysfunction

induced by sleep deprivation. NeuroImage, 222, 117155.

Luo, N., Sui, J., Abrol, A., Lin, D., Chen, J., Vergara, V. M., … Calhoun, V. D.

(2020). Age-related structural and functional variations in 5,967 indi-

viduals across the adult lifespan. Human Brain Mapping, 41, 1725–
1737.

Malagurski, B., Liem, F., Oschwald, J., Mérillat, S., & Jäncke, L. (2020).

Functional dedifferentiation of associative resting state networks in

older adults – A longitudinal study. NeuroImage, 214, 116680.

Marshall, E., Nomi, J. S., Dirks, B., Romero, C., Kupis, L., Chang, C., &

Uddin, L. Q. (2020). Coactivation pattern analysis reveals altered

salience network dynamics in children with autism spectrum disorder.

Network Neuroscience, 4, 1219–1234.
Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and con-

trol: A network model of insula function. Brain Structure and Function,

214, 655–667.
Miller, R. L., Abrol, A., Adali, T., Levin-Schwarz, Y., & Calhoun, V. D. (2018).

Resting-State fMRI dynamics and null models: Perspectives, sampling

variability, and simulations. Frontiers in Neuroscience, 12, 551.

Mukherjee, P., Miller, J. H., Shimony, J. S., Philip, J. V., Nehra, D.,

Snyder, A. Z., … McKinstry, R. C. (2002). Diffusion-tensor MR imag-

ing of gray and white matter development during normal human

brain maturation. AJNR. American Journal of Neuroradiology, 23,

1445–1456.
Naik, S., Banerjee, A., Bapi, R. S., Deco, G., & Roy, D. (2017). Metastability

in senescence. Trends in Cognitive Sciences, 21, 509–521.

4748 SNYDER ET AL.

https://doi.org/10.1007/3-540-44503-X_27
http://www.nature.com/articles/s41598-019-47922-x
http://www.nature.com/articles/s41598-019-47922-x
https://doi.org/10.1101/2020.01.27.920652
https://doi.org/10.3389/fphys.2018.01852/full
https://doi.org/10.3389/fphys.2018.01852/full


Nassar, M. R., & Troiani, V. (2020). The stability flexibility tradeoff and the

dark side of detail. Cognitive, Affective, & Behavioral Neuroscience, 21,

607–623. https://doi.org/10.3758/s13415-020-00848-8
Nishikuni, K., & Ribas, G. C. (2013). Study of fetal and postnatal morpho-

logical development of the brain sulci: Laboratory investigation. Jour-

nal of Neurosurgery: Pediatrics, 11, 1–11.
Nomi, J. S., Farrant, K., Damaraju, E., Rachakonda, S., Calhoun, V. D., &

Uddin, L. Q. (2016). Dynamic functional network connectivity reveals

unique and overlapping profiles of insula subdivisions: Dynamic con-

nections of insula subdivisions. Human Brain Mapping, 37, 1770–1787.
Nomi, J. S., Vij, S. G., Dajani, D. R., Steimke, R., Damaraju, E.,

Rachakonda, S., … Uddin, L. Q. (2017). Chronnectomic patterns and

neural flexibility underlie executive function. NeuroImage, 147,

861–871.
Rashid, B., Damaraju, E., Pearlson, G. D., & Calhoun, V. D. (2014). Dynamic

connectivity states estimated from resting fMRI identify differences

among schizophrenia, bipolar disorder, and healthy control subjects.

Frontiers in Human Neuroscience, 8, 897. https://doi.org/10.3389/

fnhum.2014.00897/abstract

Roye, S., Castagna, P. J., Calamia, M., De Vito, A. N., Lee, T.-H., &

Greening, S. G. (2020). Relationships between multiple dimensions of

executive functioning and resting-state networks in adults.

Neuropsychologia, 141, 107418.

Schlesinger, K. J., Truner, B. O., Lopez, B. A., Miller, M. B., & Carlson, J. M.

(2017). Age-dependent changes in task-based modular organization of

the human brain. NeuroImage, 146, 741–762.
Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E.,

… Beckmann, C. F. (2009). Correspondence of the brain's functional

architecture during activation and rest. Proceedings of the National

Academy of Sciences, 106, 13040–13045.
Supekar, K., Musen, M., & Menon, V. (2009). Development of large-scale

functional brain networks in children. PLoS Biology, 7, e1000157.

Tognoli, E., & Kelso, J. A. S. (2014). The metastable brain. Neuron, 81,

35–48.
Uddin, L. Q. (2015). Salience processing and insular cortical function and

dysfunction. Nature Reviews Neuroscience, 16, 55–61.
Uddin, L. Q. (2021). Cognitive and behavioural flexibility: Neural mecha-

nisms and clinical considerations. Nature Reviews. Neuroscience, 22,

167–179.
Uddin, L. Q., Kinnison, J., Pessoa, L., & Anderson, M. L. (2014). Beyond the

tripartite cognition–emotion–Interoception model of the human insu-

lar cortex. Journal of Cognitive Neuroscience, 26, 16–27.
Uddin, L. Q., Nomi, J. S., Hébert-Seropian, B., Ghaziri, J., & Boucher, O.

(2017). Structure and function of the human insula. Journal of Clinical

Neurophysiology, 34, 300–306.
Uddin, L. Q., Supekar, K. S., Ryali, S., & Menon, V. (2011). Dynamic

reconfiguration of structural and functional connectivity across Core

neurocognitive brain networks with development. Journal of Neurosci-

ence, 31, 18578–18589.
Uddin, L. Q., Yeo, B. T. T., & Spreng, R. N. (2019). Towards a universal tax-

onomy of macro-scale functional human brain networks. Brain Topog-

raphy, 32, 926–942.
Varoquaux, G., Gramfort, A., Poline, J.-B., & Thirion, B. (2010). Brain

covariance selection: better individual functional connectivity models

using population prior. Advances in Neural Information Processing Sys-

tems, 2, 2334–2342.
Váša, F., Romero-Garcia, R., Kitzbichler, M. G., Seidlitz, J.,

Whitaker, K. J., Vaghi, M. M., … Bullmore, E. T. (2020). Conservative

and disruptive modes of adolescent change in human brain func-

tional connectivity. Proceedings of the National Academy of Sciences,

117, 3248–3253.
Vieira, B. H., Rondinoni, C., & Garrido Salmon, C. E. (2020). Evidence of

regional associations between age-related inter-individual differences

in resting-state functional connectivity and cortical thinning revealed

through a multi-level analysis. NeuroImage, 211, 116662.

Vij, S. G., Nomi, J. S., Dajani, D. R., & Uddin, L. Q. (2018). Evolution of spa-

tial and temporal features of functional brain networks across the

lifespan. NeuroImage, 173, 498–508.
Wu, C. W., Chen, C.-L., Liu, P.-Y., Chao, Y.-P., Biswal, B. B., & Lin, C.-P.

(2011). Empirical evaluations of slice-timing, smoothing, and normali-

zation effects in seed-based, resting-state functional magnetic reso-

nance imaging analyses. Brain Connectivity, 1, 401–410.
Xia, Y., Chen, Q., Shi, L., Li, M., Gong, W., Chen, H., & Qiu, J. (2019). Track-

ing the dynamic functional connectivity structure of the human brain

across the adult lifespan. Human Brain Mapping, 40, 717–728.
Yang, Z., Craddock, R. C., Margulies, D. S., Yan, C.-G., & Milham, M. P.

(2014). Common intrinsic connectivity states among posteromedial

cortex subdivisions: Insights from analysis of temporal dynamics.

NeuroImage, 93, 124–137.
Yeo, B. T. T., Krienen, F. M., Eickhoff, S. B., Yaakub, S. N., Fox, P. T.,

Buckner, R. L., … Chee, M. W. L. (2015). Functional specialization and

flexibility in human association cortex. Cerebral Cortex, 25, 3654–3672.
Zachary, T. G., Sierra, A. B., Salome, K., Catie, C., Jason, S. N., Lucina, Q. U.

(2021). Whole-brain functional dynamics track depressive symptom

severity. Cerebral Cortex. https://doi.org/10.1093/cercor/bhab047

Zhou, Q., Zhang, L., Feng, J., & Lo, C.-Y. Z. (2019). Tracking the Main

states of dynamic functional connectivity in resting state. Frontiers

in Neuroscience, 13, 685. https://doi.org/10.3389/fnins.2019.

00685/full

Zuo, X.-N., Kelly, C., Di Martino, A., Mennes, M., Margulies, D. S.,

Bangaru, S., … Milham, M. P. (2010). Growing together and growing

apart: Regional and sex differences in the lifespan developmental

trajectories of functional Homotopy. Journal of Neuroscience, 30,

15034–15043.

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Snyder, W., Uddin, L. Q., & Nomi, J. S.

(2021). Dynamic functional connectivity profile of the salience

network across the life span. Human Brain Mapping, 42(14),

4740–4749. https://doi.org/10.1002/hbm.25581

SNYDER ET AL. 4749

https://doi.org/10.3758/s13415-020-00848-8
https://doi.org/10.3389/fnhum.2014.00897/abstract
https://doi.org/10.3389/fnhum.2014.00897/abstract
https://doi.org/10.1093/cercor/bhab047
https://doi.org/10.3389/fnins.2019.00685/full
https://doi.org/10.3389/fnins.2019.00685/full
https://doi.org/10.1002/hbm.25581

	Dynamic functional connectivity profile of the salience network across the life span
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Life span cohort
	2.2  fMRI data preprocessing
	2.3  High-model order ICA
	2.4  Post-processing
	2.5  Salience network dFC and cluster analysis
	2.6  Subject state metrics and regression with age

	3  RESULTS
	3.1  ICA
	3.2  States of salience network dFC
	3.3  Associations between dynamic metrics and age

	4  DISCUSSION
	4.1  Maturation of metastable salience network dynamics
	4.2  Limitations
	4.3  Conclusions

	  CONFLICT OF INTEREST
	  DATA AVAILABILITY STATEMENT

	REFERENCES


