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Abstract
Background: High-throughput methods identify an overwhelming number of protein-protein
interactions. However, the limited accuracy of these methods results in the false identification of
many spurious interactions. Accordingly, the resulting interactions are regarded as hypothetical and
computational methods are needed to increase their confidence. Several methods have recently
been suggested for this purpose including co-expression as a confidence measure for interacting
proteins, but their performance is still quite poor.

Results: We introduce a novel computational method for verification of protein-protein
interactions based on the co-expression of orthologs of interacting partners. The performance of
our method is analysed using known S. cerevisiae interactions, and is shown to overcome limitations
of previous methods. We present specific examples of known and putative interactions that are
detected by our method and not by previous methods, and suggest that they represent transient
interactions that might have been conserved and stabilized in other species.

Conclusion: Co-expression of orthologous protein-pairs can be used to increase the confidence
of hypothetical protein-protein interactions in S. cerevisiae as well as in other species. This approach
may be especially useful for species with no available expression profiles and for transient
interactions.

Background
Protein-protein interactions (PPIs) have a central role in
most biological processes, and identifying these interac-
tions is an important goal of biological research. PPIs are
the subject of extensive experimental studies, but the
majority of them remain unknown. In the last few years,
high-throughput techniques were developed for the iden-
tification of PPIs on a genomic scale. Yeast two-hybrid
[1,2] and mass spectrometric analysis of protein com-
plexes [3,4] were used to produce large sets of PPIs. How-
ever, these techniques are known to suffer from many
false positives and the resulting PPIs are typically regarded

as putative [5,6]. Thus, the development of computational
methods for assessment and verification of putative PPIs
is crucial [7-10]. Two such methods were proposed, that
are based on the co-expression [11] and conservation [9]
of PPIs, respectively. Here we propose to extend these
methods by considering co-expression of orthologous
protein pairs. We demonstrate the predictive power of our
approach and discuss its advantages.
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Results
Verification by mRNA co-expression
It was previously shown that interacting pairs of proteins
are often correlated in their expression profiles [11,12].
The correlation of expression profiles was therefore pro-
posed as a confidence measure for putative PPIs [7,10,13].
However, this approach has three major limitations. First,
many pairs of non-interacting proteins are also co-
expressed (false positives). Second, many pairs of interact-
ing proteins are not co-expressed (false negatives). Third,
to properly determine co-expression, mRNA expression
profiles from a large and diverse set of conditions are
needed, rendering this approach inapplicable for most
organisms.

Former studies that used co-expression to identify PPIs
did not explicitly examine its predictive power, or did not
use a random set of protein-pairs as control for evaluating
its performance. We thus carried out an analysis to evalu-
ate the predictive power of this approach for S. cerevisiae,
in order to later compare it to our new method. High
quality S. cerevisiae expression data is available for many
conditions, making it an ideal organism for the use of co-
expression for validation of PPIs. We extracted a reference
set of 1656 known interaction from the MIPS database
[14], and generated a random set by randomly choosing
pairs of proteins. Cosine correlation over our entire set of
S. cerevisiae conditions was used to compare the levels of
co-expression between the reference set and the random
set (see methods).

The results of this analysis are summarized in Figure 1.
The cumulative distributions of expression correlations in
both sets are compared, showing higher degrees of co-
expression in the reference set than in the random set (Fig-
ure 1a). The resulting predictive power is shown in Figure
1b, where each dot represents a possible correlation
threshold for PPIs prediction. The percentages of protein-
pairs passing each threshold from the random and refer-
ence sets are shown in the horizontal and vertical axes,
respectively. For example, the threshold shown in Figure
1 (0.155) which leads to the correct verification of 30% of
the reference set (497 true positives), results also in the
false verification of approximately 9% of the random set
(~149 false positives). Applying this to a set of putative
PPIs with 50% false positives (as estimated for the S. cere-
visiae yeast two hybrid sets [5,6]) results in a filtered sub-
set with approximately 23% false positives (9% divided
by 39%).

We verified that the performance of this method is largely
independent of the exact set of conditions that is used,
and that filtering the conditions or choosing them specif-
ically for each pair of proteins does not improve the per-
formance (not shown).

Conservation of PPIs
Another approach that was proposed to verify or predict
PPIs is based on conservation of interactions [9,15,16]. In
this approach (termed "interologs"), pairs of proteins
whose orthologs are known to interact in other species are
assumed to interact. Such a method can potentially reveal
many conserved PPIs, but it is currently limited by the
availability and accuracy of interaction data. Without rely-
ing on putative interactions, the available set of S. cerevi-
siae PPIs only correspond to a small fraction of the
biologically meaningful interactions, and the situation is
much worse for other species. Consequently, this method
has so far been based only on S. cerevisiae PPIs, including
putative ones, to predict interactions in other organisms.
Giot et al. used putative S. cerevisiae PPIs from mass spec-
trometric analysis to verify Drosophila PPIs found by yeast
two-hybrid. Only 65 out of the ~2000 Drosophila putative
interactions were identified as having an orthologous
interaction in S. cerevisiae. This set was then used to train
a statistical model for assignment of confidence scores to
putative PPIs. Li et al. used putative S. cerevisiae PPIs gath-
ered from several sources to predict C. elegans PPIs (rather
than verify an existing set of putative PPIs). Out of the
5534 predicted C. elegans PPIs, only 949 were identified as
having an orthologous interaction in S. cerevisiae [16].

The use of conserved interactions to verify a putative set of
PPIs is therefore very limited, since only a small fraction
of the putative set would have a known orthologous inter-
action. Furthermore, using putative PPIs in order to
increase the coverage of this approach will decrease its
accuracy and introduce many more false positives.

Orthologous co-expression
Motivation
In order to overcome the limitations of the two methods
described above, we propose to integrate them and detect
PPIs by orthologous co-expression, i.e. co-expression of
the orthologs of the interacting partners (Figure 2a). A
conserved interaction may be co-expressed only in a sub-
set of the organisms in which it is present, so combining
knowledge of co-expression from multiple organisms can
be informative.

The use of orthologous co-expression for verification of
PPIs is also supported by three previous observations.
First, in order to preserve their interaction and functional-
ity, interacting partners should co-evolve [17]. Sequence
analysis was previously used to uncover co-evolution at
the sequence level [18], but it may also be present at the
level of gene expression. Second, as shown in two recent
papers, co-expression of functionally linked proteins is
more likely to be conserved than the co-expression of ran-
dom pairs of proteins [19,20]. Hence, orthologous co-
expression can replace co-expression, and serve as a better
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Higher correlation of expression profiles among interacting protein-pairsFigure 1
Higher correlation of expression profiles among interacting protein-pairs. (a) Cumulative distributions of correlations between 
expression profiles of protein-pairs from a reference set of 1656 known interactions taken from the MIPS database, and a set 
of randomly chosen pairs of proteins (averaged over ten trials). The dashed line represents a possible correlation threshold 
(0.155) that can be used for prediction of PPIs. (b) The predictive power of this approach. Each point in this plot represents a 
specific correlation threshold for the prediction of PPIs. The vertical axes shows the percentage of interaction identified from 
the reference set (true positives) and the horizontal axes shows the percentage of interaction identified from the random set 
(false positives). The dashed lines represent the performance of the threshold shown in (a).
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Orthologous co-expression can be used to predict PPIsFigure 2
Orthologous co-expression can be used to predict PPIs. (a) Schematic representation of the method. (b) Interacting proteins 
are more likely to have an orthologous pair in other species. The percentage of yeast protein-pairs with an orthologous pair 
from five species (C. elegans, E. coli, A. thaliana, D. melanogaster, and H. sapiens) is shown for the reference and random sets. This 
property is seen for the four eukaryotes, but not for E. coli. (c) Orthologous pairs of interacting proteins are more likely to be 
co-expressed than orthologous pairs of random protein-pairs. The percentage of orthologous pairs having significant (P-value < 
0.05) correlation of expression out of the total orthologous pairs with available expression data (conserved+expression), and 
out of the entire reference set (all interactions) is shown for all organisms (including S. cerevisiae). (d) Orthologous co-expres-
sion from five species was added and used to predict S. cerevisiae PPIs (red). The resulting predictive power is shown along with 
the predictive power of S. cerevisiae co-expression (dashed blue), as shown in Figure 1b. Orthologous co-expression was also 
added to S. cerevisiae co-expression, resulting in an improved predictive power (green).
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measure to identify functional links in general and PPIs in
particular. Third, interacting protein-pairs are more likely
to have pairs of orthologs in other species than randomly
selected protein-pairs. This observation was made previ-
ously for different ascomycota species [21], and can also be
seen in our analysis of more distant organisms (Figure
2b). Since orthologous co-expression can only be com-
puted for conserved protein-pairs, the increased conserva-
tion of interacting protein-pairs will also increase the
percentage of interacting pairs where orthologous co-
expression can be computed, and lead to higher percent-
age of real PPIs out of the total predicted protein-pairs.

Performance
To examine whether orthologous co-expression can
indeed be used to predict PPIs, we focused on S. cerevisiae
orthologs from five species (C. elegans, E. coli, A. thaliana,
D. melanogaster, and H. sapiens). Orthologous pairs of the
protein-pairs in the reference and random sets were iden-
tified by BLAST [22], and their co-expression was meas-
ured using cosine correlation over the entire sets of mRNA
expression data (see methods). Co-expression values of
the random set orthologs in each organism were used to
determine the 5% significance correlation thresholds. The
percentage of interactions with significant orthologous

Table 1: S. cerevisiae and orthologous co-expression of known Protein interactions

GENE 1 GENE 2 S. cerevisiae Co-expression Orthologous Co-expression

correlation p-value D. melanogaster C. elegans H. sapiens p-value

CDC28 CLB2 -0.07 0.74 * 0.77 0.59 3.7e-04
CLB4 -0.06 0.71 0.85 0.77 0.59 1.0e-05
CDC6 -0.03 0.60 0.77 0.32 0.37 2.6e-04
CLB3 -0.01 0.52 0.85 0.77 0.59 1.0e-05
CLB1 0.05 0.30 * 0.65 0.59 7.3e-04
CLB5 0.06 0.27 0.87 0.65 0.45 3. 0e-05

DMC1 PDC5 -0.09 0.80 0.59 * 0.17 6.8e-03
PDC1 -0.05 0.67 0.59 * 0.17 6.8e-03
RIS1 -0.02 0.56 * 0.34 0.52 4.3e-03

PRP9 RIS1 0.02 0.41 * 0.28 0.62 3.7e-03
PRP11 0.05 0.30 0.88 0.35 0.33 1.6e-04
NOG2 0.07 0.24 0.41 0.33 0.66 3.5e-04

SSN6 CUS1 -0.06 0.71 0.76 0.32 * 5.4e-04
SNP1 0.08 0.21 0.79 0.21 * 2.1e-03

PAB1 SGN1 -0.17 0.93 0.56 0.19 0.26 2.4e-03
RNA14 -0.06 0.71 0.42 0.17 0.24 5.8e-03

PFS2 RNA14 -0.03 0.60 0.44 0.31 - 8.5e-03
HAT1 HAT2 -0.04 0.33 0.86 0.19 0.22 7.3e-04
SIT4 TAP42 -0.16 0.92 0.54 - 0.36 4.3e-03

TRS23 BET3 -0.10 0.82 * 0.20 0.52 8.1e-03
DNA2 RAD27 -0.01 0.52 * 0.41 0.47 3.9e-03
PRP8 SNU114 0.05 0.30 * 0.60 0.57 8.7e-04
HRB1 MTR10 -0.07 0.74 0.56 0.27 0.27 1.5e-03
BTT1 EGD2 -0.08 0.77 0.42 0.52 0.59 2.0e-04
GPA1 STE11 0.07 0.24 0.55 0.25 0.37 1.1e-03
UBA2 AOS1 0.08 0.21 0.74 0.17 0.41 5.4e-04
SPT15 BRF1 0.09 0.19 0.72 0.21 0.23 1.1e-03
TAF5 TAF9 0.05 0.30 0.86 - 0.18 2.1e-03
LSM5 KEM1 0.04 0.33 - 0.37 0.65 2.3e-03
RPB3 MED7 0.01 0.45 * 0.49 0.32 5.3e-3

* denotes that at least one of the corresponding orthologs did not have expression data.
- denotes that there is no pair of corresponding orthologs.
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co-expression in each organism (out of all the interactions
where orthologous co-expression can be computed, i.e.
interactions with both orthologs and expression profiles
at that organism) is shown in figure 2c. Indeed, for all five
organisms we found that orthologous-pairs of known
PPIs are more likely to be co-expressed than that of ran-
dom protein-pairs. Interestingly, the percentages of
orthologous-pairs of PPIs with significant co-expression
in E. coli and D. melanogaster are even higher than the per-
centage of PPIs with significant co-expression in S. cerevi-
siae (Figure 2c). Note, however, that less than 3% of the
reference set had orthologous-pairs in E. coli and ortholo-
gous co-expression was computed only for 38 PPIs, so the
high E. coli value might be a result of insufficient statistics.

The ability to predict PPIs by orthologous co-expression
strongly depends on the percentage of interactions where
orthologous co-expression can be computed (i.e. where
both proteins are conserved and have expression profiles),
so the percentages of PPIs that can be predicted by each
organism is lower than 7% for all five organisms (Figure
2c). To overcome the lower coverage of each organism we
combined the information from all five organisms. We
examined the predictive power of this approach by repeat-
ing the analysis shown in Figure 1, when the yeast co-
expression is replaced by the sum of the orthologous co-
expression from the five other species (figure 2d). To
avoid over-fitting, we only considered simple summation
of the co-expression in different species. Notably,
although S. cerevisiae co-expression was omitted from the
analysis, the predictive power of this approach was better
than that of S. cerevisiae co-expression alone (Figure 2d).

Combining S. cerevisiae and orthologous co-expression
The correlation between S. cerevisiae co-expression and
orthologous co-expression of the true interactions in the
test set is only 0.34. This means that the two methods are
complementary, and that except for detecting interactions
between co-expressed proteins, orthologous co-expres-
sion can also detect interactions between proteins that are
not co-expressed in S. cerevisiae, but their corresponding
orthologous are co-expressed in other species. Examples
of known interactions from the test set with low co-
expression in S. cerevisiae but high orthologous co-expres-
sion are shown in Table 1. In these 30 cases, the co-expres-
sion in S. cerevisiae is very low or even negative, but the
orthologous co-expression is high in at least two species,
such that they are easily detected by our approach.

Based on the complementarities of the two methods,
namely S. cerevisiae and orthologous co-expression, we
proceeded by adding the orthologous co-expression to S.
cerevisiae co-expression (figure 2d). The addition signifi-
cantly improved the results of both methods. Using the
same example as mentioned above, the percentage of pro-

tein-pairs identified from the random set is reduced from
9% to 5%, while the percentage of proteins-pairs identi-
fied from the reference set remained 30%.

Transient interactions
In a previous study relating gene expression to PPIs,
Jansen et al. classified protein complexes as 'permanent'
and 'transient' [12]. The subunits of permanent com-
plexes were shown to be highly co-expressed, in contrast
to transient complexes where co-expression was very low.
Transient interactions are therefore harder to detect by co-
expression as well as by experimental methods.

To test the performance of our method on transient inter-
actions we examined the nine protein complexes classi-
fied as transient: pre-replication complex, replication
complex, anaphase promoting complex (APC), TAFIIs,
SAGA complex (Spt-Ada-Gcn5-acetyltransferase), CCR4
complex, RSC complex, SRB complex (kornberg's media-
tor) and SWI/SNF complex. Assuming all pair-wise inter-
actions in these complexes, we compared the percentage
of protein-pairs with significant S. cerevisiae or ortholo-
gous co-expression for each complex and for the com-
bined set (Figure 3a).

Orthologous co-expression is slightly better than S. cerevi-
siae co-expression at identifying interactions in the refer-
ence set, but the differences in performance increase
considerably when transient complexes are examined. In
the combined set of 764 transient interactions, ortholo-
gous co-expression identifies almost three times (2.68)
more interactions than S. cerevisiae co-expression. Moreo-
ver, for five out of the nine transient complexes, ortholo-
gous co-expression identifies at least three times more
interactions than S. cerevisiae co-expression, while the
opposite occurs only in one complex – RSC, which is also
the smallest complex examined. These results suggest that
orthologous co-expression is especially useful for detec-
tion of transient interactions.

Specialization of interacting proteins can lead to high orthologous co-
expression
Why are there interacting protein-pairs which are not co-
expressed in S. cerevisiae, while their corresponding
orthologs are co-expressed in other species (Table 1; Fig-
ure 3a)? The observation that interacting protein-pairs are
co-expressed is believed to be a result of their need to be
present in similar amounts at different conditions.
However, for transient interactions occurring only in spe-
cific processes, this requirement might affect only a small
number of conditions, and hence might have a slight
influence on the global levels of co-expression. In
contrast, the orthologs of such interacting proteins might
have adopted a stable interaction, resulting in co-expres-
sion at many conditions. Such transient interactions will
Page 6 of 11
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Detection of transient interactionsFigure 3
Detection of transient interactions. (a) Each circle shows the percentage of protein-pairs in a specific set/complex with a signif-
icant level (P-value < 0.05) of S. cerevisiae and orthologous co-expression in the horizontal and vertical axes, respectively. Blue 
circles represent all pair-wise interactions in a single transient complex; Red circles represent the three sets of protein-pairs 
(random, reference and transient). The dashed line indicates similar performance of both methods. The table also shows the 
number of protein-pairs in each set/complex, and the ratio between the percentage of pairs with significant orthologous and S. 
cerevisiae co-expression, respectively. (b) Proposed model for transient yeast interactions with low co-expression, but high 
orthologous co-expression. Protein A interacts with protein B, but also performs other functions or interacts with other pro-
teins, such that it is not co-expressed with protein B. However, in higher eukaryotes, a specialized ortholog of A exist, which is 
co-expressed with the ortholog of B.
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not be detected by co-expression, and might also be hard
to find using experimental methods, but orthologous co-
expression may help to identify them. Moreover, one of
the interacting proteins may be multifunctional,
interacting with several proteins depending on context.
The expression of such pleiotropic proteins is likely to be
constitutive, and will not show correlation to that of its
interacting partners. However, the pleiotropic protein
might have several specialized orthologs in other species,
each performing distinct functions, and co-expressed with
the corresponding orthologs (Figure 3b). Note that in
such cases the specialized ortholog may not be the closest
one in sequence. However, allowing each protein to have
multiple orthologs and choosing the maximal correlation
can also increase the orthologous co-expression of false
interactions. Consequently, such an approach only
reduced the performance of our method (not shown).

Specific examples
To examine if specialization of interacting proteins can
account for the high orthologous co-expression of protein
pairs in Table 1 and in the transient complexes, we looked
in more details at specific examples. Here we provide
three examples supporting this notion.

1. CDC28 is the only cyclin-dependent kinase (CDK) in S.
cerevisiae involved in cell cycle transitions [23]. CDC28
interacts with different proteins at different stages of the
cell cycle, including G1 and B-type cyclins (CLNs and
CLBs, respectively) and CDC6. Indeed, no detectable co-
expression is found between CDC28 and its interacting
partners (Table 1; not shown for CLNs). In contrast,
CDC28 has several orthologs in higher eukaryotes (up to
five distinct CDKs in mammals), each devoted to specific
processes or tissues [23], and the orthologs that were
found by our analysis in H. sapiens, D. melanogaster and C.
elegans (CDK2, CDC2 and CDK-1, respectively) are highly

co-expressed with the corresponding orthologs of CDC6
and the B-type cyclins (Table 1).

2. Yeast TAF5 is a component of at least two transient
complexes, the general transcription factor TFIID and the
SAGA complex [24]. However, its human ortholog (TAF5)
is only known to be a part of the TFIID complex, while a
second ortholog (TAF5L) is known to be in both TFIID,
and the human equivalent of SAGA [25]. As expected, the
co-expression of human TAF5 and the other proteins in
human TFIID is higher than that of yeast TAF5 and the
other proteins in yeast TFIID (not shown).

3. The opposite case of two S. cerevisiae paralogs with only
one ortholog in higher eukaryotes, though less common,
may also help to identify PPIs. The nascent polypeptide
associated complex (NAC), consists of an alpha subunit
(EGD2) and a beta subunit (either EGD1 or BTT1) [26].
BTT1 is not co-expressed with EGD2, presumably since
EGD1 and BTT1 are alternating beta subunits that bind
both the ribosome and the alpha subunit (EGD2). In con-
trast, D. melanogaster and C. elegans have only one known
orthologous beta subunit, which are co-expressed with
the corresponding orthologs of EGD2 (Table 1).

Predictions
Table 2 shows examples of low confidence putative inter-
actions with low co-expression but high orthologous co-
expression. These interactions were found by high-
throughput yeast two-hybrid [1], and considered low con-
fidence (they had less than 3 interaction sequence tags
and were not included in the core data; also not supported
by co-expression). However, in light of the high ortholo-
gous co-expression from at least two species, we predict
that they represent true interactions. In support of that,
both proteins in all these examples are localized to the
same cellular compartment (according to the MIPS data-
base [14]).

Table 2: S. cerevisiae and orthologous co-expression of hypothetical Protein interactions

GENE 1 GENE 2 S. cerevisiae Co-expression Orthologous Co-expression

correlation p-value D. melanogaster C. elegans H. sapiens p-value

TAF5 PIF1 -0.05 0.67 0.74 0.05 0.42 8.7e-04
COR1 XDJ1 -0.01 0.52 * 0.43 0.39 5.0e-03
PUS2 LPD1 -0.06 0.71 * 0.23 0.55 6.1e-03
TAF6 PUB1 0.00 0.49 0.04 0.41 0.50 3.3e-03
PAN3 YNL092W -0.04 0.64 0.77 0.25 * 1.9e-03
SMT3 TOP2 -0.08 0.77 * 0.47 0.69 9.6e-04

* denotes that at least one of the corresponding orthologs did not have expression data.
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Some of these proposed interactions might also fit the
model in Figure 3. For example, SMT3 is the only SUMO
gene in S. cerevisiae, which is known to modify TOP2
(DNA Topoisomerase II) and other proteins [27].
However, in vertebrates there are three known SUMO
genes: SUMO1, SUMO2, and SUMO3. As suggested by the
model in Figure 3, SMT3 is not co-expressed with TOP2,
but one of its human orthologs (SUMO1), is highly co-
expressed with the human ortholog of TOP2 (TOP2A; see
Table 2).

Discussion
We presented here a new computational method for veri-
fication of PPIs that is based on the co-expression of
orthologous protein-pairs, and demonstrated its predic-
tive power using PPIs identified in S. cerevisiae.

This method extends two of the former methods, namely
co-expression of interacting proteins and conservation of
interactions (interologs). The first method can only be
applied to organisms with expression data and its per-
formance depends on the amount and quality of that
data. Our method overcomes this limitation by integrat-
ing sequence and expression data from other organisms.
It can thus be applied to any sequenced organism, partic-
ularly for those without available expression data, thereby
replacing the missing data. Moreover, it performs better
than the former method even for S. cerevisiae, where many
high quality expression data is available, and is especially
better in identifying transient interactions. It is difficult to
evaluate our approach for other species, since we do not
have large representative sets of known interactions, but
the success in yeast is promising.

The proposed method also overcomes the limitation of
the interologs approach, namely the small fraction of
interactions that is known to date. Our method uses
expression rather than interaction data, which makes it
capable of giving evidence for a much larger number of
interactions.

mRNA expression profiles are being generated by many
different labs for a wide range of organisms. The improved
quality of existing expression profiles as well as the
addition of profiles for other organisms will improve the
performance of our method. Further improvements can
be achieved by giving different weights to the co-expres-
sion from different organisms (not shown). A weight can
be given to each organism according to the reliability of its
expression profiles, or according to its evolutionary dis-
tance from the studied organism.

During the writing of this manuscript, a related approach
was suggested [28]. Based on the codon adaptation index
(CAI) as an estimator for average expression levels, Fraser

et al. examined co-evolution of expression levels from
four fungi closely related to S. cerevisiae, and used that to
predict PPIs in S. cerevisiae. This approach is complemen-
tary to the one that we have proposed. Thus, mRNA
expression should be used directly when possible, even
from relatively distant species (such as D. melanogaster),
and CAI should be used from closely related species with-
out available expression data.

Finally, the methods described here are still not accurate
enough to verify specific PPIs, but they provide additional
evidences and are useful for assessment and filtering of
high-throughput PPIs data sets, in order to produce
smaller sets of higher confidence, and direct further inves-
tigations. Complementary methods should be combined
to create a general scheme for verification of putative PPIs,
for example by considering only those interactions that
are verified by at least two or three methods [7] or using
supervised machine learning approaches [29], thus
improving the performance of each method alone.

Conclusion
We have shown that expression data from multiple organ-
isms can be used to increase the confidence of
hypothetical PPIs by considering co-expression of
orthologs of the presumed interacting partners. For organ-
isms such as S. cerevisiae, with highly characterized
expression profiles, orthologous co-expression may be
combined with co-expression of the actual proteins,
whereas for other, less studied organisms, it may replace
the missing expression profiles. Notably, this method is
especially useful for detection of transient interactions
which presents a known weakness of most prediction
methods. The success of this method also implies that
PPIs tend to be conserved in different organisms, even as
distant as yeast and human, further supporting the use of
comparative approaches in proteomics.

Methods
Interactions sets – a reference set of S. cerevisiae interactions
was extracted from the MIPS (Munich Information Center
for Protein Sequences) PPI database [14] at 22/01/04. We
excluded genetic interactions, self-interaction, interac-
tions found by high-throughput experiments, interactions
without expression data, and redundancies, resulting in a
set of 1656 interactions. We did not use larger databases
such as the one compiled by von Mering et al. [7] since
they are more likely to contain false interactions and are
also biased towards co-expression since this information
was used in their construction. Randomly generated set of
the same size was used as control, and averaged over ten
trials. Self-interactions were excluded from the random
set. The random set may include real interaction, but their
expected frequency is much less than 1%. Transient com-
plexes were taken from Jansen et al. [12]. The transient set
Page 9 of 11
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was constructed by combining the pair-wise interactions
from each transient complexes and removing redundan-
cies (some protein pairs were present in more than one
complex).

mRNA expression data – datasets for six organisms were
collected from different sources, as described in [19], and
can be downloaded from our home page [30]. All datasets
were normalized to have a mean of 0 and standard devia-
tion of 1 for each condition.

Expression correlation – cosine correlation over the entire
expression data of each organism was used as a measure
of co-expression. Former analysis suggested that cosine
correlation is the optimal measure of co-expression for the
purpose of detecting PPIs [13]. Many genes in all six
organisms have missing values in the expression data, so
the expression correlations of many orthologous pairs
cannot be calculated. To decrease the dependency of our
approach in the availability of expression data and to
improve its performance, we replace the missing correla-
tions by estimated values. We used the corresponding
yeast co-expression when the yeast and orthologous co-
expression are combined (green curve in figure 2d). In
contrast, when orthologous co-expression is used alone
(red curve in figure 2d), the yeast expression data is
assumed to be unavailable (in order to show the applica-
bility of the method to organisms without expression
data) and an expected correlation is calculated for each
species, based on the union of the reference and random
sets (average expression correlation of orthologous pairs
in a specific species, over the reference and random sets
combined with equal weights). The expected correlations
are greater than zero for all five species; so putative PPIs
are actually given positive scores for the existence of an
orthologous pair, corresponding to the notion that PPIs
are more likely to have pairs of orthologs [21].

Orthologous proteins – orthologs were found using blastp
[22] with a P-value threshold of 10-7, and alignment
length threshold of 0.3. The ortholog with the most signif-
icant p-value that had available expression data was used
to measure co-expression. Other studies had used a recip-
rocal best-hit BLAST search for finding orthologous; we
use a less strict criterion in order to apply the orthologous
co-expression method to more protein-pairs.

P-values and Significance – by sampling 100,000 protein
pairs we determined p-values for S. cerevisiae and ortholo-
gous co-expression as the fraction of pairs with equal or
greater correlation of expression profiles; P-values of 0.05
(not corrected for multiple testing) were used as thresh-
olds for significance.
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